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Searching for key nodes and edges in a network is a long-standing problem. Recently cycle structure in a
network has received more attention. Is it possible to propose a ranking algorithm for cycle importance?We
address the problem of identifying the key cycles of a network. First, we provide a more concrete definition
of importance—in terms of Fiedler value (the second smallest Laplacian eigenvalue). Key cycles are those
that contribute most substantially to the dynamical behavior of the network. Second, by comparing the
sensitivity of Fiedler value to different cycles, a neat index for ranking cycles is provided. Numerical
examples are given to show the effectiveness of this method.
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In the field of complex networks, two topics have
recently attracted substantial attention. One is the struc-
ture of a network, including nodes [1,2], edges [3,4],
cycles [5–7], simplicial complexes [8,9], and other
higher order structures. The other is the dynamics on
a network through phenomena such as synchronization
[10–12], control [13], spread [14], games [15] and multi-
intelligence consistency [16].
The structure of a network influences the dynamics on

that network. It is vital to have a clear understanding of
the basic network structure—the most basic structures of
a network are nodes and edges. For practical purposes
different ranking methods of node importance and edge
importance have been given in, for example [1–4].
Identifying key nodes and edges provides a new mecha-
nisms with which to understand the structure and dynami-
cal behavior of a network. A cycle in a network is simply
defined as a closed (nonrepeating) path with the same
starting and ending node. Cycle structure is an important
component both for networks as well as higher-order
interaction. The number of cycles has been computed in
scale-free networks [5] and various real networks [6].
Meanwhile, cycle structure promotes network function in
many ways. Node centrality defined by the cycle structure
performs well in spreading and control processes [7].
Cycles are the dominant contributors to information storage
capability [17]. Networks with cycle structure have optimal
synchronizability [18]. In addition, cycle structure plays an
significant role in higher-order networks. The triangle (the
simplest cycle) is the most basic structure of a high-order
network structures [8].
The Laplacian matrix is a powerful tool in the research of

dynamics—in particular, the second smallest Laplacian

eigenvalue (also known as algebraic connectivity or Fiedler
value [19]) plays an important role. Synchronization of a
complex network is a collective dynamic of all nodes in the
network. Synchronizability of a network can be measured
by the Fiedler value [20]. The larger the value, the stronger
the synchronizability. Diffusion of a network refers to
the phenomenon that the concentration of the substance
reaches uniform distribution within the network. The larger
the Fiedler value, the faster the rate of diffusion [21].
In this Letter, we show that the cycle structure can

increase the Fiedler value. Furthermore, we propose a cycle
importance ranking method—the key cycles are those that
contribute most substantially to dynamical behavior. As a
result, all the cycle ranking indices in a network can be
calculated by the Fiedler vector [22], which is the unit
eigenvector corresponding to the second smallest Laplacian
eigenvalue.
Consider an undirected graph G with uniform initial

edge weight of 1. Let λ2ðGÞ and x2ðGÞ be the second
smallest Laplacian eigenvalue (Fiedler value) and the unit
eigenvector corresponding to the eigenvalue (Fiedler
vector) respectively.
First, the contribution of cycles to the Fiedler value is

explored. Let G be a connected graph. Introduce the edge
adding operation Ge ¼ Gþ e and node hanging operation:
Gev ¼ Gþ ev, which we abbreviate as the adding and
hanging operations, respectively. An edge is included in an
adding operation. Hanging operation adds a node and
connects it to an existing node. The operations are depicted
in Fig. 1.
Any connected graph has a spanning tree [23]. This tree

can be generated by a sequence of hanging operations
and the remaining edges are generated by the adding
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operations. Hence any connected graph can be generated by
a sequence of hanging and then adding operations. The
generation of a connected graph is illustrated in Fig. 1. It is
clear that cycles can be generated only by the adding
operations.
To explain the importance of cycles, we analyze the

variation of the Fiedler value caused by these two
operations. Let G be a connected graph with n nodes.
On the one hand, λ2ðGÞ ≤ λ2ðGeÞ ≤ λ3ðGÞ [24], where
Ge ¼ Gþ e. On the other hand, assume then that Gev is
obtained by adding an edge to Gv, where Gv ¼ Gþ v is an
unconnected graph. Clearly, the eigenvalues of Gv are
0; 0; λ2ðGÞ; λ3ðGÞ;…; λnðGÞ. Therefore λ2ðGÞ ¼ λ3ðGvÞ,
and Gev can be generated by adding an edge to Gv.
Then, one gets λ2ðGevÞ ≤ λ3ðGvÞ ¼ λ2ðGÞ. Hence, in
a network, the hanging operation decreases the Fiedler
value—while adding operation increases the Fiedler value.
For example, the Fiedler value of the chain network and

