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Interface Roughening in Nonequilibrium Phase-Separated Systems
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Interfaces of phase-separated systems roughen in time due to capillary waves. Because of fluxes in the
bulk, their dynamics is nonlocal in real space and is not described by the Edwards-Wilkinson or Kardar-
Parisi-Zhang (KPZ) equations, nor their conserved counterparts. We show that, in the absence of detailed
balance, the phase-separated interface is described by a new universality class that we term |q|KPZ. We
compute the associated scaling exponents via one-loop renormalization group and corroborate the results
by numerical integration of the |q|KPZ equation. Deriving the effective interface dynamics from a minimal
field theory of active phase separation, we finally argue that the |q|KPZ universality class generically
describes liquid-vapor interfaces in two- and three-dimensional active systems.
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The roughening of interfaces is among the best-studied
problems in statistical mechanics [1,2]. Early theoretical
investigations [3-5] were concerned with the Eden model
[6], proposed to describe the shape of cell colonies, and with
the ballistic deposition model [7]. Kardar, Parisi, and Zhang
(KPZ) [8] discovered an important universality class for
growing rough interfaces, by adding the lowest order non-
linearity to the continuum Edwards-Wilkinson (EW) model
in which height fluctuations are driven by nonconserved
noise and relax diffusively [9]. Despite its fame, KPZ does
not describe all roughening interfaces: in the presence of
conservation laws, the KPZ nonlinearity can be forbidden
and novel universality classes arise [1,10,11].

A notable category of interfaces that stands out from all
these well-known universality classes are those arising in
phase-separated systems, which roughen due to thermally
activated capillary waves [12—16]. There, because of fluxes
in the bulk phases, liquid-vapor or liquid-liquid interfaces
have nonlocal dynamics in real space [17,18]. In the absence
of fluid motion, small amplitude capillary waves with wave
number q relax by diffusion at a rate 7~! = ¢|q|?, with &
proportional to the interfacial tension [17]. We consider in
the following phase separation in d + 1 dimensions and we
denote by /(x, 7) the height of the resulting interface above
a d-dimensional plane. (This notation is standard for inter-
face problems such as KPZ.) The dynamics becomes, in
Fourier variables h(q, ),

o/h(q.1) = —olal’h(q.1) + \/2Dlaln(q.1). (1)
where 7 is a Gaussian white noise such that

(n(ay, 2)n(qa. 1)) = 8(q; +q2)8(t; — 1), (2)
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The linear evolution equation (1) can be written in real space
as 6jz = GxV2h + ng, where * stands for the spatial con-
volution, (7z(Xy, 1)1r(X2, 12)) ~ 2DG (X — X2)6(t; — 12),
and the kernel G is long ranged: G(x) ~ |x|™¢"! at large
distances.

The interface in passive phase-separated fluids must be
described, at least in the stationary state, by an equation
that respects detailed balance. In this case, the interface is a
subset of degrees of freedom within a thermally equili-
brated state of the full, phase-separated system and hence
is itself in equilibrium. The fluctuation-dissipation theo-
rem then means that any nonlinearity that enters Eq. (1) is
of the form |q|6%,/6h, for some free energy functional
Fh]. A simple dimensional analysis argument then
shows that there exists no nonlinearity correcting
Eq. (1) that is relevant in the renormalization group
(RG) sense for interfaces of dimension d = 1, 2. Hence
the stationary dynamics of diffusive (i.e., without momen-
tum conservation) interfaces between phase-separated
passive liquids is described by mean-field scaling expo-
nents. Dimensional analysis [19] of Eq. (1) then gives
z=3andy = (z —d—1)/2, in terms of which spatial and
temporal correlations scale as (A(x, 1)h(x',1)) ~ [x — x/|%
and (h(x, )h(x, 1)) ~ |t — ¢'|%/¢, while the static structure
factor S = (|h(q, 1)|?) scales as S ~ |q|7¢=% for small |q|.

