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Perovskite rare earth nickelates exhibit remarkably rich physics in their metal-insulator and anti-
ferromagnetic transitions, and there has been a long-standing debate on whether their magnetic structures
are collinear or noncollinear. Through symmetry consideration based on the Landau theory, we discover
that the antiferromagnetic transitions on the two nonequivalent Ni sublattices occur separately at different
Néel temperatures induced by the O breathing mode. It is manifested by two kinks on the temperature-
dependent magnetic susceptibilities with the secondary kink being continuous in the collinear magnetic
structure but discontinuous in the noncollinear one. The prediction on the secondary discontinuous kink is
corroborated by an existing magnetic susceptibility measurement on bulk single-crystalline nickelates, thus
strongly supporting the noncollinear nature of the magnetic structure in bulk nickelates, thereby shedding
new light on the long-standing debate.
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Understanding spin and charge ordering and electronic
correlation-induced metal-insulator (MI) transitions is one
of the main research areas in condensed matter physics.
These phenomena coexist in perovskite rare earth nickel-
ates with the chemical formula RNiO3, where R denotes a
rare earth element or a combination of rare earth elements.
At high temperatures, the nickelates (except for R ¼ La)
are metallic and paramagnetic and have an orthorhombic
lattice structure with the space group Pbnm, while their
ground states at low temperatures are insulating and
antiferromagnetic (AFM) and have a monoclinic structure
with the space group P21=n [1]. The MI transition
temperature TMI and the Néel temperature TN are corre-
lated with the radii of the rare earth ions; TMI decreases as
the R3þ’s radius increases, and TMI > TN if R3þ ’s radius
is smaller than Nd3þ’s, and TMI ¼ TN for larger ions
R ¼ Nd, Pr [1,2]. The nickelate with the largest rare earth
ion R ¼ La is a rhombohedral metal down to near zero
temperature but was recently found to have a finite Néel
temperature TN ¼ 157 K [3].
The MI transition of the nickelates is always accom-

panied by the lattice distortion from Pbnm to P21=n,
resulting in two nonequivalent Ni sublattices. The O
octahedra around Ni ions in one Ni sublattice denoted
by Ni1 become larger than those in the other Ni sublattice
denoted by Ni2, across the metal-to-insulator transition.
This O breathing mode (bond disproportionation) was
believed to be associated with a charge ordering on the
Ni ions with nominal valences Ni12þ and Ni24þ inducing
the MI transition [4–6], until most recent simulations
supported a charge ordering in the form of ligand holes
and a site-selective Mott transition induced by the O
breathing mode [7–10].

Regardless of the mechanism of the MI transition, in the
insulating AFM phase, Ni1 and Ni2 have nominal spins
S ¼ 1 and S ¼ 0, respectively, and the actual magnetic
moment on Ni1 is larger than that on Ni2, which is
nonzero [4]. The magnetic moments within each Ni
sublattice are antiparallel, while the moments between
the two Ni sublattices in bulk could be either collinear or
noncollinear, both compatible with the neutron powder
diffraction data [4,11,12], so there has been a long-
standing debate on whether the magnetic structure is
collinear or noncollinear. The resulting spin density wave
has a wave vector of Q ¼ πð1; 0; 1Þ with respect to the
Pbnm lattice. X-ray resonant diffraction indicated that
some members of the rare earth nickelates in the thin
film or powder forms have the noncollinear magnetic
structure [13–15].
Despite these extensive studies, none of them considered

the possibility of different AFM transition characteristics on
the two Ni sublattices. Here, we use symmetry analysis
based on the Landau theory to provide insights into the
sublattice-resolved AFM transitions. We find that the AFM
transitions on the two Ni sublattices actually occur sepa-
rately at different Néel temperatures, which is induced by the
O breathing distortion through the lattice-spin interaction.
We will call the AFM transition on the Ni1 (Ni2) sublattice
the first (second) AFM transition hereafter. These separated
AFM transitions each result in a kink on the temperature-
dependent magnetic susceptibility, which is unambiguously
corroborated by an existing susceptibility measurement. We
show that the secondary kink can be used to distinguish the
magnetic structure, and the analysis clearly supports the
noncollinear nature of the magnetic structure, thus shedding
new light on the long-standing debate.
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The Landau theory of the rare earth nickelates has been
established with the cubic phase as its reference; i.e., the
order parameters carry irreducible representations of the
cubic space group of ideal perovskites [16]. There have also
been several existing theoretical analyses utilizing the
Landau theory but primarily focusing on the nature of
the MI transitions [17–19]. Here we consider the realistic
orthorhombic symmetry of the disordered phase of the
nickelates. The advantages of the phenomenological
Landau theory are the insensitivity to the microscopic
mechanism and the ease of properly accounting for the
symmetry breaking of phase transitions. We determine that
the order parameter characterizing the Pbnm → P21=n
lattice distortion (previously interpreted as characterizing
a charge density wave) η carries the real one-dimensional
small representation Γþ