the ring network with n nodes are λchain2 ¼ 4 sin2ðπ=2nÞ and
λring2 ¼ 4 sin2ðπ=nÞ, respectively [25]. As a result, with the
increase of n, λchain2 becomes smaller. Therefore, the
hanging node operation decreases the Fiedler value.
Only by adding an edge to the chain, which causes the
generation of a ring (cycle), can the Fiedler value be
increased. Further, limn→∞ðλring2 =λchain2 Þ ¼ 4. When the
number of nodes is large enough, the second smallest
Laplacian eigenvalue can be increased by a factor of 4.
Every time an edge is added in a connected graph, at

least one cycle is introduced into the graph. The more edges
that are added, the more cycles appear in a network, and the
larger the Fiedler value. Therefore, the Fiedler value of a
network gets greater with the increasing number of cycles.
Second, we search for the key cycles in a complex

network. Let C ¼ fci; i ¼ 1; 2;…; kg be the set of all
cycles in a network, where k is the number of cycles, ci
represents one of the cycles. A cycle ci of order (length) li is
defined as a closed loop composed of li edges and li nodes
n1; n2; n3;…; nli , denoted as ci ¼ ðn1; n2; n3;…; nliÞ. It
means cycle ci composed of edge ðn1; n2Þ, edge
ðn2; n3Þ;…, edge ðnli ; n1Þ. Denote the set of these edges
as Ei. The graph after adding weight ϵ to a cycle ci, namely,

adding weight ϵ to each edge of this cycle, is denoted as
Gϵ

ci . For example, consider c1 ¼ ð1; 2; 3Þ in Fig. 2. The
Laplacian matrix after adding weight ϵ is

LðGϵ
c1Þ ¼

0
BBB@

2 −1 −1 0

−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

1
CCCAþ ϵ

0
BBB@

2 −1 −1 0

−1 2 −1 0

−1 −1 2 0

0 0 0 0

1
CCCA:

Denote the variation of the Fiedler value by δλϵci ¼
λ2ðGϵ

ciÞ − λ2ðGÞ. We illustrate δλϵci ≥ 0 when ϵ > 0.
According to Courant’s theorem [19], the second smallest
Laplacian eigenvalue is represented as λ2ðGϵ

ciÞ ¼
minx⊥1;kxk¼1xTLðGϵ

ciÞx, where 1 is the column vector with
all components being 1. Then,

λ2ðGϵ
ciÞ ¼ min

x⊥1;kxk¼1
xT ½LðGÞ þ LðGϵ

ciÞ − LðGÞ�x

≥ min
x⊥1;kxk¼1

xTLðGÞx

þ min
x⊥1;kxk¼1

xT ½LðGϵ
ciÞ − LðGÞ�x;

¼ λ2ðGÞ þ min
x⊥1;kxk¼1

xT ½LðGϵ
ciÞ − LðGÞ�x:

Since LðGϵ
ciÞ − LðGÞ is a semi-positive definite matrix, it is

easy to obtain δλϵci ≥ 0 with ϵ > 0. Similarly, δλϵci ≤ 0 with
ϵ < 0. Without loss of generality, we only discuss ϵ > 0
hereafter.
Based on the variation of the Fiedler value, a new cycle

ranking method is presented. The larger the δλϵci (ϵ ≪ 1),
and consequently the more key is the cycle ci.
Now we use perturbation theory to approximate

δλϵci . With ϵ ≪ 1, λ2ðGϵ
ciÞ and x2ðGϵ

ciÞ are expressed as
convergent power series [26]

λ2ðGϵ
ciÞ ¼ λ2ðGÞ þ k1ϵþ k2ϵ2 þ k3ϵ3 þ � � � ð1Þ

and

x2ðGϵ
ciÞ ¼ x2ðGÞ þ ðt11ϵþ t12ϵ2 þ � � �Þx1ðGÞ

þ ðt31ϵþ t32ϵ2 þ � � �Þx3ðGÞ þ � � �
þ ðtn1ϵþ tn2ϵ2 þ � � �ÞxnðGÞ; ð2Þ

FIG. 2. Adding weight ϵ to cycle (1,2,3), namely adding weight
ϵ to each edge of this cycle.