We shall show in the following that this conclusion
changes in phase-separated systems that lack detailed
balance. Important examples are found in active matter,
where elemental units such as self-propelled colloids,
bacteria, or cells extract nonthermal energy from the
environment and dissipate it to self-propel [20]. Active
liquid-vapor systems are known to display a phenomenol-
ogy impossible in equilibrium [21]; for example, phase
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separation arises even in the absence of any attraction among
particles [22-25]. Moreover, steady-state currents can be
present [26], and phase-separated states can be sustained
even when the interfacial tension is negative [26-29]. In the
simplest cases, their large-scale interfacial properties are
nonetheless similar to those in passive fluids [25,30-34]. In
this situation, it was recently assessed on the basis of
numerical simulations of particle models [35,36] and
field-theoretical analysis [27] that capillary wave theory
holds. Indeed, some of us have recently shown that small
amplitude, long wavelength capillary waves obey Eq. (1),
although activity changes the capillary interfacial tension
(and can make it negative in some parameter regimes, not
considered here) [27].

In this Letter, we show that when the underlying
dynamics breaks detailed balance, as happens generically
in active systems, a new universality class describes the
roughening of the liquid-vapor interface. This is because a
new nonlinearity, which is RG relevant for interfacial
dimension d <2, can appear in Eq. (1). We study the
ensuing equation, which we term |q|KPZ, by one-loop RG
analysis perturbatively for small ¢ =2 — d. We compute
the scaling exponents and confirm our conclusions by
numerical simulations of the |q|KPZ equation in d = 1. We
further argue that the |q|KPZ universality class includes the
liquid-vapor interface of active systems undergoing bulk
phase separation. We do so by considering active model
B+ (AMB+) [26], a minimal continuum description of
active systems undergoing phase separation, and showing
how |q|KPZ emerges as the associated equation for the
liquid-vapor interface. We thus predict the emergence of a
new universality class for the roughening of liquid-vapor
interface in two-dimensional active systems (d + 1 = 2),
the setup in which they are most commonly studied both
theoretically [25] and experimentally [37-39].

To assess which nonlinearities might modify Eq. (1), letus
first recall the symmetries that have to be respected. First, we
should impose invariance under rotations and translations, as
well as under a shift in the origin of the reference frame,
which translates to h(q,t) = h(q,t) + (27)?6(q)C in
Fourier space, for any C € R. Second, the total amounts
of liquid and vapor do not change during roughening,
implying that the “total height” [ h is constant. We further
assume that chiral symmetry (invariance under X — —X) is
not broken. Under these symmetries, the KPZ nonlinearity is
forbidden, as it does not conserve the total height. Moreover,
the nonlinearities captured in existing models of conserved
surface growth, such as cKPZ [1,10] and cKPZ+ [11] are
found to be RG irrelevant by dimensional analysis.

Inspecting Eq. (1) it appears that |q| plays the role of a
mobility in the linear description of capillary waves. This
thus suggests to consider nonlinearities in the form

al /Z,, _sfalara)a). A )

where the integral is over (y,...,q, with the constraint
> ", q; = q (nonlinearities depending on the frequencies
w, wy, ..., », could be considered as well without changing
any conclusion). Note that the prefactor |q| ensures that the
total height of the interface is conserved. Assuming that g is
analytic in all its arguments, and imposing the symmetries
mentioned above, the most relevant nonlinearity that can
modify Eq. (1) is g(q|q;,q,) = 4,iq; - iq,. This term is
relevant for d < d. = 2. We are thus led to investigate the
following equation, which we term |q|KPZ:

A A
oh = —olal’h + = [a|F (VA + v/2Dlgln.  (4)

where F|-] stands for the Fourier transform. It is worth
noting that Eq. (4) differs from the KPZ equation endowed
with long-range interactions [40,41].

We next study the |q|KPZ equation by RG analysis to
one loop, perturbatively in € =2 —d > 0. Within the
Martin-Siggia-Rose formalism [19], the action S associated
with Eq. (4) reads

S = /Q (-0)[G; (Q)h(Q) + A(Q) - DIalh(Q)].  (5)

where /1 is a response field, Q = (w,q), Go(Q)™! = —iw+
olql’,and A(Q) = (11/2)ld] [p, 1 0,-0 1 - A21(Q1)1(Q5).

