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Topological signals, i.e., dynamical variables defined on nodes, links, triangles, etc. of higher-order
networks, are attracting increasing attention. However, the investigation of their collective phenomena is
only at its infancy. Here we combine topology and nonlinear dynamics to determine the conditions for
global synchronization of topological signals defined on simplicial or cell complexes. On simplicial
complexes we show that topological obstruction impedes odd dimensional signals to globally synchronize.
On the other hand, we show that cell complexes can overcome topological obstruction and in some
structures signals of any dimension can achieve global synchronization.
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Synchronization is a widespread phenomenon at the root
of several biological rhythms or human-made technological
systems [1,2]. Synchronization refers to the spontaneous
ability of coupled oscillators to operate at unison and thus
exhibit a coherent collective behavior. Global synchroni-
zation is the resulting phenomenon where all oscillators
behave in the same way.
Traditionally synchronization has been studied when

identical [3,4] or nonidentical oscillators [5,6] are defined
on the nodes of a network and are coupled by the network
links. However, to capture the function of many complex
systems, e.g., brain networks [7,8], social networks [9]
and protein interaction networks [10], it is important to go
beyond pairwise interactions and consider higher-order
interactions [11] between two or more nodes instead.
For instance, collaborations typically require the co-
operation of a team of more than two individuals, and to
perform a function in the cell, proteins form complexes
formed by several different types of proteins. Many-body
interactions are captured by higher-order networks [12,13]
(such as hypergraphs, simplicial, and cell complexes) and
are dramatically changing our understanding of the inter-
play between structure and dynamics of complex systems
[11,13,14]. Note that higher-order networks by definition
are constructed by higher-order building blocks, but like
networks they can have different structure [13]. In particu-
lar, a higher-order network can display a very regular
(latticelike) structure, a fractal [15], or a very random
structure [16]. Moreover higher-order networks can also be
built from network motifs according to clique-complex
construction, by identifying each clique with a simplex, and
its generalizations [13].
Lately, synchronization of identical and nonidentical

oscillators defined on the nodes of higher-order networks

has been a field of intense research activity. Global
synchronization of identical oscillators was first formulated
for special topologies (a p-regular hypergraph) [17] and for
a peculiar Laplace operator obtained from the hyperadja-
cency matrix [18] while recently a general and compre-
hensive theoretical framework was proposed in Ref. [19] to
study dynamical systems defined on hypergraph with
heterogeneous hyperedges size distribution, the latter also
influencing the Laplace matrix. Partial synchronization of
nonidentical nodes oscillators has been investigated using
a variation of the Kuramoto model leading to explosive
transitions [20].
Simplicial and cell complexes also sustain topological

signals [13,21–23], i.e., dynamical variables that can be
defined not only on nodes but also on links, triangles, and
higher-dimensional simplices or cells. Examples of real
topological signals are edge signals such as biological
transportation fluxes or traffic signals [23], synaptic and
brain edge signals [24], or climate data such as currents in
the ocean or speed of wind at different locations [25]. In the
framework of quantum systems, it has been shown that
synchronization and quantum entanglement are strongly
intertwined [26,27]; this observation can be relevant in
quantum computations involving anyons [28] or bosons
[29] where signals defined on links of some array should be
protected from noise. Finally, topological signals are attract-
ing increasing attention in signal processing and machine
learning [23,25,30–32]. However, the study of their collec-
tive phenomena is only at its infancy [21,22,33–36].
Recently the formulation of a higher-order topological

Kuramoto model [21,22,36] has demonstrated that topo-
logical signals of any dimension can synchronize leading to
either continuous or explosive synchronization transitions.
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These results concern partial synchronization while an
important question is whether global synchronization of
topological signals can ever be achieved.
The aim of this work is to determine the topological and

dynamical conditions under which global topological syn-
chronization of identical topological oscillators can be
observed. Relying on the use of higher-order Laplacian
matrices [37–40] and the extension of the master stability
function (MSF) to simplicial and cell complexes dynamics,
we are able to tackle this problem emphasizing the difference
existing among the two frameworks.
Anticipating on our results we can state that on simplicial

complex we observe topological obstruction: given a sim-
plicial complex of dimension K, if the topological signal is
defined on an odd-dimensional simplex of dimension k < K,
then global synchronization is not possible. On the other
hand, if the simplex has an even dimension, thenwe can have
global synchronization provided the simplex isbalanced (see
below) and the model parameters allow for it. Interestingly
we show that cell complexes can overcome topological
obstruction and some topologies can sustain global synchro-
nization of signals of any dimension.
Definition of simplicial and cell complexes.—Simplicial