FIG. 1. The generation of a connected graph. Starting from
node 1, hanging nodes 2, 3, 4, 5, and 6 in turn to get a spanning
tree. Then adding other edges to get the connected graph.
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respectively, where xαðGÞ are the unit eigenvectors corre-
sponding to λαðGÞ, α ¼ 1; 2;…; n, kβ and tγβ are some
constants, β ¼ 1; 2;…; γ ¼ 1; 3;…; n. The definitions of
eigenvalue and eigenvector are

LðGϵ
ciÞx2ðGϵ

ciÞ ¼ λ2ðGϵ
ciÞx2ðGϵ

ciÞ: ð3Þ

Substituting Eq. (1) and Eq. (2) into Eq. (3), one obtains

½LðGÞ þ LðGϵ
ciÞ− LðGÞ�½x2ðGÞ þ ðt11ϵ

þ t12ϵ2 þ � � �Þx1ðGÞ þ � � � þ ðtn1ϵþ tn2ϵ2 þ � � �ÞxnðGÞ�
¼ ðλ2ðGÞ þ k1ϵþ k2ϵ2 þ � � �Þ½x2ðGÞ þ ðt11ϵ
þ t12ϵ2 þ � � �Þx1ðGÞ þ � � � þ ðtn1ϵþ tn2ϵ2 þ � � �ÞxnðGÞ�:

Since both ends of the equation are convergent power
series, the coefficients of ϵ are equal [27]. Then one gets

LðGÞ
" X
α¼1;3…;n

tα1xαðGÞ
#
þ 1

ϵ
½LðGϵ

ciÞ − LðGÞ�x2ðGÞ

¼ λ2ðGÞ
" X
α¼1;3…;n

tα1xαðGÞ
#
þ k1x2ðGÞ: ð4Þ

Since x2ðGÞ is orthogonal to the other eigenvectors, left
multiply Eq. (4) by xT

2 ðGÞ and get

k1 ¼
1

ϵ
xT
2 ðGÞ½LðGϵ

ciÞ − LðGÞ�x2ðGÞ: ð5Þ

Substituting Eq. (5) into Eq. (1) and ignoringOðϵ2Þ, one gets

δλϵci ¼ xT
2 ðGÞ½LðGϵ

ciÞ − LðGÞ�x2ðGÞ
¼ ϵ

X
ðp;qÞ∈Ei

ðxp − xqÞ2;

where Ei is the set of all edges of cycle ci, xp is the pth
component of x2ðGÞ.
We see that ϵ

P
ðp;qÞ∈Ei

ðxp − xqÞ2 is an approximation of
δλϵci when ϵ ≪ 1. The larger the ϵ

P
ðp;qÞ∈Ei

ðxp − xqÞ2,
the more influential the cycle. The number of terms in
ϵ
P

ðp;qÞ∈Ei
ðxp − xqÞ2 is equal to the order li of a cycle.

For example, select cycle (1,2,3) and cycle (1,2,4,3) in
Fig. 2. The result are ϵ½ðx1−x2Þ2þðx2−x3Þ2þðx3−x1Þ2�
and ϵ½ðx1 − x2Þ2 þ ðx2 − x4Þ2 þ ðx4 − x3Þ2 þ ðx3 − x1Þ2�,
respectively, where xp is the pth component of x2ðGÞ.
It is clear that the value of ϵ does not affect the ranking
result—for the purpose of ranking, ϵ can be ignored.
Therefore, we propose a new cycle ranking index

Ici ¼
P

ðp;qÞ∈Ei
ðxp − xqÞ2 to measure the importance of a

cycle, which is actually the slope with ϵ ¼ 0. That is to say,
the variation of Fiedler value is measured by Fiedler vector.
Accordingly, a ranking algorithm of cycle importance is
proposed.

Another intuitive knowledge of Ici is the contribution
of cycle ci to Fiedler value. Because λ2ðGÞ ¼ xT

2 ðGÞ
LðGÞx2ðGÞ ¼

P
ðp;qÞ∈Ēðxp − xqÞ2, where Ē denotes the

set of all edges in G, the sum of the contribution of all the
edges is λ2ðGÞ; while the sum of the contribution of the
edges in a cycle is Ici .
To illustrate our results, a computationally generated

network and an experimental network are shown to verify
the effectiveness of the ranking index.
Figure 3 shows a network with 6 cycles. Different cycles