We show in Fig. 1 the one-particle-irreducible diagrams
to one loop associated with the action in Eq. (5) and
compute them in the Supplemental Material [42]. The
diagram in Fig. 1(a) gives a nonvanishing contribution that
renormalizes o, while that of Fig. 1(b) only gives irrelevant
contributions to the renormalization of the noise. Diagrams
in Figs. I(c) and 1(d) exactly cancel, as suggested by
generalizing the argument of [43]. (We have confirmed this
by explicit computation.) We furthermore show in [42] that
the |q|KPZ equation is stable under one-loop perturbative
RG flow: any nonlinearity there generated is in the form of

(a) (b)

(c) (d)
FIG. 1. One-loop diagrams for the renormalization of the
(a) propagator, (b) noise, and (c),(d) nonlinearity.
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Eq. (3), with g analytic in its arguments, and no linear term
more relevant than |q|*h(q) is generated.

We thereby obtain in [42] the following RG flow for the
reduced coupling constant ¢ = DA?/o°:

d 3
AN =y - ngﬁz,

A e=2-d. (6)

where A is the momentum scale, K, = S,/ (2x)¢, and
S, = 27%?/T(d/2). As expected from dimensional analy-
sis, the Gaussian fixed point (g* = 0) is the only one of the
RG flow for d > 2: here the mean-field exponents exactly
describe the interface properties at large scales. Ford < 2, a
new attractive fixed point emerges at ¢g* = 8¢/(3K,). At
this fixed point, the scaling exponents are

i=3-2. x=s1 (7)

3 3’
These exponents describe the new |q|KPZ universality
class to one loop, that is, to first order in &.

To test these predictions, we numerically integrate the
|q|KPZ in d =1 using a pseudospectral code with 2/3
dealiasing procedure. The use of a pseudospectral code is
particularly convenient for the |q|KPZ equation because it
has computational complexity O(L log L), where L is the
system size, while, given its nonlocality in real space, a
finite difference code would have complexity O(L?). The
results presented were obtained with spatial discretization
Ax =1 and time discretization At = 1072. We quantified

[ n 1(1 1 ’ 8

starting from a flat interface and averaging it over noise
realizations. Our RG analysis predicts that, while rough-
ening, W? ~ 1/ and, for a system of finite size L, W?
eventually saturates in time to a value W2 (L)=
W(oo,L)? ~ L¥. Measuring the interfacial width as a
function of time and its saturated value as a function of
L allows us to extract both scaling exponents, z and y.
In the case of the linear theory (4; = 0) we measure, as
expected, 2y/z=1/3 and 2y =1. We then perform
simulations with 1; # 0. In Fig. 2 we plot W?(¢,L) as a
function of time and various system sizes both in log-log
and in a redressed plot (inset); the latter is a stringent test of
the scaling behavior. Our measurement gives 2y/z ~ 0.28.
We then plot the saturated value of the interfacial width in
Fig. 3 both for 4; = 0 and 4; = 2, finding that 2y = 1 for
A1 =0 and 2y ~0.78 for 1; =2. The values of the
measured scaling exponents should be compared with
those obtained from the one-loop RG analysis, Eq. (7),
which gives 2y/z~1/4 and 2y =2/3 in d=1. The
agreement is very good, given that the RG predictions
are obtained to first order in &, whereas € = 1 in our

W2(t,L)

10 4W2(t, L)

11— L =891
1— L=297
§ L =99
109 4— L=66
—— L =233

to 28

1 ;
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FIG. 2. Interfacial width W2(¢) as a function of time for

different system sizes showing a roughening law W2 (f) ~ %28,
Parameters used 6 = 1.0, D = 0.1, 1 = 2.0, corresponding to the
reduced coupling constant ¢ = 0.4. Each curve was obtained by
averaging over 500 noise realizations. The inset contains the
same data but rectified by %28,

simulations. These numerical results offer strong evidence
for the presence of a perturbatively accessible fixed point
for the |q|KPZ equation.