and cell complexes are generalized network structures that
besides nodes and links do also contain triangles, polygons,
tetrahedra, hypercubes, orthoplexes, and so on. Given a
non-negative integer k, a k-simplex σk is a set of kþ 1

different nodes, σk ¼ ½v0; v1;…; vk�. A (k − 1)-face σk−1 of
a k-simplex is a (k − 1)-simplex obtained by removing one
vertex from σk. Therefore a node is a 0-simplex, a link is a
1-simplex, a 2-simplex is a triangle, and so on. A simplicial
complex X of dimension K is a finite collection of
simplices of dimensions k ≤ K, closed under the inclusion
of faces; namely, if σ ∈ X , then also all the faces of σ
should belong toX . Simplicial complexes are thus a natural
generalization of networks, which are recovered for k ¼ 1.
In algebraic topology a simplex σk is assigned an orienta-
tion, typically induced by the node labels. A coherent
orientation of the face with the orientation of the simplex
will be denoted by σk−1 ∼ σk, otherwise we will write
σk−1≁σk.
A more general structure retaining the algebraic richness

of simplicial complexes is given by the cell complexes
[38,41–44]. The latter differs from simplicial complexes
because they are not just built by simplices but instead they
are obtained by gluing cells (i.e., regular polytopes) along
their faces. In particular, 0-cells are nodes, 1-cells links,while
2-cells are generic polygons, and 3-cells are the Platonic
polytopes.
In algebraic topology the boundary operator is defined

on chains [13,38], linear combinations of oriented sim-
plices of the simplicial complex. The k boundary operator
retains the information about the faces of a k-simplex σk

and their relative orientation. The boundary operator is
encoded into the incidence matrices Bk whose elements

are given for all k ¼ 1;…; K by Bkði; jÞ ¼ 1 if σk−1i ∼ σkj ,
Bkði; jÞ ¼ −1 if σk−1i ≁σkj , and Bkði; jÞ ¼ 0 otherwise [45],
where K is the dimension of the simplicial complex,
namely the size of the largest simplex. One key property
of the boundary operator is that the boundary of the
boundary is null; hence, BkBkþ1 ¼ 0. To be coherent an
oriented simplicial complex needs to satisfy this condition
for every k with 0 ≤ k ≤ K. Let us conclude this section by
noting that the boundary operators for cell complexes have
the same definition [23].
The higher-order Laplacians [13,33,38–40] allow us to

define diffusion among k-simplices and capture the topo-
logy of the higher-order network; they are defined in terms
of the incidence matrix as

Lk ¼ B⊤
k Bk þ Bkþ1B⊤

kþ1; k ¼ 1;…; K − 1: ð1Þ
For k ¼ 0 and k ¼ K, we have instead L0 ¼ B1B⊤

1 and
LK ¼ B⊤

KBK . If we denote by Nk, k ¼ 0;…; K the number
of k-simplices, then it follows thatBk is aNk−1 × Nk matrix,
while the size of Lk is Nk × Nk. The matrix L0 coincides
with the graph Laplacian. The higher-order LaplacianLk is a
semidefinite operator and one of its most celebrated proper-
ties is that the dimension of its kernel is given by the k-Betti
number, i.e., dimðkerLkÞ ¼ βk, where βk indicates the
number of k-dimensional cavities in the simplicial complex.
Moreover, there is a basis of the kernelLkwhich is formedby
eigenvectors localized on each of the k-dimensional cavities
of the simplicial complex.
Simplicial and cell-complex dynamics.—Let us now

consider a topological k-dimensional signal encoded in a
k-dimensional cochain x∶Ck → Rd which assigns to every
chain Ck (linear combination of k-simplices) values on Rd.
The k-topological signal has elements xi ¼ xðσki Þ ¼
ðx1i ;…; xdi Þ defined on the ith oriented k-simplex σki [see
SupplementalMaterial (SM) [46] ]. According to the proper-
ties of the k-cochains [38,39] we have xð−σki Þ ¼ −xðσki Þ,
being the discrete analogous of differential forms on mani-
folds. For instance, for k ¼ 1 and d ¼ 1, xi ¼ xðσki Þ indi-
cates a flux defined on the link i that is positive if going in the
same direction of the positive orientation of the link and
negative otherwise; i.e., xð−σki Þ ¼ −xi. Let us assume that
the value of the topological signal on every simplex i follows
the same dynamics and evolves according to _xi ¼ fðxiÞ, for
some odd nonlinear function f∶Rd → Rd. Assume now the
k-simplex to belong to a K-simplicial complex, K ≥ k, and
assume the existence of a diffusivelike nonlinear interaction
among adjacent simplices of the same dimension:

