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Gaussian boson sampling (GBS) is not only a feasible protocol for demonstrating quantum computa-
tional advantage, but also mathematically associated with certain graph-related and quantum chemistry
problems. In particular, it is proposed that the generated samples from the GBS could be harnessed to
enhance the classical stochastic algorithms in searching some graph features. Here, we use Jiǔzhāng, a
noisy intermediate-scale quantum computer, to solve graph problems. The samples are generated from a
144-mode fully connected photonic processor, with photon click up to 80 in the quantum computational
advantage regime. We investigate the open question of whether the GBS enhancement over the classical
stochastic algorithms persists—and how it scales—with an increasing system size on noisy quantum
devices in the computationally interesting regime. We experimentally observe the presence of GBS
enhancement with a large photon-click number and a robustness of the enhancement under certain noise.
Our work is a step toward testing real-world problems using the existing noisy intermediate-scale quantum
computers and hopes to stimulate the development of more efficient classical and quantum-inspired
algorithms.
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Recent experiments have constructed noisy intermediate-
scale quantum (NISQ) devices and shown increasingly
convincing evidence for quantum computational advantage
[1–5], a milestone that demonstrates that the quantum
devices can solve sampling problems overwhelmingly faster
than classical computers. A natural next step is to test
whether these NISQ devices can solve problems of practical
interest.
Gaussian boson sampling (GBS) [6], a variant of the

original Aaronson-Arkipov boson sampling [7], has attracted
considerable attention for its potential applications in
graph-related problems, quantum chemistry, and machine
learning [8–14]. This is because the GBS has an underlying
mathematical connection with graph theory. Therefore, the-
ories [9–12] have suggested that the generated samples from
the GBS might give enhancement over classical stochastic
algorithms in solving some graph problems. Moreover, the
highly connected topology of the GBS photonic processor
can naturally address problems on nonplanar graphs [15].
Proof-of-principle demonstrations of solving graph

problems assisted by the GBS have been reported [16–19],

however, in regimes where the GBS device dynamics can
be easily simulated on classical computers. An important
and open question is whether the GBS could give enhance-
ment on increasingly large devices in the computationally
interesting regime, and how the performance is affected by
noise in NISQ devices. Furthermore, previous demonstra-
tions on finding dense subgraphs could only address the
problem with non-negative-valued sampling matrices, for
which efficient classical algorithms of estimating the
sampling probability exist [20,21] and a quantum-inspired
classical algorithm was recently developed [22].
Here, we test solving nonplanar graph problems on the

NISQ photonic quantum processor, Jiǔzhāng, with 50
single-mode squeezed states input into a 144-mode linear
optical network [2,3]. We operate Jiǔzhāng in the com-
putationally interesting regime to enhance stochastic
algorithms solving two graph problems, namely the
Max-Haf problem [9] and the dense k-subgraph problem
[10]. We benchmark how the performance scales as a
function of the GBS size, and how it is influenced by
certain noise [23].
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In the GBS, arrays of squeezed vacuum states are sent
through a multimode interferometer and sample the output
scattering events. Due to its Gaussian properties, the output
state can be described by its Husimi covariance matrix σQ
[24,25], for which the sampling matrix is expressed as

A ¼
�
0 I

I 0

�
ðI − σ−1Q Þ: ð1Þ

The sampling matrix A is in a block matrix form:

A ¼
�
A L

L† A�

�
; ð2Þ

where A is a symmetric matrix, and L ¼ 0 if the Gaussian
state is a pure state.
An illustration of the correspondence between a graph

and a GBS setup is shown in Fig. 1(a). Any undirected
graph can be represented by its adjacency matrixΔwhich is
symmetric—i.e., Δij ¼ Δji—and the adjacency matrix
element Δij corresponds to the weighted value of the edge
connecting vertex i to vertex j. The adjacency matrix can be
encoded into the sampling matrix A of a pure state GBS
with a proper rescaling factor c (see the Supplemental
Material [26]):