Our final task is to evidence that the |q|KPZ non-
linearity is indeed generically present for the dynamics of
interfaces in phase-separated active systems. To do this,
we consider continuum scalar field theories for active

'd
e L
1 1 1
33 99 297
FIG. 3. W2(L) ~ L as a function of system size L. Continu-

ous lines, RG predictions either at the Gaussian (blue) or |q|KPZ
(red) fixed points; points, results of numerical integration of the
|q|KPZ equation with 4; =0 (blue) and A; =2 (red), corre-
sponding to bare coupling ¢ = 0.4; other parameters, ¢ = 1.0
and D = 0.1. Error bars are smaller than the symbols’ size.
Dashed lines are power-law fits.
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phase separation [26,30,44]. These are generalizations of
model B [17,45,46], the standard large-scale description
of phase separation in diffusive passive fluids (without
momentum conservation). Like model B they address the
dynamics of a conserved scalar density field ¢ in d + 1
dimensions that switches steeply from positive to negative
values on crossing the interface from liquid to vapor.
Unlike model B, the active versions take into account
that detailed balance is broken at the microscale. The
ensuing minimal theory is called AMB+ [26,31] and
includes all terms that break detailed balance up to order
O(V*,¢?) 1261,

dp =—-V-(J+V2DMA). 9)
J/M ==V, + {(V*¢)V, (10)
Wl = i—‘;ﬂww. (11)

Here & = [ dr{f(d) + (K()/2)VHP}. f(@) is a
double-well local free energy, and A is a vector of
zero-mean, unit-variance, Gaussian white noises.
Standard model B is recovered at vanishing activity
(A={¢=0), unit mobility M =1, and constant noise
level D [45]. Here we shall retain the choice M =1,
constant D and further assume for simplicity that K is also
constant. Our analysis below assumes that the interfacial
tensions determining the Ostwald process [26] and the
relaxation of capillary waves [27], which in active systems
can differ, are both positive so that the system undergoes
bulk phase separation rather than microphase separation.

The linear description of capillary waves (1) has been
classically derived for passive fluids starting from
model B [17] and, more recently, for active fluids starting
from AMB+ [27]. This is done by assuming that ¢ evolves
quasistatically with respect to fluctuations of the interfacial
height, equivalent to an ansatz ¢(x, y, 1) = ¢(y — h(x. 1)),
which is exact at leading order in 4 and q [27]. As detailed
in the Supplemental Material [42], we extend this pro-
cedure to obtain the nonlinear terms that correct Eq. (1),

S [ e B it
n=0 v 41-X.X} :

LD, () V3R e NN g
(12

where the Stratonovich convention is used, expressions
for the h-independent factors A,(q), D,(q), and o, are
given in [42], and y, can be found as a sum of Gaussian
noises [42]. A,(q) and D,(q) have been defined to make
clear the reading of the dimension of the nonlinearities,
given the fact that the dimension of A,(q)d,A(x) and

D, (q)V2his atleast O(|q|*h). To leading order in 4 and q,
Eq. (12) reduces to Eq. (1), where the interfacial tension o
is proportional to the capillary waves interfacial tension
Gew [271.

Notably, the 1;-term of Eq. (4) is not present at bare level
in Eq. (12). Furthermore, Eq. (12) contains nonlinearities in
the form of Eq. (3) with ¢ singular. In order to perform the
RG analysis of Eq. (12), we transform it to the Ito
convention in the Supplemental Material [42], following
a standard procedure [47-49]. We then find the canonical
dimension of the nonlinear terms and show that the singular
nonlinearities in Eq. (12) are all RG irrelevant [42].
Moreover, by computing one-loop diagrams, we further
show in [42] that 4; # O is generated under RG from the
nonlinearities of Eq. (12). These results strongly suggest
that the liquid-vapor interface of AMB + belongs to the
|q|KPZ universality class. However, a complete proof
would require us to derive the analog of Eq. (12), allowing
for a dependence of ¢ on interfacial curvature, and then
show that no relevant singular nonlinearity is generated by
the associated RG flow. This goes beyond the scope of this
Letter. Preliminary numerical simulations of AMB+,
which will be presented elsewhere, do however indicate
that the interface roughens accordingly to W2(t) ~ 128 as
expected from the |q|KPZ universality class.

