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It has been postulated that the brain operates in a self-organized critical state that brings multiple
benefits, such as optimal sensitivity to input. Thus far, self-organized criticality has typically been depicted
as a one-dimensional process, where one parameter is tuned to a critical value. However, the number of
adjustable parameters in the brain is vast, and hence critical states can be expected to occupy a high-
dimensional manifold inside a high-dimensional parameter space. Here, we show that adaptation rules
inspired by homeostatic plasticity drive a neuro-inspired network to drift on a critical manifold, where the
system is poised between inactivity and persistent activity. During the drift, global network parameters
continue to change while the system remains at criticality.
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Introduction.—The critical brain hypothesis postulates
that biological brains operate in a self-organized critical
state [1–5]. While there was initially little evidence to
support this hypothesis, subsequent advances in neurosci-
ence have made it possible to observe the characteristic
power laws and avalanche dynamics associated with
critical transitions, first in cell cultures [6–8] and then in
live animals and humans [9–13]. Although still contro-
versial [14], the critical brain hypothesis is rapidly gaining
support in mainstream neuroscience, fuelled by the growing
amount of experimental evidence.
This experimental evidence is complemented by a body

of theory that elucidates the mechanisms that allow net-
works of neurons to self-organize to a critical state.
Synapses that connect neurons to each other constantly
self-tune their conductance through a variety of processes,
collectively known as synaptic plasticity. Building on the
early ideas of Bornholdt and Rohlf [15], it has been shown
with simulations that commonly observed types of synaptic
plasticity, such as homeostatic and spike-time dependent
plasticity, are capable of self-organizing neuronal models to
a critical state [16–19].
One facet of self-organized criticality that has received

surprisingly little attention concerns the dimensionality of
the parameter space in which the self-organization occurs.
In the vast majority of studies, self-organized criticality is
depicted as a one-dimensional process, where one param-
eter is tuned to a critical point. However, in real-world
systems such as the brain, there are several and possibly
very many parameters that are controlled dynamically. In
such a high-dimensional parameter space, the states of the
system that correspond to criticality can be expected to
form a larger critical manifold.

It has been conjectured that the same mechanisms that
drive the system to criticality will cause a drift along the
critical manifold after criticality is reached [20]. While
remaining critical, the system can thus continue to explore
the parameter space and potentially encounter further
instabilities along the way. This opens up the possibility
of new phenomena such as high-codimension criticality
with multiple order parameters and persistent parametric
dynamics in the critical state. Understanding such phenom-
ena may shed light on how the brain can operate in different
dynamical states both sequentially and simultaneously.
In this Letter, we use a simple adaptive neuro-inspired

network model to show that a self-organizing system can
drift on a critical manifold. This model has previously been
shown to self-organize to the critical state between neuro-
nal inactivity and persistent activity, called the onset of
activity [17]. Here, we show that the system reaches the
critical state long before the global network parameters,
such as the average connectivity, reach their stable values.
We carefully analyze network dynamics after the critical
state has been reached, revealing the conjectured drift on
the critical manifold where the ongoing plasticity contin-
ues to reshape the network structure while the system
remains critical. These results provide direct evidence of
the critical drift and establish an easily tractable example
system where subsequent phenomena can be analyzed.
The model.—We investigate criticality in the model of

Droste et al. [17] that combines stochastic neuro-inspired
dynamics with adaptive network evolution. As the starting
point for the adaptation, we consider directed random
(Erdős-Rényi, ER) networks of N excitable nodes and
M directed links with a mean degree of hki ¼ M=N. Each
node can take three discrete states: firing (F), refractory
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(R), or inactive (I). Nodes in the firing state activate their
inactive neighbors stochastically at rate β and then enter a
refractory period at rate δ before transitioning back to state
I at rate γ. The network topology evolves on a timescale
slower than the node dynamics, following rules inspired by
homeostatic plasticity that strives to keep the mean firing
rate of each neuron constant over the long term (see,
e.g., [21]). We use a discrete update rule where firing nodes
lose incoming links at rate l, while new links are created
between random nodes at rate g. During the network
evolution, we allow inactive nodes to fire spontaneously
at rate η to counteract activity dying out due to finite-size
effects. The network dynamics and topology are evolved
using the Gillespie algorithm [22].
Criticality in static ER networks.—Let us first character-

