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We propose a novel spatially inhomogeneous setup for revealing quench-induced fractionalized
excitations in entanglement dynamics. In this quench-probe setting, the region undergoing a quantum
quench is tunnel coupled to a static region, the probe. Subsequently, the time-dependent entanglement
signatures of a tunable subset of excitations propagating to the probe are monitored by energy selectivity.
We exemplify the power of this generic approach by identifying a unique dynamical signature associated
with the presence of an isolated Majorana zero mode in the postquench Hamiltonian. In this case
excitations emitted from the topological part of the system give rise to a fractionalized jump of logð2Þ=2 in
the entanglement entropy of the probe. This dynamical effect is highly sensitive to the localized nature of
the Majorana zero mode, but does not require the preparation of a topological initial state.
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Introduction.—Identifying physical signatures to
distinguish and understand phases of matter occurring
in nature is a main objective of research in physics.
Dynamical approaches probing a system far from thermal
equilibrium have become increasingly important. In par-
ticular, quantum quenches, i.e., abrupt changes of param-
eters in the Hamiltonian, have enabled unprecedented
insights into structure and dynamics of quantum matter,
both in theory [1–3] and experiment [4–8]. A prominent
example is provided by the prediction and observation of
nonequilibrium topological invariants [9–23] that probe
topological properties of matter without requiring the
preparation of a topological equilibrium state.
As a powerful and genuinely quantum-mechanical

diagnostic tool, the time evolution of entanglement has
been widely investigated [1,3,24,25], including dynamical
signatures of topology such as protected crossings in the
entanglement spectrum [26–30]. In homogeneous inte-
grable systems, the spreading of entanglement after a
quench is closely related to the propagation of pairs of
entangled quasiparticle excitations with opposite momenta
[25,31–33]. For more complex scenarios, involving
for example periodic spatial modulations [34] or open
systems [35,36], richer entanglement structures related to
quench-induced excitations represent a frontier of ongoing
research [37–44].
In this Letter, we propose a novel approach for the study

of entanglement dynamics in complex systems to selec-
tively analyze a subset of quench-induced excitations. This
enables us to identify unique features in the spreading of
entanglement, such as fractional jumps of the entanglement
entropy (EE). We directly relate their presence to the
existence of nontrivial eigenmodes in the postquench

Hamiltonian, e.g., topological localized modes. This
remarkable capability stems from the hybrid nature of
our proposed setup, sketched in Fig. 1(a), where only a
part of the system (Q) is quenched while the entanglement
is measured in a different (static) region (P), the two
being coupled via a (static) separation layer (X). This
quench-probe approach provides a new perspective for the
analysis of entanglement spreading in highly inhomo-
geneous systems, paving the way for novel observations
that complement the study of (almost) homogeneous setups
[13,14,31,32,34,44–47]. Its energy selectivity—due to
resonant coupling between regions Q and P—is reminis-
cent of scanning tunneling spectroscopy.
As a specific case study, we use our approach to analyze

the dynamics of the entanglement generated by a localized
Majorana zero mode (MZM), hosted by a Kitaev chain
(KC) [49–51]. This leads us to the discovery of quantized
jumps in the EE of the probe with fractional amplitude

ΔSP ¼ logð2Þ
2

: ð1Þ

The corresponding trace is provided by the red line in
Fig. 1(b). Such a fractional increase, associated with the
fractional entropy of a single MZM [52–54], clearly differs
from the conventional EE increase ΔSP ¼ logð2Þ that
originates from an ordinary fermionic mode [see the green
line in Fig. 1(b)]. The quantization is robust with respect to
parameter variations but highly sensitive to the hybridiza-
tion of two MZMs. These findings, representing a novel
dynamical signature associated with a truly isolated MZM,
are corroborated by the additional analysis of the mutual
information (MI) shared between Q and P [30,36,46],
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which allows us to identify spurious contributions to the
EE and highlight the fractional entanglement jumps.
Importantly, the observation of this topological signature
only requires the postquench Hamiltonian to be topo-
logical, while the system can be prepared in a trivial
thermal state. The topological nature (and robustness) of
an isolated MZM is the origin of the fractional value of
ΔSP. Our setup is applicable to a variety of systems with
particular entanglement spreading of either bulk or edge
modes. Because of energy selective coupling, we are able to
single out the contributions from a subset of modes, if they
are separated in energy.
Hybrid quench-probe setup.—We consider the system

depicted in Fig. 1(a), consisting of the three parts labeledQ,
X, and P. The first one,Q, is the one eventually undergoing
a quantum quench. It is an l-site KC described by the
Hamiltonian