In conclusion, we have introduced a minimal field
theory, termed the |q|KPZ equation, to describe the rough-
ening of interfaces in nonequilibrium phase-separated
systems lacking momentum conservation. The |q|KPZ
equation differs from the standard description of rough-
ening interfaces (either EW, KPZ, or their conserved
counterparts) because diffusive fluxes in the bulk cause
the interfacial dynamics to be nonlocal in real space. We
discovered a nontrivial fixed point of the RG flow for
interfacial dimension d < 2. This should control active,
phase-separated interfaces in d + 1 = 2 bulk dimensions.
We characterized this new universality class, computing its
scaling exponents by one-loop RG and numerical simu-
lations. We finally gave evidence that the |q|KPZ class
includes interfacial roughening in phase-separated active
systems, by explicitly deriving the effective interface
equation from a scalar active field theory for the particle
density in d 4 1 bulk dimensions and showing that the
|q|KPZ nonlinearity thereby emerges.

Previous studies of roughening of the liquid-vapor
interface in active particle models concluded that z ~2
as in the Edwards-Wilkinson universality class [35,50,51].
We speculate that such disagreement might arise if these
particle models undergo bubbly phase separation [26]
instead of bulk phase separation as addressed here.
(Notably, in [51], vapor bubbles are indeed visible in the
liquid phase.) Local events in which a vapor bubble “pops”
through the interface do not conserve the total height |, h,
and also create overhangs, evading our description—at
least on scales smaller than the largest bubbles present.
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More work is needed to clarify this aspect. Beyond active
systems, our results might also describe the roughening of
interfaces in other nonequilibrium phase-separating sys-
tems, such as granular materials [52].

C. N. thanks F. Caballero for a discussion in the initial
stages of this work. G.F. was supported by the CEA
NUMERICS program, which has received funding from
the European Union’s Horizon 2020 research and innova-
tion program under the Marie Sklodowska-Curie Grant
Agreement No. 800945. B. D. acknowledges the support
from the French ANR through the project NeqFluids (Grant
No. ANR-18-CE92-0019). This work was funded in part
by the European Research Council under the Horizon 2020
Programme, ERC Grant Agreement No. 740269, and by
the National Science Foundation under Grant No. NSF
PHY-1748958, NIH Grant No. R25GMO067110, and the
Gordon and Betty Moore Foundation Grant No. 2919.02.
This work was funded in part by the support from the
Institut National de Physique under the grant Instabilities
and Fluctuations in Active Matter models: from dry to wet.
M.E.C. is funded by the Royal Society. C. N. acknowl-
edges the support of an Aide Investissements d’ Avenir du
LabEx PALM (ANR-10-LABX-0039-PALM).

[1] J. Krug, Adv. Phys. 46, 139 (1997).

[2] A.-L. Barabasi, H. E. Stanley et al., Fractal Concepts in
Surface Growth (Cambridge University Press, Cambridge,
England, 1995).

[3] H. Peters, D. Stauffer, H. Holters, and K. Loewenich, Z.
Phys. B Condens. Matter 34, 399 (1979).

[4] M. Plischke and Z. Ricz, Phys. Rev. Lett. 53, 415 (1984).

[5] R. Jullien and R. Botet, J. Phys. A 18, 2279 (1985).

[6] M. Eden, in Proceedings of the Symposium on Information
Theory in Biology (Pergamon Press, New York, 1958),
pp. 359-370.

[7] F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).

[8] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,
889 (19806).