are marked with different colors, and denoted as
c1; c2; ...; c6. According to the algorithm, we use the index
Ici to rank the cycles, Ic1 ; Ic2 ; ...; Ic6 are presented on the
right part of Fig. 4. The index decreases from c1 to c6. We
conduct sensitivity simulation to examine the accuracy of
ranking results in Fig. 4. The curves represent δλϵci with the
variation of ϵ. It shows that the ranking results with δλϵci and
Ici are consistent when ϵ is small, which can be seen from
the initial slopes of Fig. 4. As ϵ continues to increase, the
curves intersect occasionally. Overall, the index Ici is
effective even with large ϵ. Furthermore, it is interesting
to see that a cycle with a high order is frequently more
important than a cycle with a low order; while some low
order cycles, such as the better-positioned cycle c3 of order
3, is more significant than c4 of order 5.
To verify the effectiveness of the proposed cycle-ranking

index, the edge-based pinning synchronization control [28]
by using Chua’s circuits as the node dynamics is applied in
the network in Fig. 3. The synchronization times by,
respectively, controlling the edges in c1, c3, and c6 are

Algorithm: Cycle Rank.

1. Given a connected graph G.
2. Calculate Fiedler vector x2ðGÞ.
3. Select a cycle ci.
4. Calculate index Ici ¼

P
ðp;qÞ∈Ei

ðxp − xqÞ2.
5. Back to 3. Until all the cycles have been ranked.

The larger the Ici , the more key the cycle.

FIG. 3. A sample network with 6 cycles. Cycles are identified
as c1; c2;…; c6 which are depicted by distinct colors.
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shown in Fig. 5. According to the ranking results, the
importance of c1, c3, and c6 decreases progressively one by
one, which is in agreement with the time sequence of
achieving synchronization.
Clearly, the position and the length of a cycle are two key

factors in Ici to measure its importance. The position of ci
depends on the components of Fiedler vector, while the
length of ci depends on the number of summation terms.
In addition, another normalized length index Īci ¼ Ici=li
can be considered, which takes the position into account.
By Īci, the priority levels of the cycles in Fig. 3 are c2, c3,
c1, c5, c4, and c6 in sequence. It provides a different way to
consider the cycle significance in a network, and may be
applied to different potential applications.
The C. elegans metabolic network [29] is employed to

rank the importance of the triangles. There are 453 nodes,
2025 edges, and 3284 triangles in the network. According
to our algorithm, the five most important triangles and
the five least important triangles are listed in Fig. 6(a).
The locations of these triangles are shown in Fig. 6(b).
We find that node 56 appears frequently in key triangles,

which results from the fact that the different value between
the 56th component of the Fiedler vector and other
components is large. Clearly, node 56 is significant.

There may be a deep relationship between the key nodes
and the key cycles, which will be discussed in our future
work. Furthermore, the unimportant triangles tend to be
among the nodes with low degrees.
Next, we put forward two strategies to speed up the

network diffusion rate. We choose some triangles to
simulate the variation of δλϵci with the variation of ϵ in
Fig. 7. It is found that c1, c2, c3, and c4 are obviously more
important than other triangles. Weighting the triangles
c5; c6; ...; c3284, the Fiedler value is almost unchanged.
Even though c1, c2, c3, and c4 are influential, they only

FIG. 4. The variation trend of δλϵci versus the variation of
ϵ ∈ ½0; 4� in the sample network.

FIG. 5. The norm of error ejðtÞ ¼ jjξjðtÞ − sðtÞjj2, 1 ≤ j ≤ 8
versus time t by, respectively, controlling cycles c1, c3, and c6 in
the network in Fig. 3, where ξjðtÞ and sðtÞ are the node state and
the synchronization state respectively. The average error is
obtained after 50 simulations by using initial state value range
of ½−25; 25�.

FIG. 7. The variation trend of δλϵci versus the variation of ϵ ∈
½0; 3� in the C. elegans metabolic network. The c1;…; c11; c3284
are shown. The ranking results with δλϵci and Ici are consistent
when ϵ < 0.025.

FIG. 6. The ranking result and the corresponding locations of
triangles in the C. elegans metabolic network.
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increase the original Fiedler value 0.258 by 8% at most.
That is to say, if we want to more significantly increase the
Fiedler value, it is not possible by changing only weighting.
As a result, in the C. elegans metabolic network, to slightly
speed up the diffusion rate, an effectiveway is to increase the
weight of c1, c2, c3, or c4; to greatly speed up the diffusion
rate, one should add new edges to generate new triangles.
In summary, a new cycle ranking approach has been

proposed, which is obtained by comparing the sensitivity of
Fiedler value to different cycles. Our results indicate that
the importance of all the cycles in a network are calculated
by Fiedler vector. The proposed ranking index is simple
and effective, which can be extended to the importance of
any structure in weighted or high-order networks such as
edge or tetrahedron, and is expected to be applied in the
areas of consensus, diffusion, synchronization, and control.
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