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Hydrodynamic interactions can give rise to a collectivemotion of rotating particles. This, in turn, can lead
to coherent fluid flows. Using large scale hydrodynamic simulations, we study the coupling between these
two in spinner monolayers at weakly inertial regime. We observe an instability, where the initially uniform
particle layer separates into particle void and particle rich areas. The particle void region corresponds to a
fluid vortex, and it is driven by a surrounding spinner edge current. We show that the instability originates
from a hydrodynamic lift force between the particle and fluid flows. The cavitation can be tuned by the
strength of the collective flows. It is suppressed when the spinners are confined by a no-slip surface, and
multiple cavity and oscillating cavity states are observed when the particle concentration is reduced.
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Introduction.—Collective order appears in active systems
when the individual constituents change their own behavior
due to the influence from the others [1]. Fluid mediated
interactions arewidely existent, in artificial systems, such as
self-propelling colloidal suspensions [2,3], and in the living
world, such as bacterial baths [4–7]. In both cases they play a
crucial role in the emergence of collective phenomena
[8–20]. Interestingly, hydrodynamic interactions are often
nonreciprocal, which can have profound effects on the
formation of out-of-equilibrium states [21,22]. For example,
in a pair of rotating particles, the spinners experience a
transverse force due to the advection created by the flow
field of the other [15,23,24]. At vanishingReynolds number,
these interactions have been predicted to give rise to
hyperuniform states [25] and lead to fast crystallization
when coupled with steric repulsion [26], in open systems.
When spinner crystals are confined by a solid boundary, the
transverse forces have been observed to give rise to motile
dislocations in odd crystals [27].
Increasing the Reynolds number (Re), the interactions

can include inertial forces [14,28,29]. Rotating disks on a
gas-liquid interface at finite Reynolds numbers have been
observed to form hexagonal structures due to an interplay
between a hydrodynamic repulsive force and a magnetic
attraction [30]. Simulations have predicted the formation of
spinner aggregates arising from inertial hydrodynamic
attractions [31,32]. A two-phase crystallization has been
predicted in spinner monolayers bounded by a solid surface
when inertial forces are included [33].
Typically, in a suspension of active particles at Re ≈ 0,

the hydrodynamic force on particle i arising from the flow
fields ujðxiÞ of all the other particles can be evaluated
from FiðxiÞ ∼

P
j≠i ujðxiÞ. When Re ∼ 1, an additional

force F½vi;
P

j≠i ujðxiÞ� can appear, which depends on the

velocity lag U between the particle velocity vi and
collective, activity induced, fluid flow. This, active lift
force, may lead to new collective phenomena in (weakly)
inertial active matter.
In this Letter, using hydrodynamic simulations, we

study this coupling between self-generated fluid flows
and particle dynamics. Motivated by experimental real-
izations of torque driven particles trapped at interfaces
[11,30,34–36], we simulate spinner monolayers bounded
by a bulk fluid [Fig. 1(a)]. We observe an instability,
where the initially uniform state spontaneously separates
into a particle void region surrounded by a whirling
particle edge flow [Fig. 1(c)]. This arises from a dynamic
feedback loop between the particle dynamics and the self-
induced flow fields. The particle void region corresponds
to a fluid vortex driven by the particles [Fig. 1(d)]. The
onset of the instability is caused by the vortex flow
induced lift force acting perpendicular to the particle
velocity. At the steady state cavitation, this is balanced
by steric interactions between the particles in the dense
phase.
Methods.—The simulations are carried out by a lattice