HQ¼μ
Xl

i¼1

c†i ciþ
Xl−1

i¼1

�
τ

2
c†i ciþ1þ

Δ
2
ciciþ1þH:c:

�
: ð2Þ

The operators c†i (ci) create (annihilate) a spinless fermion
at site i, μ is the chemical potential, τ the nearest-neighbor

hopping amplitude, and Δ the superconducting pairing
amplitude. For simplicity, we consider those parameters to
be non-negative real numbers. The KC features two differ-
ent gapped phases, a trivial one for jμj > τ and a topo-
logical one for finite Δ and jμj < τ. At the topological
sweet spot (TSS), i.e., τ ¼ Δ and μ ¼ 0, the analysis ofHQ

in terms of Majorana operators cj ¼ 1
2
ðiγ2i−1 þ γ2iÞ reveals

the presence of two completely isolated MZMs at the two
open ends of the chain ½γ1; HQ� ¼ ½γ2l; HQ� ¼ 0, depicted
by red stars in Fig. 1(a). The bulk of the KC at the TSS is
described by a flat band at finite energy EQ ¼ τ. Deviations
from the TSS (within the topological phase) imply
an exponential leakage of the MZMs into the bulk,
whose spectrum acquires then a finite bandwidth EQðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½τ cosðkÞ þ μ�2 þ ½Δ sinðkÞ�2

p
[51]. For simplicity, we

illustrate the main features of our setup at the TSS.
However, the observation of fractional EE is not limited
to the TSS as we show below.
The remaining N − l sites of the system are described by

a tight-binding Hamiltonian

HXP ¼
XN

i¼lþ1

μpc
†
i ci þ

1

2

XN−1

j¼lþ1

τpðc†i ciþ1 þ H:c:Þ; ð3Þ

with chemical potential μp and hopping amplitude τp. The
corresponding spectrum reads

EXPðkÞ ¼ μp þ τp cosðkÞ: ð4Þ

The first d sites, i.e., the ones between l < j ≤ lþ d, form
the separation layer X, while the probe region P consists of
the remaining sites with lþ d < j ≤ N. The presence of a
finite X allows us to consider regimes in which the probe
region P is exclusively affected by quench-induced exci-
tations that propagate ballistically in the chain, filtering out
possible contributions to the entanglement associated with
the Q-X interface. Regions Q and X are connected via a
standard tunneling Hamiltonian

HT ¼ τt
2
ðc†l clþ1 þ H:c:Þ ¼ τt

4
½ðiγ2l−1 þ γ2lÞclþ1 þ H:c:�;

ð5Þ

with coupling strength τt.
It is particularly instructive to express fermions in terms

of the corresponding Majorana operators. At the TSS, γ2l is
an isolated MZM while γ2l−1, together with γ2l−2, belongs
to an ordinary fermionic mode of the flat bulk band of the
KC. Coupled Majorana operators belonging to the bulk of
the KC are depicted by green circles in Fig. 1(a). By
properly tuning the parameters of the system, it is thus
possible to define two separated regimes. For jμpj < τp ≪
τ the probe is exclusively coupled to the MZM at the right
end of the topological KC. By contrast, for jμpj ∼ τ ≫ τp,

FIG. 1. (a) Hybrid quench-probe setup. A 1D Kitaev chain Q,
which undergoes a quantum quench across its topological phase
transition, is tunnel coupled at its right end to the trivial regions X
and P. Quench-induced excitations are selectively transmitted
through X and eventually reach P, whose time-dependent
entanglement properties are monitored. (b) Quantized jumps in
the entanglement entropy (EE) of the probe. When the latter is
selectively coupled to the right Majorana zero mode (MZM) (red
star), a robust fractional increase of the EE ΔSP ¼ logð2Þ=2 is
observed (red line), which is half of the increase observed when
the probe is coupled to the fermionic bulk flatband of the Kitaev
chain (green line). A schematic of the energy-selective coupling,
allowed by the quench probe approach, is provided in the inset.
For our choice of parameters see [48].
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the probe is coupled to the bulk band [55]. A sketch of this
energy-selective coupling is provided in the inset of
Fig. 1(b). The exploitation of energy and spatial sensitivity,
together with the presence of a separation layer X, differ-
entiates our proposal from other quench-probe scenarios,
such as the ones discussed in [56–58].
Quench procedure.—The quench of region Q consists