dxi

dt
¼ fðxiÞ −

XNk

j¼1

Lkði; jÞhðxjÞ; ∀ i ¼ 1;…; Nk; ð2Þ

where h∶Rd → Rd is some odd nonlinear coupling
function. This equation generalizes the dynamics of
identical oscillators anchored to each node [3] to the

PHYSICAL REVIEW LETTERS 130, 187401 (2023)

187401-2



scenario in which identical oscillators are defined on
higher-dimensional simplices or cells. Please note that
requiring odd functions fðxiÞ and hðxiÞ is necessary for
higher-order topological signals with k > 0 in order to
ensure invariance under change of orientation of each
simplex i (see SM [46]). For node dynamics (k ¼ 0) the
existence of a global synchronized state is automatically
determined by the properties of the graph Laplacian whose
kernel is spanned by u ¼ ð1;…; 1Þ⊤; indeed we have
β0 ¼ 1, one connected component. Its stability is instead
determined by the celebrated MSF [3,4].
Given the growing interest in topological signals, a key

question is how these classic results of nonlinear dynamics
on networks extend to nonlinear dynamics of topological
signals on simplicial complexes. Anticipating our results,
we will show that topology and combinatorics of the
higher-order Laplacian will not always ensure existence
of a globally synchronized state, and moreover, since the
dimension of the kernel of Lk can be bigger than one, also
the MSF will differ from the network case.
Let us then fix a reference stable solution sðtÞ of the

uncoupled system, _xi ¼ fðxiÞ. We are interested in deter-
mining the conditions under which the state having each
simplex i either in the state xi ¼ sðtÞ or in xi ¼ −sðtÞ is
also a stable solution of the coupled system Eq. (2).
Namely, the latter exhibits a global synchronous behavior
in which all simplices display the same dynamics of the
isolated simplices when we account for differences of sign,
determined by their orientation (see SM [46]).
Let us now introduce the vector v ¼ ðv1;…; vNk

Þ⊤ ∈
f−1; 1gNk , such that the globally synchronized state is
given by xi ¼ visðtÞ. A necessary condition to observe
global synchronization is that

P
j Lkði; jÞvj ¼ 0 (see SM

[46]). Let us recall that kerLk ¼ kerBk ∩ kerB⊤
kþ1; thus

the latter condition ultimately returns to require Bkv ¼ 0

[condition (i)] and v⊤Bkþ1 ¼ 0 [condition (ii)] (see SM).

The first condition has a striking consequence. If k is an
odd number, because any (kþ 1)-simplex contains an odd
number of k-faces, then condition (i) cannot ever be
satisfied. On the contrary, if k is even, then any (kþ 1)-
simplex contains an even number of k-faces thus condition
(i) can be realized [see Figs. 1(a) and 1(b)]. On the other
hand, condition (ii) can be satisfied by imposing a suitable
condition of the (k − 1)-faces of the k-simplex, which
we call balanced condition. In particular, if v ¼ u ¼
ð1;…; 1Þ⊤, this condition can be satisfied by requiring
every (k − 1)-face to be adjacent to an even number of
k-simplices and to be coherently oriented with half of
them [see Figs. 1(c) and 1(d)].
Therefore, for even values of k, global synchronization

can be achieved, while if k is odd, we observe, as long as
v⊤Bkþ1 ≠ 0, a topological obstruction to the onset of
global synchronization. Interestingly, for K-dimensional
signals having BKþ1 ¼ 0, only the balanced condition
remains [i.e., condition (ii)], which is automatically satis-
fied for the vector v ¼ u if the simplicial complex is a
closed manifold without boundary. Hence, K-dimensional
topological signals defined on closed K-dimensional mani-
folds can always achieve global synchronization for arbi-
trary value of K.
A similar derivation can be generalized and extended to

topological signals defined on the k-dimensional cells of
cell complexes. In particular, the conditions to achieve
global synchronization on a cell complex are unchanged
and given again by conditions (i) and (ii). However, the
combinatorics of cell complexes is different from the one
of simplicial complexes. Take for instance a cell complex
whose network skeleton is formed by a d-dimensional
square lattice with periodic boundary conditions, i.e., a
regular tessellation of d-dimensional torus. Then every
cell of dimension kþ 1 > 0 has an even number of