Boltzmann method (LBM), which is used to solve the
quasi-incompressible Navier-Stokes equation for the fluid
flow [37–40]. The bounce back on links method [41,42] for
a moving boundary [43] is applied to take into account the
fluid-solid interactions, leading to no-slip boundary con-
dition on the particle surface. We consider a density-
matched suspension ρ ¼ ρfluid ¼ ρparticle ¼ 1, and set the
LBM lattice spacing Δx ¼ 1 and time unit Δt ¼ 1. The
spinner monolayer consists of N spherical particles with
radius R ¼ 4.1Δx. The particles are driven by a torque T,
leading to a rotational motion (around X) with a frequency
ω [Fig. 1(a)]. The spinner monolayer is placed in the YZ
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plane in a three-dimensional periodic box. The dynamical
state of the system is characterized by the rotational particle
Reynolds number Re ¼ ρωR2=μ, where μ is the dynamic
viscosity of the fluid. We consider a weakly inertial regime,
with Re ranging from 0.02 to 5. The particle concentra-
tion ϕ0 is defined as the area fraction of the mono-
layer ϕ0 ¼ NπR2=LYLZ, where LXjYjZ are the simulation
box lengths. A rectangular box with LX ¼ 60R;LY ¼
160R;LZ ¼ 160R is used. All the simulations have N ¼
4000 particles (ϕ0 ≈ 50%) except for Fig. 4, where ϕ0 is
varied. A simulation using a cubic box is also performed to
demonstrate that the vertical size LX ¼ 60R is large enough
to minimize the periodic effects (see Fig. S1 in Ref. [40]).
Cavitation in a spinner monolayer.—Considering ran-

dom initial particle positions within the spinner monolayer,
the hydrodynamic interactions between the spinners
[27,33], coupled with local concentration fluctuations, lead
to creeping particle currents [Fig. 1(b)]. We find that this
quasiuniform state is not always stable. The coupling
between the particle velocity and local density can promote
a positive feedback where the density fluctuations can grow
[Fig. 1(c) and Movie S1 in Ref. [40] ].

Eventually, at the steady state, a cavitation is observed.
A particle void phase is surrounded by a particle rich phase
(Movie S2 in Ref. [40]).
The translational motion originates from the hydrody-

namic fields created by the other particles. The rotational
flows lead to interactions between the particles. At zero Re
limit these can be captured by so-called transverse forces
between the spinners ftransverse ∼ μω [orange arrows in
Fig. 1(e)] [27,33]. We hypothesize that these drive the
particle edge currents. To test this, we consider a minimal
dry model where time evolution of the position xi for the
particle i is governed by the advection arising from the flow
fields of all the other particles:

dxi
dt

¼
X

j

ωj ×
R3

jxi − xjj3
ðxi − xjÞ: ð1Þ

Starting from a state with a cavity Rh ≈ 40R the minimal
model simulations [Eq. (1)] reproduce the edge current
[Fig. 1(g)]. This agrees with experiments, where edge
currents have also been observed at the surface of spinner
clusters [44] and at grain boundaries [45] at the Re ≈ 0
limit. The measured radial particle velocity distribution
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FIG. 1. (a) A schematic of the system. The particles are in a monolayer bounded by a fluid domain and rotate perpendicular to the
plane. (b), (c) Top view snapshots from a simulation with Re ≈ 5. (b) At early time the system exhibits a dynamically uniform state
accompanied by local concentration fluctuations leading to particle movement. (c) At later times a coherent particle current is formed.
This triggers an instability of the density distribution, leading to a spontaneous formation of a particle cavity, surrounded by a spinner
edge flow. (d) At the steady state a vortex flow of the fluid is observed in the hole region. (e) A schematic showing the transverse pair
interaction (orange arrows) arising from the rotational flow fields. (f) A Saffman-type lift force resulting from the velocity lag between
the particle and imposed shear flow. (g) A minimal model employing only the transverse interactions reproduces the particle velocities
for artificially imposed cavity. (h) The distance r dependence of the circularly averaged fluid ufðrÞ and particle upðrÞ velocities for the
hole (blue) and particle (white) regions. The circles, squares, and triangles correspond to a full hydrodynamic simulation with Re ≈ 1.6,
1.1, and 0.8, respectively.
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shows a very good agreement with the hydrodynamic
simulation [Fig. 1(h)]. This suggests that the hydrodynamic
transverse forces are the driving force behind the stable
edge currents observed in the full hydrodynamic simula-
tions. However, in the dry simulations, the cavity is not
stable. The hole shrinks, and finally disappears (Movie S3
in Ref. [40]). This implies that there is another force leading
to the cavitation. We attribute this to a radial force fc ¼
fðvi;

P
j ujÞ arising from the coupling between particle

edge flow and the fluid vortex [Figs. 1(d) and 1(f)].
Collective hydrodynamic force behind the cavitation.—

To study the collective dynamics, we carry out simulations
where the spinners are driven by a constant frequency ω
and initially seed a small hole with a radius Rh ≈ 5R in the
monolayer (Fig. 2). The dynamics of hole growth is studied
by measuring the effective size of the cavity RhðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
Ah=π

p
, where Ah is the area of the particle void region

(where the particle concentration ϕ < 0.8ϕ0). After an
initial time t0 when the hole has reached Rh ≈ 20R, we
identify a steady growth stage Rh ¼