in the abrupt change, at t ¼ 0, of the parameters
ðμi; τi;ΔiÞ → ðμf; τf;ΔfÞ. We assume the system to be
initially prepared in the ground state jψ0i of the initial
Hamiltonian Hi ¼ HQðμi; τi;ΔiÞ þHXP þHT . For t ≥ 0,
the time evolution of the system is instead controlled by
the final Hamiltonian Hf ¼ HQðμf; τf;ΔfÞ þHXP þHT .
With respect to Hf, the state jψ0i consists of several
quasiparticle excitations, that are emitted in both directions
from every site in the quenched region Q. Those counter-
propagating quasiparticles are entangled between each
other. Their motion is responsible for spreading of corre-
lations and entanglement within the system, bounded by
the Lieb-Robinson limit [59]. For a wide range of homo-
geneous systems, these quasiparticles are produced in
uncorrelated pairs, each one consisting of two entangled
quasiparticles with opposite momenta [60–64]. The physics
is richer in presence of interactions and/or inhomogeneities,
which can lead to the presence of quasiparticle multiplets
and nontrivial correlations [34,42–44]. When Hf is chosen
in the topological regime, our system is spatially inhomo-
geneous due to the presence of a pair of isolated MZMs.
This observation naturally raises the question whether the
quasiparticles originating from the MZMs differ from the
ones associated with the fermionic bulk of the KC. Our
proposed quench-probe setup proves to be particularly
effective in providing an affirmative answer to this
question.
Entanglement dynamics.—The simplest way to analyze

the entanglement properties of P is to compute its EE,
defined as

SPðtÞ ¼ −TrfρPðtÞ log½ρPðtÞ�g: ð6Þ

Here, ρPðtÞ is the reduced density matrix of the probe
ρPðtÞ ¼ TrQX½ρðtÞ�, whose spectrum can be calculated
from the single-particle correlation matrix [65–67].
The time-dependent variation of the EE after a quench
to the TSS is shown in Fig. 1(b), where we plot ΔSPðtÞ ¼
SPðtÞ − SPð0Þ considering a selective coupling either to the
isolated MZM (red line) or to the flat fermionic bulk band
(green line). After a finite time delay δt, we observe jumps
in the EE that eventually reach either the trivial quantized
value log(2) (for the coupling to the bulk) or an anomalous
fractional value logð2Þ=2 (for the coupling to the MZM).
Consistently with the quasiparticle picture, the time delay
satisfies δt ∼ dτ−1p . It can be interpreted as the time of flight
associated with the excitations, emitted from the last site of
Q, that propagates through the d sites of X at the maximum

group velocity τp [see Eq. (4)]. The lack of a steady linear
increase of ΔSPðtÞ, typically observed in homogeneous
systems [31–33], can be understood in terms of the
vanishing group velocity in the bulk of the KC at the
TSS. This effectively freezes all the quasiparticles emitted
inQwith the only exception of the ones related to γ2l−1 and
γ2l, which are directly connected to X via HT . Those
quasiparticles are ultimately responsible for the quantized
jumps discussed before.
To strengthen the connection between the anomalous

fractional jump of the EE and the presence of an isolated
MZM, we additionally compute the time-dependent MI
shared between the probe P and the quenched region Q.
It is defined as

IðtÞ ¼ SQðtÞ þ SPðtÞ − SQ∪PðtÞ ð7Þ

and quantifies the total amount of correlations between the
two disjoint regions [30,36,46], eliminating spurious con-
tributions to SP coming from the separation layer X and
not from the quenched region Q. The increase of MI
ΔIðtÞ ¼ IðtÞ − Iðt0Þ, where t0 ≲ δt and Iðt0Þ → 0 for large
d [55], is plotted in the inset of Fig. 2 (dashed lines). It
shares its main features with ΔSP. In particular, when the
probe is effectively coupled to the fermionic bulk of the KC
(dashed lines),ΔI saturates at 2log(2), indicating that P and
Q share a conventional fermionic mode [55]. In contrast,
when the probe is coupled to the isolated MZM (solid
lines), the height of the increase is halved and ΔI saturates
at log(2). In the following, we carefully analyze the MZM
case.