A ¼
�
cΔ 0

0 cΔ�

�
; ð3Þ

and by Takagi-Autonne decomposition [27] the corre-
sponding GBS setup can be constructed. Each mode of
the output light field maps to a column and row of the
adjacency matrix, and each GBS sample corresponds to a
submatrix of the sampling matrix A by taking the elements
of the corresponding rows and columns. Once the relation-
ship between the GBS device and the adjacency matrix of
the graph under study is established, the GBS samples,
whose probability is positively correlated to the mathemati-
cal quantity called the Torontonian [28] (for threshold
detection) or Hafnian [29] (for photon-number-resolving
detection) of the corresponding submatrix, are harnessed to
enhance solving the graph problems of interest.
We study the GBS enhancement on solving the Max-Haf

problem and the dense k-subgraph problem. The Max-Haf
problem is, for a complex-valued matrix B of any dimen-
sion, to find a submatrix BS of fixed even dimension
k ¼ 2m, with the largest Hafnian in the square of the
absolute value. The Hafnian was originally introduced in
interacting quantum field theory and plays a variety of roles
in physics and chemistry [8,30–36]. When the matrix is an
adjacency matrix composed of zeros and ones, the Hafnian
can be interpreted as the number of perfect matching of the

(b)

(a)

(c)

FIG. 1. Principle of the experiment. (a) The correspondence between a GBS experiment and a graph. Each output port of the GBS
corresponds to a vertex of the graph, and the clicked ports correspond to a subgraph whose vertices and edges are marked in red. (b) The
Monte Carlo simulation results showing Hafnian’s dependence on the Torontonian for the randomly sampled four-mode complex-
valued matrix. (c) The Monte Carlo simulation results showing the graph density’s dependence on the Torontonian for the randomly
sampled four-mode complex-valued matrix.
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graph [11]. The Max-Haf problem is known to belong to
the NP-hard complexity class [9].
The dense k-subgraph problem is, for an n-vertex graph

G with adjacency matrix Δ, to find its subgraph of k < n
vertices GS with the largest density

WðGSÞ ¼
����
Xk
i;j¼1

ðΔSÞi;j
����; ð4Þ

where ΔS is the adjacency matrix of GS.
The dense k-subgraph problem is of fundamental interest

in both mathematics [37] and applied fields like data
mining, bioinformatics, finance, and network analysis
[38–45]. Although there are deterministic algorithms for
finding the subgraph of a large density, they can be fooled,
and thus stochastic algorithms are important in certain
scenarios [10].
The principle of the GBS enhancement on solving the

two problems by stochastic algorithms can be understood
from the concept of proportional sampling. Since the GBS
samples are more likely to have a larger Hafnian in
modulus (hereinafter, we use “Hafnian” to refer to the
Hafnian in modulus), it also holds that subgraphs corre-
sponding to the GBS samples are more likely to have a
larger Hafnian. Therefore, one can use the GBS samples
to boost the effectiveness of stochastic algorithms in
solving the Max-Haf problem by augmenting its success
probability.
Furthermore, it is proved that for a graph of zeros and

ones, its density is positively correlated to the Hafnian, and
dense k-subgraph problem solving can also be expected to
gain enhancement from GBS [10]. From another point of
view, by working in a quantum-classical hybrid scheme, the
GBS serves as an oracle to significantly narrow down the
combinatorial search space of the stochastic algorithm,
since the subgraphs of small Hafnian or density are unlikely
to be sampled.
These two graph problems differentiate from each other

by means of their target function’s computational complex-
ity. The Hafnian is hard to compute, while density can be
evaluated efficiently. Investigation of the two graph prob-
lems of distinct properties provides us with insights into the
dependence of GBS enhancement on the computational
complexity of the graph feature itself.
While the above discussion holds for the ideal GBS, in

experiments we need to consider three realistic derivations:
(i) The sampling matrix retrieved from the experiment is
not always ideally non-negative as in the original proposal.
Imperfection in circuits can introduce negative or imagi-
nary terms into the sampling matrix. (ii) Experimental noise
like photon loss causes mixed state sampling in GBS,
which can result in a biased diagonal block matrix A,
and a nonzero off-diagonal block matrix L ≠ 0 [46].
(iii) Threshold detectors are usually used instead of
photon-number-resolving detectors [47].

To check whether the proportional sampling
mechanism holds for the GBS with threshold detectors
on complex-valued sampling matrices, we perform
Monte Carlo simulation to reveal the numerical correlation
between the Torontonian and Hafnian or density for
randomly generated complex sampling matrices (see the
Supplemental Material [26]). Shown in Figs. 1(b) and 1(c),
the positive correlation between the Torontonian and
Hafnian or density validates the underlying principle of
proportional sampling and portends the occurrence of GBS
enhancement.
We proceed to test the GBS enhancement on solving the