3 of the q ¼ ð0; 0; 0Þ group of
Pbnm [20,21]. q is a reciprocal vector. η describes the
relative change in the O octahedra size of the O breathing
mode lj ¼ l½1þ ηei2πðxjþzjÞ�, where rj ¼ ðxj; yj; zjÞ are
the fractional coordinates with respect to the orthorhombic
unit cell of the jth Ni site. The order parameters character-
izing the AFM order carry the real two-dimensional small
representation T2 of the q ¼ Q extended group of
Pbnm [20,21]. There are thus two real order parameters
for the spin ordering S1 and S2, which can be the spins on
the N11 and Ni2 sublattices, respectively. S1 and S2 are
themselves three-dimensional spin vectors, which trans-
form in the spin SU(2) space and thus play no role in the
space group transformations [16]. The irreducible repre-
sentations are listed in Table I.
S1 and S2 can be combined to form a complex vector

ψ ¼ S1 − iS2, which is actually the q ¼ Q Fourier coef-
ficient of the spin density wave, Sj ¼ ℜ½ψeiQ·rj �. ℜ½·�
means the real part. The resulting invariant Landau expan-
sion up to the fourth order of the order parameters is

Fðη;ψÞ ¼ a0η2þa1η4þb0ψ� ·ψþb1ðψ� ·ψÞ2
þb01jψ ·ψj2þb001ℜ½ðψ ·ψÞ2�− kηℜ½ψ ·ψ�: ð1Þ

Note that unlike in the prior Landau theory [16], the ℜ½ψ ·
ψ� term is not invariant under all the symmetry operations
in Pbnm and thus not allowed, which one can check using
Table I. The constant k must be positive to respect the fact

that Ni in the larger (smaller) O octahedron has the spin
with the larger (smaller) magnitude S1 (S2).
We consider a general solutionψ ¼ jψ j½e−iθ cosðϕ=2Þê1þ

eiθ sinðϕ=2Þê2� yielding

S1 ¼ jψ j cosðθÞ½cosðϕ=2Þê1 þ sinðϕ=2Þê2�; ð2Þ

S2 ¼ jψ j sinðθÞ½cosðϕ=2Þê1 − sinðϕ=2Þê2�; ð3Þ

where ê1 and ê2 are two perpendicular directions. This
describes a general magnetic structure in which the magni-
tude ratio S2=S1 is j tan θj and the angle between S1 and S2 is
ϕ. Plugging this solution into Eq. (1), we obtain the angle-
dependent part of the expansion,

Fθϕ ¼ ðb01 − b001Þjψ j4sin2ð2θÞcos2ϕ
þ ðb01 þ b001Þjψ j4cos2ð2θÞ − kηjψ j2 cosð2θÞ: ð4Þ

Let us consider T ≲ TN, so that jψ j ≠ 0. Minimization of
Eq. (4) with respect to θ gives

�
cosð2θÞ− kη

2jψ j2½b01sin2ϕþb001ð1þ cos2ϕÞ�
�

×sinð2θÞ¼ 0; ð5Þ

which determines the equilibrium θ.
For the noncoincident MI and AFM transitions, the AFM

transitions are second order [22–24], so η is finite and
jψ j → 0 as T → TN − 0. Then it is obvious that Eq. (5)
forces sinð2θÞ ¼ 0; i.e., θ ¼ nπ=2, with n being an even
(odd) integer for positive (negative) η determined by the
equilibrium requirement ∂2Fθϕ=∂θ2 > 0. This is true until
jψ j ramps up from zero to a finite value jψN2j satisfying