FIG. 2. Fractional quantization of the EE increase as a function
of μf=τf, Δf=τf ratios. The solid and dotted black lines show the
energy splitting of the MZMs in units of 10−3τp. Inset: quantized
jumps in the EE ΔSpðtÞ (solid lines) and MI ΔIðtÞ (dashed lines),
in units of log2ð2Þ for a probe coupled either to the MZM
(red lines) or the fermionic bulk modes (green lines). To
selectively couple to the MZM (fermionic bulk modes) we
choose μp ¼ 0ðμp ¼ τfÞ. For our choice of parameters see [68].
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Anomalous quantization.—After a sufficiently long time
tsf and in the large d limit [69], ΔIðtsfÞ shows a high
degree of quantization and robustness. Indeed, as long as
the probe is gapless and the initial Hamiltonian features a
large trivial gap (such that regions Q and X are initially
decoupled), the MI saturates at ΔIðtsfÞ ¼ logð2Þ without
the need of fine-tuning, as shown by the extended white
area in Fig. 3. Likewise, no fine-tuning of the tunnel
coupling between Q and X is necessary to produce the
anomalous quantization signature, as long as it is compa-
rable to τp [55]. This anomalous quantization is robust
against finite temperature effects and deviations ofHf from
the TSS, as can be seen from the large white area in Fig. 2.
Away from the TSS, two main effects matter: (i) hybridi-
zation of MZMs and (ii) finite bandwidth of the fermionic
bulk band. Related to point (i), the hybridization of the
MZMs disturbs the saturation of the EE at the fractional
value of logð2Þ=2. This makes sense because hybridized
MZMs become regular fermions. If the region Q is,
however, chosen long enough such that the hybridization
between the MZMs is weak, then the fractional EE can be
observed, see Fig. 2. Related to point (ii), as long as the
MZMs are energetically decoupled from the bulk, our
quench-probe setup allows us to isolate their contribution to
the EE by energy selectivity.
As for the robustness at finite temperature, we show that

the quantization of the MI is retained even when the system
is initialized in a thermal trivial state of Hi at finite
temperature T, as long as the latter remains smaller than
the topological gap T ≪ τf ¼ Δf [55].
Nonequilibrium dynamics.—Our quench-probe setup

features another useful knob, i.e., the size d of region X,
which can significantly enrich the analysis of the post-
quench entanglement dynamics. Indeed, a careful study of
IðtÞ as a function of d (plotted in Fig. 4) reveals the
coexistence of a fixed and a propagating component of the

correlations contributing to the MI. Let us explain this point
by carefully inspecting Fig. 4, from right to left. If the probe
region is too far away from Q, the quench-induced
excitations have not yet reached P and the MI is basically
zero. This explains the large triangular gray area in Fig. 4,
which is bounded by the Lieb-Robinson limit d ¼ tτp
(black dashed line) [71]. To the left of the Lieb-Robinson
line, the MI increases as the probe includes an increasing
number of sites entangled with Q (orange region). The MI
reaches I ≃ 0.95 logð2Þ close to the red-dotted line, which
we attribute to the propagation of excitations of finite but
smaller group velocity than τp. To the left of the red-dotted
line, the MI features a plateau around the anomalous
quantized value of log(2) (white region), the regime
described in the previous paragraphs. For small d, i.e.,
when the probe region starts to include sites close to the
Q-X interface, the MI increases again and displays values
above log(2) (blue region). Interestingly, the correlations
responsible for this additional increase of MI do not
propagate within the probe, as shown by the blue-dotted
line, corresponding to I ≃ 1.05 logð2Þ, which is asymptoti-
cally vertical. Finally, for d ¼ 0, the MI reaches the
conventional quantized value of I ¼ 2 logð2Þ. At a given
(large) time, we can thus identify two groups of sites that
are entangled with Q, a propagating one and a fixed one
(pinned at the Q-X interface), as sketched in the inset
of Fig. 4. The precise and robust quantization of ΔI,
shown in Fig. 3, can therefore be understood as the result
of a dynamical phenomenon, namely, the separation
of the correlations between Q and P into two different
components.
Conclusions.—Our quench-probe setup allows us to

identify a robust dynamical effect associated with the
presence of an isolated MZM, hosted by the postquench
topological Hamiltonian. The observation of this effect,
consisting of particular fractional quantized jumps in the
entanglement properties of the probe, only requires the

FIG. 3. Quantization of the MI increase. ΔI is plotted as a
function of μi and μp (units τp). The dashed horizontal (vertical)
line indicates the topological phase transition of the initial
Hamiltonian (the transition between a gapless and gapped probe).
For our choice of parameters see [70].

FIG. 4. MI as a function of d and time t. The red(blue)-dotted
line corresponds to I= log 2 ¼ 0.95 (1.05). The black-dashed line
shows the Lieb-Robinson limit d ¼ tτp. The inset shows a sketch
of the fixed (blue) and propagating (orange) contributions to the
MI. For our choice of parameters see [72].

PHYSICAL REVIEW LETTERS 130, 190401 (2023)

190401-4



preparation of the system in a trivial state. Recent
experimental progress shows that it is feasible to measure
the second order Renyi entropy by quantum inter-
ference [73–75] or randomized measurements [76]. Even
though the main focus of our work is put on the
von Neumann entropy, we show in the Supplemental
Material [55] that all fractional features of the entanglement
dynamics of MZMs can also be identified in the second
order Renyi entropy. Hence, we are confident that our
quench-probe setup can be realized in engineered quantum
systems similar to the ones discussed in Refs. [73–76].
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