Max-Haf problem and the dense k-subgraph problem. Two
stochastic algorithms—namely, the random search (RS) and
simulated annealing (SA) algorithms [9,10]—are studied.
RS represents the naive way of solving the combinatorial
problem by uniformly sampling from the whole solution
space,which is free frombeing trapped by the local optimum
but is costly and inefficient. SA combines mechanisms from
both random exploration that prevents it from being stuck in
local minima and hill climbing that enables it to approach
good solutions fast, but a proper choice of parameters is
crucial for guaranteeing the algorithm’s performance.
Together, the two algorithms of distinctworking subroutines
help to benchmark the enhancement of GBS on graph
applications more comprehensively.
The experiment is performed on a randomly generated

and fully connected 144-mode optical interferometer, and a
subset of samples with coincident photon-click number up
to 80 are used for the study. Figures 2(a) and 2(b) show the
maximum Hafnian of a 12-vertex subgraph on a 144-vertex
full graph found for the two algorithms and their GBS-
enhanced variants as a function of searching steps. For both
the RS and SA algorithms, it is evident that the GBS-
enhanced variants improve the effectiveness of the algo-
rithms by finding a larger Hafnian within the same steps.
An illustration of the full graph corresponding to the
experiment, together with the subgraph searched by the
GBS-enhanced SA algorithm in highlight, is shown in
Fig. 2(c).
Similarly, Figures 2(d) and 2(e) plot the largest density

found at various steps for the four algorithms. The GBS
samples are 80 photon-click events from the 144-mode
quantum device, which are in the quantum advantage
regime. On average, each sample would take Frontier,
the current fastest supercomputer in the world [48], more
than 700 seconds to generate using exact methods, as
estimated with the state-of-the-art classical sampling algo-
rithm [49], and we used 221 891 samples in total for the
study, which amounts to∼5 years onFrontier. It is observed
that both RS and SA algorithms gain enhancement from the
GBS samples in searching for subgraphs of higher density at
the given step. Particularly, it is noted that the density found
by the deterministic greedy algorithm [50], which is marked
as the horizontal dashed line, can be outperformed by the
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GBS-enhanced SA algorithm, confirming the advantage of
stochastic algorithms.
Having established the GBS enhancement, we continue

to investigate how this enhancement scales on our device.
We benchmark the GBS enhancement by defining the score
advantage and speed advantage. The former is, for a given
step, the maximal score (in terms of the Hafnian or the
density) obtained by the GBS-enhanced algorithms divided
by that by the classical algorithms only. The latter is, to
reach a target score, the ratio of the needed searching steps
between the GBS-enhanced and classical algorithms (see
the Supplemental Material [26]). We use the parameter-free
RS algorithm to probe the scaling properties.
Figure 3(a) shows the scaling of the score advantage of the

GBS enhancement for a fixed 103 steps. Remarkably, the
score advantage rises up steadily, from∼24 at a photon click
of 12 to ∼92 at a photon click of 28. The speed advantage is
plotted in Fig. 3(b) also as a function of photon-click
number. The speed advantage starts at ∼89 at photon click
12 and becomes increasingly large as the size increases,
reaching∼212 at 28 photons.Here, due to the computational
overhead, we use the Sunway TaihuLight supercomputer to
evaluate the Hafnian. Overall, the results of Figs. 3(a)
and 3(b) provide strong evidence that the GBS enhancement
as benchmarked by the score advantage and speed advantage

increases with the photon-click number in solving the
Max-Haf problem by RS algorithm on Jiǔzhāng.
Figure 3(c) plots the score advantage for the dense

k-subgraph problem at increasing photon-click number.
While all the data points show a positive advantage (>1),
there is no obvious increasing trend at larger size. A similar
behavior is observed in the speed advantage, as shown in
Fig. 3(d). In the Supplemental Material [26], we show
numerically simulated results for an ideal GBS sampler
on the dense k-subgraph problem of both a randomly
generated non-negative-valued graph and a complex-
valued graph, which exhibit trending of the score advantage
and speed advantage similar to that reported in our
experiment.
Noise is amajor problem for theNISQdevice. In theGBS,

photon loss [19] (which can be caused by limited efficiency
of the optical elements and detection) and thermal noise [46]
(which can be caused by spatial mode mismatch of the
sources) can turn the pure-state GBS into mixed-state GBS.
For the graph problem solving, these noises can make the
sampling matrix deviate from the ideal [29] and could
decrease the positive correlation between the Hafnian or
density of the encoded matrix and that of the sampling
matrix. To characterize the influence of these noises onGBS
enhancement on the graph problem solving, we benchmark