R
vhdt [Fig. 2(a)]. The

growth rate vh arises from the balance between the radial
force and a fluid drag vh ∼ fc=μ, and the expansion
continues until the particle-particle excluded volume inter-
actions arrest the growth.
We propose that the dominating interactions arise from

the coupling between the particle dynamics and the vortex
flow, similar to a Saffman lift force [46], where a particle
in a shear flow has a lift force along the shear gradient
[Fig. 1(f)]. The Saffman lift scales as flift ∼ μ0.5U_γ0.5 [46],
whereU is the relative velocity between the particle and the

imposed flow and _γ is the shear gradient. The coherent
vortex flow and the translational particle motion both
originate from the rotation of the particles. Thus the
magnitude of U and _γ can be approximately given by ω.
This gives fc ∼ flift ∼ μ0.5ω1.5, and the growth rate
vh ∼ fc=μ ∼ Re0.5ω. We observe a good collapse of the
data with Re0.5ω [Fig. 2(b)]. This supports the hypothesis
of the shear induced lift force driving the cavitation.
The lift forces require a finite Re. When Re≲ 0.2, no

hole formation is observed [Fig. 2(d)]. Starting from the
cavitation state, particle rotation induced mixing fm over-
comes the inertia lift force, and the hole shrinks until a
uniform state is observed [Fig. 2(c)], in agreement with
experiments of colloidal spinners at vanishing Re [44]
and the dry simulations (Movie S3 in Ref. [40]). When
Re ≪ 1, the closing dynamics is dominated by mixing
(fm ∼ μω ≫ fc ∼ μRe0.5ω) arising from the transverse
forces between the spinners. The hole shrinking rate is
expected to scale as vh ∼ fm=μ ∼ ω and a collapse of the
data is observed for Re ≈ 0.03 and Re ≈ 0.05 [Fig. 2(c)].
For larger Re, fm ≳ fc and the closing dynamics slows
down [Fig. 2(c), Re ≈ 0.1 and Re ≈ 0.12].
Confinement effects.—Stable cavitation requires large

enough collective particle velocity and resulting _γ to ensure
a sufficient lift force. Boundaries, such as hydrodynamic
screening from surfaces, can have drastic effects on the
magnitude of the flow fields. To study this, the spinner
monolayer was placed above a flat no-slip wall. Starting
from an initial state with a cavity Rh ≈ 40R, the Rh is
observed to decrease [Fig. 3(c)]. Eventually, the cavity
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FIG. 2. (a) Time evolution of the hole radius Rh in the cavitation
state for different Re. The hole grows and reaches a steady state.
(b) The RhðtÞ data collapse when rescaled by Re0.5. (c) The RhðtÞ
for shrinking cavities when Re is reduced. (d) A state diagram as a
function of Re. Stable cavitation is observed for Re ≳ 0.2.
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FIG. 3. (a) Snapshots of the disappearing cavity in a monolayer
near a no-slip wall (Re ≈ 1.6). The streamlines correspond to the
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disappears, and at the steady state only local density
fluctuations are observed [Fig. 3(a) and Movie S5 in
Ref. [40] ]. Keeping the rotational Re constant, the particle
velocities up are observed to reduce when compared to a
bulk sample. For a Re ≈ 1.6, a maximum particle velocity
up ≈ 0.2ωR is observed [Fig. 3(b)], which is much smaller
than what is measured in the bulk sample up ≈ 1.2ωR
[Fig. 1(h)]. Thus the shear gradient _γ and the resulting lift
force are reduced.
The inertial hydrodynamic forces can also include