jψN2j2 ¼
kjηj

2½b01sin2ϕþ b001ð1þ cos2ϕÞ� ; ð6Þ

so that the expression inside the curly brackets in Eq. (5)
can be zero. For this θ ¼ nπ=2, the smaller spin is exactly
zero, and Eq. (4) is independent of ϕ, meaning that the
second AFM transition lags behind the first one by a finite
temperature range as the temperature decreases. This is the
case irrespective of whether the magnetic structure is
collinear or not. Let us denote the Néel temperature of
the second AFM transition by TN2. An important con-
clusion drawn from Eq. (6) is that the separation of the
AFM transitions on the two Ni sublattices is induced by the
O breathing distortion.
For T < TN2, i.e., jψ j > jψN2j, Eq. (5) gives the equi-

librium θ a general value determined by

cosð2θÞ ¼ sgnðηÞ
����ψN2

ψ

����
2

; ð7Þ

TABLE I. Irreducible representations carried by the order
parameters. The first row lists the rotational symmetry operations
of Pbnm, where the subscripts a, b, and c represent the
orthorhombic a, b, and c axes, respectively. The real two-
dimensional irreducible representations are expressed in terms
of the Pauli matrices σx, σy, and σz. I is the identity matrix.

1 b n m 1̄ 21a 21b 21c

η 1 −1 1 −1 1 −1 1 −1
ðS1;S2Þ I −σx −I σx −σz −iσy σz iσy
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which is more favored over θ ¼ nπ=2 because of the
equilibrium requirement ∂

2Fθϕ=∂ϕ2 > 0. From Eqs. (2)
and (3), this means that S1 and S2 are unequal and both
nonzero at low temperatures as found experimentally [4,12].
The equilibrium ϕ is given by the minimization of Eq. (4)
with respect toϕ, sinð2ϕÞ ¼ 0; i.e.,ϕ ¼ mπ=2withm being
an integer. m is even for b01 < b001 and b001 > 0 or odd for
b01 > jb001j determined by the equilibrium requirement
∂
2Fθϕ=∂θ2 > 0 and ∂

2Fθϕ=∂ϕ2 > 0 [∂2Fθϕ=ð∂θ∂ϕÞ ¼ 0

here]. From Eqs. (2) and (3), an even m corresponds to
the collinear structure, while an odd m corresponds to the
noncollinear structure in which S1 is perpendicular to S2.
Therefore, the only symmetry-allowed noncollinear struc-
ture is that of perpendicular magnetic moments on the Ni1
and Ni2 sublattices.
Although occurring at differentNéel temperatures, the first

and second AFM transitions have the same critical exponent.
Without loss of generality, let us consider η > 0. First, for
δT ¼ T − TN → −0 andusingEq. (2), one has θ ¼ 0 and the
larger spin S1 ¼ jψ j cos θ ¼ jψ j ∼ ð−δTÞ1=2. Second, for
δT ¼ T − TN2 → −0, i.e., δjψ j ¼ jψ j − jψN2j → þ0, we
have sin2θ ¼ ½1 − cosð2θÞ�=2 ¼ δjψ j=jψN2j þ o(ðδjψ jÞ2)
using Eq. (7). Then, using Eq. (3), we have for the smaller
spin

S22 ¼ jψ j2sin2θ ¼ jψN2jδjψ j þ o(ðδjψ jÞ2)

¼ jψN2jδS1 þ
S22
2
þ o(ðδS1Þ2)þ oðS32Þ þ oðS22δS1Þ;

where the second line is an expansion of δjψ j with respect to
δS1 ¼ S1 − jψN2j and δS2 ¼ S2 around the second AFM
transition point. Solving for S2, one has