[9] S.F. Edwards and D. Wilkinson, Proc. R. Soc. A 381, 17
(1982).

[10] T. Sun, H. Guo, and M. Grant, Phys. Rev. A 40, 6763
(1989).

[11] F. Caballero, C. Nardini, F. van Wijland, and M. E. Cates,
Phys. Rev. Lett. 121, 020601 (2018).

[12] M. v. Smoluchowski, Ann. Phys. (Berlin) 330, 205 (1908).

[13] J.S. Rowlinson and B. Widom, Molecular Theory of
Capillarity (Clarendon Press, Oxford, 1982).

[14] R. Evans, Adv. Phys. 28, 143 (1979).

[15] M. Wertheim, J. Chem. Phys. 65, 2377 (1976).

[16] J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).

[17] A.J.Bray, A. Cavagna, and R. D. M. Travasso, Phys. Rev. E
65, 016104 (2001).

[18] A. Shinozaki, Phys. Rev. E 48, 1984 (1993).

[19] U. C. Tduber, Critical Dynamics: A Field Theory Approach
to Equilibrium and Non-Equilibrium Scaling Behavior
(Cambridge University Press, Cambridge, England, 2014).

—_—

[20] M. C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B.
Liverpool, J. Prost, M. Rao, and R. A. Simha, Rev. Mod.
Phys. 85, 1143 (2013).

[21] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nardini,
F. Peruani, H. Lowen, R. Golestanian, U.B. Kaupp, L.
Alvarez et al., J. Phys. Condens. Matter 32, 193001 (2020).

[22] J. Tailleur and M. E. Cates, Phys. Rev. Lett. 100, 218103
(2008).

[23] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702
(2012).

[24] J. Stenhammar, D. Marenduzzo, R.J. Allen, and M. E.
Cates, Soft Matter 10, 1489 (2014).

[25] M. E. Cates and J. Tailleur, Annu. Rev. Condens. Matter
Phys. 6, 219 (2015).

[26] E. Tjhung, C. Nardini, and M. E. Cates, Phys. Rev. X 8,
031080 (2018).

[27] G. Fausti, E. Tjhung, M. E. Cates, and C. Nardini, Phys.
Rev. Lett. 127, 068001 (2021).

[28] J. Bialké, J. T. Siebert, H. Lowen, and T. Speck, Phys. Rev.
Lett. 115, 098301 (2015).

[29] F. Caballero and M. C. Marchetti, Phys. Rev. Lett. 129,
268002 (2022).

[30] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D.
Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351 (2014).

[31] C. Nardini, E. Fodor, E. Tjhung, F. van Wijland, J. Tailleur,
and M. E. Cates, Phys. Rev. X 7, 021007 (2017).

[32] B. Partridge and C.F. Lee, Phys. Rev. Lett. 123, 068002
(2019).

[33] A.P. Solon, J. Stenhammar, M. E. Cates, Y. Kafri, and J.
Tailleur, Phys. Rev. E 97, 020602(R) (2018).

[34] N. Gnan and C. Maggi, Soft Matter 18, 7654 (2022).

[35] C.F. Lee, Soft Matter 13, 376 (2017).

[36] D. M. Sussman, J. M. Schwarz, M. C. Marchetti, and M. L.
Manning, Phys. Rev. Lett. 120, 058001 (2018).

[37] I. Buttinoni, J. Bialké, F. Kiimmel, H. Lowen, C. Bechinger,
and T. Speck, Phys. Rev. Lett. 110, 238301 (2013).

[38] G. Liu, A. Patch, F. Bahar, D. Yllanes, R. D. Welch, M. C.
Marchetti, S. Thutupalli, and J. W. Shaevitz, Phys. Rev. Lett.
122, 248102 (2019).

[39] M. N. van der Linden, L. C. Alexander, D. G. A. L. Aarts,
and O. Dauchot, Phys. Rev. Lett. 123, 098001 (2019).

[40] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys. Rev.
A 39, 3053 (1989).

[41] A.K. Chattopadhyay, Phys. Rev. E 60, 293 (1999).