(pairwise) repulsive interactions [28,33]. At finite rota-
tional Reynolds numbers, a single particle flow field has
also polar and radial components [28,30,47]. The latter
corresponds to an advection away from the particle at the
equatorial region, and gives rise to an effective repulsion

between the spinners frepulsion ∼ μωRe [28,33]. This
would lead to a reduction of the cavity with a predicted
rate vh ∼ frepulsion=μ ∼ Reω. In agreement with this,
after an initial transient t0 when Rh ≈ 30R, the RhðtÞ
data collapse when scaled with Reω [Fig. 3(d)], sug-
gesting that the secondary flow induced repulsion domi-
nates the near wall dynamics in agreement with previous
simulations [33].
Concentration effects.—The overall area fraction ϕ0

defines the average particle separation, and thus affects
the strength of the collective particle currents and the
resulting fluid flow. These, in turn, determine the strength
of the lift force, and thus influence the dynamics of the
phase separation (Fig. 4).
At high particle concentrations (ϕ0 ≳ 48%) [Fig. 4(a)] a

stable circular hole state is observed. The hole size
decreases with increasing particle concentration. When
the overall area fraction is reduced (24%≲ ϕ0 ≲ 48%),
the circular cavity is no longer stable and spontaneous
elongation is observed (see, e.g., Movie S6 in Ref. [40]).
This can lead to an imbalance of the hydrodynamic stresses
at the interface, and destabilize the cavity. Now a dynamic
state is observed, where multiple cavities can coexist
simultaneously [Fig. 4(c) and Movie S6 in Ref. [40] ].
When concentration is further lowered (ϕ0 ≲ 24%), the
multiple cavity state becomes unstable. Now, an oscillating
state is observed, where the hole region forms and
disappears periodically [Fig. 4(f) and Movie S7 in
Ref. [40] ]. The time evolution of the mean particle speed
hupi and the cavity area Ah show strong correlation
[Figs. 4(b) and 4(e)]. This further highlights the coupling
between the particle organization and the collective flows.
Conclusions.—Using numerics, we have studied the

coupling between the particle dynamics and the self-
induced fluid flows. Considering a simple system of torque
driven spinners, we have observed a spontaneous cavitation
in spinner monolayers. At the steady state, a particle
deprived region surrounded by dense spinner phase is
formed. The cavity region corresponds to fluid vortex with
opposite handedness than the spinners. The vortex is driven
by a steady spinner edge current at the interface between
the two regions. The phase separation is stabilized by a lift
force arising from the coupling between the particle
dynamics and the collectively generated fluid flow. This
is crucially different from typical active matter examples,
such as motility induced phase separation and bubble
formation in active Brownian models [48–50], which are
stabilized by a density dependent swimming speed, or
vortex formation in subcritical Quincke rollers, which is
likely dominated by an interplay between hydrodynamic
and thermodynamic forces as well as activation events [51].
Our result should be observable, for example, in experi-

ments of magnetically rotated particles trapped at inter-
faces [30,34–36,52], or by considering chiral colloidal
fluids [44], where hydrodynamics interactions are likely

(b)

0 2000 4000 6000
t

0

0.1

0.2

0.3

0.4

<u
p>

/
R

0

1000

2000

3000

4000

A h
/

R
2

0 5000 10000 15000
t

(e)

(a)
A h

/
R

2

0

Multiple StableOscillating

0

0.6

= 24%0(d) = 12%0(f) (g)(c)

0

1000

2000

3000

4000

0.12 0.24 0.36 0.48 0.6

FIG. 4. (a) The area Ah of the hole regions as a function of the
overall particle concentration ϕ0. The blue shadow shows a
standard error, describing the time fluctuations of Ah. Stable,
multiple, and oscillating cavities are observed when ϕ0 is
decreased. (b)–(d) An example of the observed multiple cavity
state: N ¼ 2000 particles (ϕ0 ≈ 24%). (b) Time evolution of hole
size and mean particle speed. (c) Time series snapshots of the
multiple cavity state. (d) Typical local concentration and stream-
lines of particle velocity. (e)–(g) Oscillating cavity state: N ¼
1000 particles (ϕ0 ≈ 12%). (e) Time evolution of the hole size and
mean particle speed. (f) Time series snapshots of the oscillating
state. (g) Typical local concentration and streamlines of particle
velocity. All the simulations are carried out using Re ≈ 1.6.

PHYSICAL REVIEW LETTERS 130, 188202 (2023)

188202-4



dominant. The Re ∼ 1 regime could be reached by increas-
ing either the particle size or the rotational frequency of the
magnetic drive—a 100 μm particle spinning with 100 Hz
will give Re ≈ 1 in water. Further, we anticipate that the
inertial term (active lift force) could give rise to new
collective dynamical states in weakly inertial active matter,
also beyond the spinner example considered here.
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