S2 ∼ ðδS1Þ1=2 ¼
�
dS1
dT

����
T¼TN2−0

δT

�
1=2

∼ ð−δTÞ1=2;

because ðdS1=dTÞjT¼TN2−0 is finite (which can be seen in
Fig. 2). Therefore, the (mean-field) critical exponents of the
two AFM transitions are both β ¼ 1=2.
Compared to the noncoincident MI and AFM transitions,

the coincident transitions have one difference: They are
first order [24,25], meaning both η and jψ j are finite as
T → TN − 0. Therefore, it becomes possible that Eq. (7) at
T ¼ TN − 0 already has solutions for θ, rendering con-
current AFM transitions on the Ni1 and Ni2 sublattices.
Whether this is the case depends on the particular values of
the Landau parameters in Eq. (1). Either way, it is obvious
that the lagging TN − TN2 for the coincident MI and AFM
transitions should be smaller than that for the noncoincident
transitions.
Now we show that the Landau theory is able to yield the

correct phase diagram for various rare earth elements. First,
it is normally assumed that the phase instability comes from
the coefficients of the terms of the second order of the order

parameters, a0 and b0. We use the simplest linear depend-
ence of a0 and b0 on the temperature T and the tolerance
factor τ, which depends on the radius of the rare earth
ions and describes how much the lattice is distorted from
the cubic symmetry. a0 ¼ −a00 þ a000τ þ a0000 T=T0 and
b0 ¼ −b00 þ b000τ þ b0000 T=T0, where T0 ¼ 298 K is the
room temperature. We fit all the parameters in Eq. (1)
except the coefficients in front of T, a0000 , and b0000 to the
ground state energy as a function of τ (we use the
experimental τ’s [1] instead of the calculated ones) calcu-
lated by the density functional theory [26]. a0000 and b0000 are
instead fitted to the experimentally measured TMI and TN
for R ¼ Y, Nd [1]. The fitted parameters are listed in
Table II. Numerically speaking, the collinear and noncol-
linear magnetic structures have the same form of the
Landau free-energy expansion, which is indicated by their
corresponding renormalizations of some of the Landau
parameters in Table II. Therefore, they can exhibit the same
phase diagram and magnitudes of the order parameters.
We can then calculate the τ-T phase diagram and

compare it to the experimentally measured one in Fig. 1.

TABLE II. Landau parameters in units of meV f:u:−1.
ðψ� · ψÞ2 ¼ jψ · ψj2 (jψ · ψj2 ¼ ℜ½ðψ · ψÞ2�) for the collinear
(noncollinear) structure, which is the reason for the renormaliza-
tions listed in the footnotes.

a00 a000 a0000 a1 b00
353.15 376.11 14.41 119.10 −33.56

b000 b0000 b̃01
a b̃001

b k
−100.00 96.77 58.68 69.60 88.00

ab̃01 ¼ b1 þ b01 − b001 (b̃01 ¼ b1) for the collinear (noncollinear)
structure.

bb̃001 ¼ 2b001 (b̃001 ¼ b01 þ b001) for the collinear (noncollinear)
structure.

FIG. 1. Tolerance factor-temperature phase diagram. Color
shades, calculated; markers, experimental [1]. The circles and
triangles are the phase boundaries of the MI transition and AFM
transition, respectively. The stairlike boundaries between the
color shades are due to the finite number of data points.
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The calculated phase boundaries are in fair agreement with
the measured ones, especially reproducing both the coinci-
dent and noncoincident MI and AFM transitions. Figure 2
shows the calculated order parameters as functions of the
temperature for R ¼ Y, Pr. The noncoincident MI and AFM
transitions for R ¼ Y are both second order, which is an
outcome of the Landau expansion used, while a weak first-
order nature was observed in experiments [4,23,27]. The
first-order nature can be reproduced by the Landau theory
with explicit incorporation of the electronic degrees of
freedom [18,19]. The coincident MI and AFM transitions
for R ¼ Pr are first order [1,16,26]. The first and the second
AFM transitions clearly occur at different Néel temper-
atures for both R ¼ Y, Pr, and the Néel temperature
difference for R ¼ Y is larger than that for R ¼ Pr, as
proven in the above theory.
We finally present the magnetic susceptibilities of

LuNiO3 and YNiO3 calculated for both the collinear and
noncollinear structures and compare them to an existing
susceptibility measurement for the corresponding single
crystals [27]. We choose these two nickelates because
among the commonly used rare earth elements in nickel-
ates, Lu and Yare the only two that are nonmagnetic, which
is thus convenient for one to investigate only the magnetic
properties of the Ni sublattice. We briefly explain how to
calculate the magnetic susceptibility here. The magnetic
moments within the Ni1 or Ni2 sublattice are AFM, so
upon applying an external magnetic field H, one needs to
distinguish the spin-up and spin-down sublattices within
the Ni1 or Ni2 sublattice. Let us denote ψ on the spin-up
and spin-down sublattices by ψ↑ and ψ↓, respectively.
Inspired by the Ising model that the transition temperature
is proportional to the exchange interaction [28], we can
identify the exchange interaction term between the spin-up

and spin-down sublattices to be ðb00 − b000τÞℜ½ψ�
↑ · ψ↓�.