(a) (c) (e)

(b) (d) (f)

FIG. 1. Schematic description of conditions (i) [(a),(b),(e),(f)] and (ii) [(c),(d)] for topological signals defined on one-dimensional cells
(links, panels in top row) and two-dimensional cells (triangles or squares, panels in bottom row) in which we assume that there is an
orientation such that w ¼ u ¼ ð1; 1;…Þ⊤. In the case of simplicial complexes (a),(d) condition (i) cannot be satisfied for signals defined
on one-dimensional simplices, while in the case of cell complexes (e),(f) condition (i) can be satisfied. Condition (ii) can be satisfied on
simplicial and cell complexes as long as the simplices are balanced [see (c) and (d) for the simplicial complex case].
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k-dimensional faces; therefore condition (i) can be sat-
isfied also if k is odd [see Figs. 1(e) and 1(f)]. This implies
that on cell complexes we can overcome topological
obstruction. Until now we have focused on the combi-
natorial implication of conditions (i) and (ii). However,
these conditions also have topological consequences.
In fact, since on manifolds the eigenvectors of the
kernel of the Hodge Laplacian Lk are localized on the
k-dimensional holes, manifolds that will display an
eigenvector with the properties of the above defined v
are characterized by holes spanning the whole structure
as, for instance, (kþ 1)-dimensional hyperspheres or
d-dimensional tori with d > k.
Master stability equation for topological signals.—Let

us now assume the reference solution sðtÞ to also be a
solution of the coupled system Eq. (2), then by introducing
the distance from the reference orbit, δxi ¼ xi − sðtÞ, we
can derive its time evolution by linearizing Eq. (2):

dδxi

dt
¼ JfðsÞδxi −

XNk

j¼1

Lkði; jÞJhðsÞδxj; ∀ i¼ 1;…;Nk;

with JfðsÞ [JhðsÞ] the Jacobian of the function f [h]
evaluated on the reference solution.
The matrixLk being symmetric, it admits an orthonormal

basis ϕðαÞ
k associated to eigenvalues ΛðαÞ

k , α ¼ 1;…; Nk;

namely, Lkϕ
ðαÞ
k ¼ ΛðαÞ

k ϕðαÞ
k . In particular, since we work

under the assumption that the simplicial complex is balanced,

ϕð1Þ
k ∼ ð1;…; 1Þ⊤ ∈ RNk , ΛðαÞ

k ¼ 0 for 1 ≤ α ≤ βk and

ΛðαÞ
k > 0 for all α > βk.
Let us decompose the deviation vectors δxi onto this

eigenbasis: δxi ¼
P

α δx
ðαÞϕðαÞ

k ðiÞ. Then linearizing the
dynamical equation, we obtain

dδxðαÞ

dt
¼ ½JfðsÞ − ΛðαÞ

k JhðsÞ�δxðαÞ ∀ α ¼ 1;…; Nk:

Perturbations aligned with the kernel do not change the
stability of the uncoupled system; therefore only the pertur-
bations orthogonal to the kernel can modify the stability of
the reference solution. This is the MSF in the framework
of simplicial synchronization of topological signals. It is a
linear, in general nonautonomous, ordinary differential

equation parametrized by the eigenvalues ΛðαÞ
k , allowing

us to infer the stability character of the reference solution by
looking at its spectrum.
Simplicial Stuart-Landau (SL) model.—As an applica-

tion of the general theory introduced above, let us consider
the Stuart-Landau model [47–49] defined for topological
signals of dimension k and d ¼ 2. For k ¼ 0 the model
describes a nonlinear oscillator anchored at each node,
while for k ¼ 1 it can describe an oscillating flux associated
to an edge linking two nodes. More precisely, let us define
wj ¼ x1j þ ix2j and let us consider the “local reaction”
function fðxÞ¼ f̃ðwÞ¼ σw−βwjwj2, where σ¼ σℜþ iσℑ

and β ¼ βℜ þ iβℑ are complex control parameters. We
can prove that the uncoupled dynamics _wj ¼ fðwjÞ in
each simplex j admits a limit cycle solution ẑðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σℜ=βℜ