[42] See  Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.130.187102 for the
derivation of the RG flow, its stability and the coarse-
graining procedure for the effective interface equation.

[43] H. K. Janssen, Phys. Rev. Lett. 78, 1082 (1997).

[44] F.J. Thomsen, L. Rapp, F. Bergmann, and W. Zimmermann,
New J. Phys. 23, 042002 (2021).

[45] P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49,
435 (1977).

[46] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge,
England, 2000), Vol. 1.

[47] C.W. Gardiner et al., Handbook of Stochastic Methods
(Springer, Berlin, 1985), Vol. 3.

[48] A.W.C. Lau and T. C. Lubensky, Phys. Rev. E 76, 011123
(2007).

187102-5


https://doi.org/10.1080/00018739700101498
https://doi.org/10.1007/BF01325205
https://doi.org/10.1007/BF01325205
https://doi.org/10.1103/PhysRevLett.53.415
https://doi.org/10.1088/0305-4470/18/12/026
https://doi.org/10.1088/0305-4470/18/2/005
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1098/rspa.1982.0056
https://doi.org/10.1098/rspa.1982.0056
https://doi.org/10.1103/PhysRevA.40.6763
https://doi.org/10.1103/PhysRevA.40.6763
https://doi.org/10.1103/PhysRevLett.121.020601
https://doi.org/10.1002/andp.19083300203
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1063/1.433352
https://doi.org/10.1063/1.435276
https://doi.org/10.1103/PhysRevE.65.016104
https://doi.org/10.1103/PhysRevE.65.016104
https://doi.org/10.1103/PhysRevE.48.1984
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1088/1361-648X/ab6348
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1039/C3SM52813H
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevX.8.031080
https://doi.org/10.1103/PhysRevLett.127.068001
https://doi.org/10.1103/PhysRevLett.127.068001
https://doi.org/10.1103/PhysRevLett.115.098301
https://doi.org/10.1103/PhysRevLett.115.098301
https://doi.org/10.1103/PhysRevLett.129.268002
https://doi.org/10.1103/PhysRevLett.129.268002
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1103/PhysRevX.7.021007
https://doi.org/10.1103/PhysRevLett.123.068002
https://doi.org/10.1103/PhysRevLett.123.068002
https://doi.org/10.1103/PhysRevE.97.020602
https://doi.org/10.1039/D2SM00654E
https://doi.org/10.1039/C6SM01978A
https://doi.org/10.1103/PhysRevLett.120.058001
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1103/PhysRevLett.122.248102
https://doi.org/10.1103/PhysRevLett.122.248102
https://doi.org/10.1103/PhysRevLett.123.098001
https://doi.org/10.1103/PhysRevA.39.3053
https://doi.org/10.1103/PhysRevA.39.3053
https://doi.org/10.1103/PhysRevE.60.293
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.187102
https://doi.org/10.1103/PhysRevLett.78.1082
https://doi.org/10.1088/1367-2630/abe814
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevE.76.011123
https://doi.org/10.1103/PhysRevE.76.011123

PHYSICAL REVIEW LETTERS 130, 187102 (2023)

[49] M. E. Cates, E. Fodor, T. Markovich, C. Nardini, and E. [51] A. Patch, D. M. Sussman, D. Yllanes, and M. C. Marchetti,

Tjhung, Entropy 24, 254 (2022). Soft Matter 14, 7435 (2018).
[50] A. Wysocki, R. G. Winkler, and G. Gompper, New J. Phys. [52] L. Oyarte, P. Gutiérrez, S. Aumaitre, and N. Mujica, Phys.
18, 123030 (2016). Rev. E 87, 022204 (2013).

187102-6


https://doi.org/10.3390/e24020254
https://doi.org/10.1088/1367-2630/aa529d
https://doi.org/10.1088/1367-2630/aa529d
https://doi.org/10.1039/C8SM00899J
https://doi.org/10.1103/PhysRevE.87.022204
https://doi.org/10.1103/PhysRevE.87.022204