Phase
0

FIG. 2. The GBS enhancement on Max-Haf and dense k-subgraph problem solving. (a),(b) The GBS enhancement on finding the
12-vertex subgraph with the largest Hafnian out of a 144-vertex graph for the (a) SA and (b) RS algorithms. The experiment obtains a
mean photon-click number of 21. A set of 12 photon-click samples are postselected for this study. The x axis corresponds to the number
of steps used in the optimization process, while the y axis indicates the corresponding largest Hafnian found. Each curve is the mean
largest Hafnian out of 100 trials, and the shaded area indicates standard error. (c) The graph corresponding to the experiment, and the
subgraph of the maximum Hafnian found by the GBS-enhanced SA algorithm (vertices marked in red). Here, 119 unchosen vertices are
omitted for the display. (d),(e) The GBS enhancement on finding the 80-vertex dense subgraph out of a 144-vertex graph for the (d) SA
and (e) RS algorithms. The experiment obtains a mean photon-click number of 61. A set of 80 photon-click samples are postselected for
this study. The x axis corresponds to the number of steps used in the optimization process, while the y axis indicates the corresponding
largest density found. The curve is the maximum (mean) largest density out of 120 (20) trials for SA (RS), and the shaded area indicates
standard deviation (error). In (d), the horizontal dashed line shows the density found by the deterministic greedy algorithm, and it is
surpassed by the GBS-enhanced SA algorithm.
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them with the RS algorithm that is free from parameter
choosing. We compare the steps needed for achieving a
target value of the problem between samplers of various
noise levels. The probability distribution of the steps follows
the geometric distribution, which gives the probability that
the first occurrence of success requires k independent trials:

PðX ¼ kÞ ¼ ð1 − pÞk−1p; ð5Þ

where k ¼ 1; 2… is the number of steps, and p is the
probability that a GBS sample can produce a better result
than the target. The noise’s influence on the GBS enhance-
ment can be simply benchmarked by the parameter p,
since a larger p would indicate that fewer steps are needed,
which corresponds to a stronger GBS enhancement, and
vice versa.
To investigate the effect of photon loss, we theoretically

simulate the performance with an ideal sampler and that
with an overall photon loss of 25% and 50%, for the same
optimization task. Figures 4(a) and 4(b) show histograms of

the number of steps for the GBS-enhanced RS algorithms
to achieve the target value. There is a significant reduction
of the steps at increasing system efficiency η. The p value of
the sampler with a unit efficiency is 0.0196 (0.0024) for
the Max-Haf (dense k-subgraph) problem, whereas the
lossy samplers with efficiencies η ¼ 0.5 and 0.75 corre-
spond to p ¼ 0.0039 (0.0012) and p ¼ 0.0071 (0.0018),
respectively. The results indicate that lower photon loss will
lead to a stronger GBS enhancement. A recent theoretical
study reported similar findings, including the dependence
of the GBS enhancement on the partial photon distinguish-
ability [51].
Figures 4(c) and 4(d) show the theoretical simulation

results for the thermal noise. Three examples are studied,
where the thermal noise is chosen for ϵ ¼ 0, 0.25, 0.5.
Again, a strong decrease of the required steps is observed for
lower thermal noise. Thep value of the ideal sampler for the
Max-Haf (dense k-subgraph) problem is 0.0194 (0.0024),
whereas the p values of the sampler with 0.25 and 0.5
thermal noise are 0.0023 (0.0011) and 0.0008 (0.0006),
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FIG. 3. The scaling of the GBS enhancement benchmarked by the score advantage and speed advantage as a function of photon-click
number. The problem is defined on a randomly generated complex-valued full graph of 144 vertices. (a),(b) The GBS enhancement on
the Max-Haf problem with various photon-click numbers. The mean photon-click number of the experiment is 21. The score advantage
as a function of photon-click number is shown in (a), which is defined as the ratio of the maximum Hafnian in the square of the modulus
searched at 1000 steps by the GBS-enhanced RS algorithm to that searched by the RS algorithm. The speed advantage, which is defined
as the ratio of the number of steps reaching the target value by the RS algorithm to that by the GBS-enhanced RS algorithm, is shown in
(b) as a function of photon-click number. The target value of each trial is set as that reached by the RS algorithm at 1000 steps. A clear
rising trend with increased photon-click number can be observed for both the score advantage and the speed advantage. (c),(d) The GBS
enhancement on the dense k-subgraph problem for various photon-click numbers. The mean photon-click number of the experiment is
61. The score advantage is displayed in (c), which is defined as the ratio of the density optimized at 10 000 steps by the GBS-enhanced
RS algorithm to that by the RS algorithm, as a function of photon-click number. The speed advantage, which is defined as the ratio of the
number of steps reaching the same density by the RS algorithm to that by the GBS-enhanced RS algorithm, is shown in (d) for various
photon-click numbers. For each trial, the target value is set as that reached by the RS algorithms at 10 000 steps. No significant
increasing trending with photon-click number is observed for this problem. Error bars indicate standard error.
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respectively. The results show the importance of eliminating
the thermal noise to achieve a higher GBS enhancement.
Having studied these effects theoretically, we now bench-