ize the transition from inactivity to persistent activity when
the adaptation rules are switched off and no spontaneous
activity is allowed. This transition separates the phase
where any initialized activity dies out exponentially from
the phase where exciting a random node leads to sustained
activity. The average activity h½F�i acts as the order
parameter of the transition [see Fig. 1(a)]. In static ER
networks, the mean degree hki is the control parameter
determining the overall excitability. As the firing dynamics
is similar to the SIS model, the transition is expected to
belong to the directed percolation universality class [23]. In
this universality class, two correlation lengths, ξk and ξ⊥,
diverge at the transition, with the former corresponding
to the temporal dimension and the latter to the spatial
(network) dimension.
To verify that the system undergoes a continuous phase

transition at a critical value hki�static, we initialize several
successive cascades of activity in ER networks with
different mean degrees hki. These avalanches are initialized
by activating one random node at a time. We then record the
duration and size of the resulting avalanche, where the size

indicates the number of firing events (note that one node
can fire several times). We set a maximum time limit tmax so
that avalanches that die out before this limit are considered
finite. Their maximum size and duration are then expected
to sharply peak at the critical value hki�static as a result of the
diverging correlation lengths.
We observe that, as expected, the system shows the

hallmarks of a continuous phase transition at a critical
value hki�N;static, with the transition becoming sharper as N
increases. At this threshold, the average activity becomes
nonzero and the maximum size and duration of finite
avalanches diverge (Fig. 1). In line with this, the probability
distributions of finite avalanche size and duration appear
exponential when hki lies clearly under or above the critical
threshold, while close to the critical value the distributions
look like power laws with exponents matching the theo-
retical predictions for critical SIS-like systems derived
in [24] (see Supplemental Material (SM) [25], V). The
critical mean degree hki�N;static depends on the transition rates
β, δ, and γ, and its value for infinite systems can be
approximated with Eq. (7) from [17]. For the parameters
used here, Eq. (7) yields hk̂i�static ¼ 2.21, which lies slightly
below the experimentally extrapolated value hki�N→∞;static

(see SM, I [25]).
Evidence for drift on the critical manifold.—Next, we

switch on the plasticity rules and observe how the simulated
networks evolve in time, using ER networks of different
mean degrees in the vicinity of the critical value hk̂i�static ¼
2.21 as the initial condition. We follow the evolution of the
networks’ key characteristics: leading eigenvalue λ1 of the
adjacency matrix, mean degree hki, mean excess degree hqi,
and the Pearson correlation coefficient ρ of the nodes’ in-
and out-degrees [Figs. 2(a)–2(d)].
We start by analyzing the time evolution of the leading

eigenvalue λ1. This eigenvalue reflects the overall excita-
bility of the network, and the onset of activity is known to

FIG. 1. The onset of activity in static ER networks of different sizes N. (a) The average fraction of firing nodes h½F�i (average taken
over time) before tmax ¼ 5000, with 5% of the nodes initialized as firing. The inset shows the time series of the fraction of firing nodes
for networks of size N ¼ 105 with different mean degrees. (b),(c) The maximum size and duration of finite avalanches (lasting less than
tmax) in 1000 successive runs. Both quantities display a sharp peak at a critical value hki�N;static, which moves closer to the theoretical
estimate as N increases. All results are averaged over 30 network realizations for each mean degree. In these and subsequent figures, we
set β ¼ 0.7, δ ¼ 0.95, and γ ¼ 0.4.
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occur at a critical value λ�1 in locally treelike networks. This
has been shown previously assuming that the states of
neighboring nodes are independent (see, e.g., [29]); here,
we derive a more accurate estimate for λ�1 by relaxing this
assumption. Using the so-called pair approximation (see
SM, VII [25]), we obtain

λ̂�1 ¼
δ

β
þ δþ γ=2

δþ γ
; ð1Þ

which is identical to hk̂i�static derived for static ER networks
in Ref. [17]. Note that in general, for static ER networks,
hki and λ1 are approximately equal. If the network
structure is less random, hki becomes a poorer approxi-
mation for the excitability. The leading eigenvalue, how-
ever, remains a more reliable indicator of excitability,

unless the network has significant degree correlations [30]
or is highly structured [31].
We observe that as the network evolves, the leading

eigenvalue λ1 reaches a stable value after a short transient
[Fig. 2(a)]. This value lies close to hki�

N¼105;static
and moves

closer to the theoretical estimate λ̂�1 ¼ hk̂i�static asN increases
(see SM, I [25]), indicating that the system resides at
criticality.
To illustrate the drift on the critical manifold, we next

analyze the evolution of the mean degree hki. We see that
hki first changes rapidly, but once λ1 stabilizes, the average
rate of change in hki decreases considerably [Fig. 2(b)].
Subsequently, the mean degree increases gradually and
unevenly and finally settles to fluctuate around a constant
value that is clearly above hki�N;static. We interpret these
qualitatively different stages as an initial phase where the
dynamics approaches criticality, followed by a drift phase,

FIG. 2. Critical drift in evolved networks with different initial mean degrees. (a)–(d) Time evolution of the leading eigenvalue λ1, mean
degree hki, mean excess degree hqi, and Pearson correlation coefficient ρ of the nodes’ in- and out-degrees. The simulation is initialized
with 5% of the nodes in the firing state. The parameter values areN ¼ 105, l ¼ 10−3, g ¼ 10−6, and η ¼ 1=ð100NÞ. For analysis on their
effect on the drift, see SM, II and III [25]. The yellow dashed line in (a) shows hki�

N¼105;static
(determined in SM, I [25]). (e) We freeze the

networks at different time points shown in panel (b). These are chosen so that for each network, point A lies before the start of the drift
while points B–D correspond to the drift phase. For each time point, the dashed vertical line marks the mean degree in the evolved
network at that point, while the curve in the same color shows results for the networks obtained by manipulating the mean degree. The
top row shows average activity h½F�i before tmax ¼ 5000 with 5% of the nodes initialized as firing. The other two rows show the
maximum size and duration of finite avalanches in 1000 successive runs. Results are averaged over 30 network realizations for all
networks obtained by manipulating hki. We observe that during the initial phase (point A), the mean degree lies clearly under or above
the onset of activity, while during the drift phase (points B–D), the networks reside at the onset of activity. As the network evolves, the
onset of activity happens at higher values of hki, which confirms the existence of the manifold. Note that the divergence peaks of
avalanche sizes and durations are not exactly at the point where h½F�i becomes nonzero (top row); however, these three measures
converge to the critical value (or slightly above it due to finite values of g and l) as N is increased (see SM, IV [25]).
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where the system slides along the critical manifold. During
the drift, λ1 stays constant while hki as well as the mean
excess degree and the correlation coefficient ρ [Figs. 2(c)
and 2(d)] keep changing.
We note that the observation of the final value of hki

differing from λ1 is not novel per se; this has already been
established for a SIRS-like system evolved with short-
term homeostatic plasticity in [32]. Our novel result is the
observation of the phase where the system is already critical
before the network parameters have reached stable values.
It is also crucial to note that while λ1 stays constant on the
manifold in locally treelike networks, its value can change
during the critical drift in networks with loops (see SM,
VIII [25]).
To confirm that the system remains critical during the

drift, we directly assess the distance to criticality at
different points in time during the network evolution.
For this purpose, we initially evolve the network topology
for time t. After this, we switch the plasticity rules off and
create several replicas of the system in which we add or
remove a small number of links at random. We then
analyze the effect of this perturbation of the number of
links on the network dynamics by examining the diver-
gence of the size and duration of the largest finite
avalanches [Fig. 2(e)]. During the initial phase, a large
perturbation is needed to bring the system to criticality
[dashed lines marked with A in Fig. 2(e)]. During the drift
phase, however, the evolved networks reside at the
divergence peak at the onset of activity (dashed lines
marked with B-D).
Furthermore, we observe that the onset of activity occurs

at higher values of the mean degree as the network evolves
(see SM, VI [25], for further illustration). In other words,
hki� drifts toward higher values as the network evolves. At
the same time, the network remains at criticality, as also
seen in the PDFs of the sizes and durations of finite
avalanches that remain unchanged during the drift and
agree well with the theoretical predictions for critical
SIS-like systems derived in [24] (SM, V [25]).
To understand why the mean degree hki increases during