p
eiωt, where ω ¼ σℑ − βℑσℜ=βℜ, that is stable

provided σℜ > 0 and βℜ > 0, conditions that we hereby
assume. We now consider the coupled dynamics Eq. (2)
with nonlinear coupling function hðxÞ ¼ h̃ðwÞ ¼
μwjwjm−1, where m is a positive integer and μ ¼ μℜ þ
iμℑ a complex parameter that sets the coupling strength
[50]. We study the stability of the reference limit cycle
solution ẑðtÞ (see SM [46]) and we prove that the system
can globally synchronize, i.e., the dispersion relation is
negative, only if the model parameters do satisfy
μℜ þ μℑβℑ=βℜ > 0, and the simplicial complex is such
that u ∈ kerLk. To measure global synchronization we
compute the (generalized) Kuramoto order parameter
RðtÞ ¼ jPj ρjðtÞeiθjðtÞj=Nk, where wjðtÞ ¼ ρjðtÞeiθjðtÞ is
the polar form of the complex signal. Then RðtÞ → 1

FIG. 2. The Kuramoto order parameter R is plotted versus time
t for the Stuart-Landau model of topological oscillators of the
balanced simplicial and cell complexes represented in (a) and (d),
respectively. Panels (b) and (c) refer, respectively, to the order
parameter of triangles and links of the simplicial complex in (a).
Panels (e) and (f) refer, respectively, to the order parameter of the
squares and links of the cell complex in (d). The insets display the
dynamical time series of the topological signals. It is clear that
while on the links of the simplicial complex the oscillators do not
globally synchronize, the links of the cell complex do support
synchronization. The model parameters are σ ¼ 1.0þ 4.3i,
β ¼ 1.0þ 1.1i, μ ¼ 1.0 − 0.5i, and m ¼ 3, ensuring the neg-
ativity of the dispersion relation (see SM [46]).
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testifies the existence of phase and amplitude synchroni-
zation. Results shown in Fig. 2 provide numerical evi-
dence of our theoretical predictions. In Figs. 2(a)–
2(c) we show the results obtained by studying the SL
model defined on top of a designed balanced 3-simplicial
complex (see SM). The model parameters have been set to
values allowing for a negative dispersion relation (see
SM) and indeed once the complex amplitudes are defined
on 2-faces, i.e., triangles, the system globally synchro-
nizes [see Fig. 2(b)]. On the other hand, once the SL
oscillators are defined on links the system cannot globally
synchronize [see Fig. 2(c)]. In Figs. 2(d)–2(f) we provide
an example of a cell complex which overcomes topologi-
cal obstruction: a 3D square lattice with periodic boundary
conditions. Such cell complex is made of nodes, links,
squares, and cubes (see SM). In this case, global synchro-
nization can be achieved for signals of every dimension
[see Figs. 2(e) and 2(f) for global synchronization of links
and squares].
In conclusion, in this work we have studied global

synchronization of identical topological oscillators on
simplicial or cell complexes. We have found that global
synchronization of topological signals cannot be observed
on arbitrary simplicial or cell complexes but that only some
special higher-order network topologies can sustain such a
dynamical state. This is in stark contrast with the corre-
sponding scenario in networks where global synchroniza-
tion can be observed in every network topology given
proper dynamical conditions. By combining topology,
and in particular the spectral properties of higher-order
Laplacians, to nonlinear dynamics techniques such as the
MSF, we have identified the topological and dynamical
conditions under which identical topological oscillators can
achieve global synchronization on simplicial or cell com-
plexes. We have proved that global synchronization of
odd-dimensional topological signals is obstructed in sim-
plicial complexes. This topological obstruction implies
that on a K-dimensional simplicial complex we can
never observe global synchronization of odd-dimensional
topological signals of dimension d < K. However, such
obstruction is not present in cell complexes. In particular,
we show evidence that in specific topologies such as
the d-dimensional square lattice with periodic boundary
conditions, global synchronization of topological signal
of any dimension can be observed.
These results significantly enrich our understanding of the

relation between higher-order network topology and dynam-
ics revealing collective phenomena of topological signals.
Our study is relevant, for its inherent simplicity, to a wide
spectrum of applications (neuroscience, biology, and social
sciences) where many-body interactions involve higher-
order interacting units. Therefore, we hope that this Letter
will stimulate further research work in physics and beyond.

G. B. acknowledges funding from the Alan Turing
Institute and the Royal Society (IEC\NSFC\191147).
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