mark the noise influence experimentally. The experiment
results at a typical noise level, where η̄ ¼ 0.472 and
ϵ̄ ¼ 0.02, are compared with those at a controlled higher
noise level, η̄ ¼ 0.333 and ϵ̄ ¼ 0.192. As shown in Figs. 4(e)
and 4(f), the experimental samples with low noise level
demonstrate stronger GBS enhancement for both graph
problems, which is in good agreement with the theoretical
simulation. The p value for the low-noise experimental
sampler on the Max-Haf (dense k-subgraph) problem is
0.0031 (0.0012), whereas it is 0.0014 (0.0008) for the
controlled high-noise experimental sampler. Interestingly,
samples from the modest noise-level experiments, though
with less enhancement, can still improve the RS algorithm.
In this Letter, we have demonstrated the GBS enhance-

ment on stochastic algorithms in solving two graph prob-
lems of distinct properties with the 144-mode NISQ device
Jiǔzhāng in the quantum computational advantage regime.
It is an open question, however, whether the GBS can yield

advantage compared to improved classical algorithms and
quantum-inspired algorithms. Also, the GBS enhancement
can depend on the properties of the input graphs, for
which more comprehensive algorithm analysis and discus-
sions for various situations are expected. We hope that
our work will stimulate experimental efforts on larger-
scale, higher-fidelity, and fully programmable GBS,
exploration of real-world applications where the computa-
tional problems can be mapped onto the GBS, and develop-
ment of more efficient classical and quantum-inspired
algorithms.

This work was supported by the National Natural
Science Foundation of China, the National Key R&D
Program of China (No. 2019YFA0308700), the Chinese
Academy of Sciences, the Anhui Initiative in Quantum
Information Technologies, and the Science and Techno-
logy Commission of Shanghai Municipality (No. 2019
SHZDZX01). Innovation Program for Quantum Science
and Technology (No. ZD0202010000), and the New
Cornerstone Science Foundation.

FIG. 4. Histogram of steps for GBS-enhanced RS algorithms to achieve the target value as a function of various noise levels. For each
subplot, a number of trials are repeated, and the y axis corresponds to the counts of the occurrence of the number of steps to surpass the
target value. The target is set as the mean value reached by the classical RS algorithm at 10 000 steps. (a),(b) Theoretical simulation of
the effect of photon loss noise on (a) the GBS enhancement on the Max-Haf problem and (b) the dense k-subgraph problem (b). The
plots show the GBS enhancement with samples from a theoretically simulated sampler with no photon loss η ¼ 1, and a theoretically
simulated sampler with system efficiency η ¼ 0.75 and η ¼ 0.5. It is observed that the ideal sampler without photon loss needs fewer
steps for the task than the lossy sampler. (c),(d) Simulating thermal noise’s influence on GBS enhancement for (c) the Max-Haf problem
and (d) the dense k-subgraph problem. The plots exhibit the GBS enhancement with samples from a theoretically simulated sampler of
zero thermal noise ϵ ¼ 0, and theoretically simulated samplers of the thermal noise levels ϵ ¼ 0.25 and ϵ ¼ 0.5. The results indicate that
the simulated sampler with no thermal noise needs fewer steps to achieve the target value. (e),(f) The GBS enhancement with samples
from a low-noise-level experiment (red) and a controlled high-noise-level experiment (brown) on (e) the Max-Haf problem and (f) the
dense k-subgraph problem. Fewer steps are needed by the low-noise-level experiment than by the high-noise-level experiment. The low-
noise-level experiment corresponds to an averaged system efficiency η̄ ¼ 0.472 and averaged thermal noise level ϵ̄ ¼ 0.02, whereas the
high-noise-level experiment corresponds to an averaged system efficiency η̄ ¼ 0.333 and an averaged thermal noise level ϵ̄ ¼ 0.192. For
all plots, the problem is defined on a 144-vertex full graph with a photon click of 10. The low- (high-) noise-level experiment has a mean
photon number of 7 (6), and samples of photon click 10 are used for the investigation. Error bars indicate statistical fluctuation.
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