the drift, we turn to analyze the characteristics of the links
that the plasticity mechanism removes. As the mechanism
removes links from firing nodes, links that often forward
activation are likely to be erased. Intuitively, removing such
links tends to reduce the overall excitability more than
adding random links increases it on average. Consequently,
more links need to be added than removed to keep the
excitability at a constant level. This imbalance leads to hki
increasing until the most active links have been removed
and the average effect of a random addition and a targeted
removal even out.
This intuition can be expressed in more formal terms

using the leading eigenvalue λ1 and the corresponding
left principal eigenvector. In SIS-like models [23], a
node’s eigenvector centrality (given by the left principal

eigenvector) correlates with its probability of being in the
firing state, and this relation is particularly strong if
the system is close to criticality (see SM, IX [25]).
Consequently, the plasticity mechanism tends to reduce
the in-degrees of nodes with high centrality. As these links
contribute to the magnitude of λ1 more than a randomly
chosen link on average, the removals needs to be compen-
sated by adding links to the network to keep λ1 close to
the critical value. As time passes, the effects of link addition
and removal gradually even out (see SM, X [25]).
Consequently, hki increases more and more slowly and
eventually levels off. This drift can be observed for a wide
range of values of β, δ, and γ, as long as the critical value of
λ1 is low enough (see SM, XI [25]).
The leading eigenvalue depends on many topological

characteristics, such as the mean excess degree hqi and the
cyclic patterns in the network. In directed networks, hqi is
defined as the average out-degree of nodes reached by
following a link, hqi ¼ ð1=jfsijgjÞ

P
fsijg kout;j, where fsijg

denotes the set of all links and kout;j denotes the out-degree
of node j. It is relevant in the context of activity spreading
as it equals the expected number of new nodes that an
arriving avalanche can excite. In the considered sparse
ER networks, hqi increases only slightly during the drift
[Fig. 2(c)], which indicates that the plasticity mechanism
controls excitation mainly through restricting its growth.
This is because firing nodes are likely to have predecessors
with higher-than-average in-degrees, and hence the plas-
ticity mechanism effectively reduces the out-degrees of
nodes with many incoming links. This trend is reflected in
the decreasing Pearson correlation coefficient ρ of nodes’
in- and out-degrees [Fig. 2(d)] and aligns with the results
in [32], where a negative correlation between incoming and
outgoing synaptic weights was found to explain the
deviation of the self-organized stable value of the branching
ratio (equivalent to hki in our model) from the mean-field
prediction.
While the mean excess degree increases only slightly

during the drift, it increases nonetheless. This implies that,
similarly to hki, its critical value depends on other network
parameters, such as the number and configuration of cycles.
Consequently, the magnitude of the increase depends
largely on the original network topology.
In this Letter, we have shown that rules resembling

homeostatic plasticity drive simple neuro-inspired net-
works to drift along a critical manifold. During this drift,
the network stays at the onset of activity while global
network parameters continue to change. Our findings
underscore that criticality should not be understood as a
one-dimensional point but rather as a high-dimensional
manifold embedded in a vast parameter space, as hypoth-
esized in [17]. As a consequence, residing at the onset
of activity does not set strict constraints to any specific
network parameter, as the change in one parameter can be
compensated by adjusting some other variable accordingly.
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This flexibility allows for considerable variation in network
topology while at criticality. We emphasize that the core
message of our work lies in establishing that a self-
organizing system can drift along or close to a critical
manifold; whether the system is exactly critical or slightly
sub- [33,34] or supercritical [35] likely depends on the
self-organizing mechanism in question. While the model
studied in this work is inspired by neuronal networks, it is
very far from being biologically realistic; investigating
more detailed and realistic models is best left for future
work that builds on the foundations established here.
In the sparse random networks considered in this Letter,

the values of the tracked parameters eventually stabilized.
In real systems, however, external stimuli and a number of
different driving processes continue to perturb the system.
Introducing additional driving processes—-such as another
type of plasticity rule [36]—could cause the network to
continue to drift along the manifold or possibly even induce
periodic parameter dynamics. If the changes in network
configuration entail changes in the dynamical behavior, the
system can explore different dynamical regimes while
remaining critical at all times. An interesting question
concerns whether critical manifolds associated with differ-
ent phase transitions intersect. For example, can a system
drift to the onset of synchrony while still remaining at
the onset of activity? Exploring the structure, dynamical
regimes, and intersections of these critical manifolds is an
exciting avenue for future research.

The implementation of the model is available on
GitHub [37].
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