Then the Landau expansion in the presence of H is

FH ¼ 1

2
½Fðη;ψ↑Þjb0

0
¼b00

0
¼0 þ Fðη;ψ↓Þjb0

0
¼b00

0
¼0�

þ ðb00 − b000τÞℜ½ψ�
↑ · ψ↓� − μ0M ·H; ð8Þ

where M ¼ gμBℜ½ð1þ iÞðψ↑ þ ψ↓Þ�=4 is the magnetic
moment per formula unit. μ0 is the vacuum permeability,
g ≈ 2 is the Landé factor, and μB is the Bohr magneton. FH
correctly returns to F in Eq. (1) when ψ↑ ¼ −ψ↓ ¼ ψ and
H ¼ 0. Then one can proceed normally with Eq. (8) to
calculate the magnetic susceptibility χ ¼ ð∂M1=∂HÞT,
where H is applied along the direction of the larger spin
S1, andM1 is the magnetization component along the same
direction.
The calculated susceptibilities are depicted in Fig. 3. The

susceptibilities for the collinear and noncollinear magnetic
structures both show two kinks, respectively, at the two
different Néel temperatures. This can be a signature to
detect the possibly separated AFM transitions in rare earth
nickelates. Furthermore, the secondary kink associated
with the second AFM transition is qualitatively different
between the collinear and noncollinear magnetic structures:
χðTÞ at the secondary kink is continuous in the collinear

FIG. 2. Calculated O breathing extent (relative change in the O
octahedron size, upper panel) and magnitudes of spins on Ni1 and
Ni2 sublattices (lower panel) for R ¼ Y, Pr.

FIG. 3. Calculated magnetic susceptibilities along the direction
of the larger spin S1 for R ¼ Lu, Y. For the collinear structure, we
set the free parameter b01 ¼ 0, while for the noncollinear structure,
we set the free parameter b001 ¼ 0. The insets are the susceptibil-
ities measured experimentally in the corresponding bulk single
crystals [27].
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structure, whereas it jumps abruptly in the noncollinear
structure. These different degrees of discontinuity result
from the different directions of the smaller spin S2 (alongH
in the collinear structure, while perpendicular to H in the
noncollinear structure) at the second AFM transition.
The insets in Fig. 3 show the susceptibilities measured

recently in LuNiO3 and YNiO3 bulk single crystals [27].
Although the calculated values of the susceptibilities deviate
significantly from the measured ones (which is not surpris-
ing due to the simplicity of the Landau model), we see
clearly two kinks on each of the measured susceptibilities,
confirming our predictions and thus solving the overlooked
puzzle on the nature of the secondary kink. The predicted
second AFM transition temperatures are also in good
agreement with the experiment. While the primary kink is
continuous, the secondary kink is clearly discontinuous,
which is consistent with our prediction for the noncollinear
magnetic structure, thus demonstrating that the magnetic
structure of bulk nickelates should be noncollinear.
In conclusion, we investigated by symmetry consider-

ation the AFM transitions in rare earth nickelates focusing
on their sublattice-dependent characteristics. For the non-
coincident MI and AFM transitions, the AFM transitions on
the two nonequivalent Ni sublattices must occur at different
Néel temperatures, whereas for the coincident transitions,
they can be either separated or concurrent. The Landau
parameters fitted to the first-principles ground state energies
support the separated AFM transitions for the coincident MI
and AFM transitions. These characteristic differences, as
well as the formation of nonzero magnetic moments with
unequal magnitudes on the two Ni sublattices, are all
induced by the monoclinic O breathing mode. The separated
AFM transitions lead to two kinks on the temperature-
dependent magnetic susceptibility with the secondary kink
being continuous in the collinear magnetic structure but
discontinuous in the noncollinear structure. We found clear
evidence of such a secondary discontinuous kink in an
existing magnetic susceptibility measurement for bulk
single-crystalline nickelates, thus a strong indication that
the magnetic structure of bulk nickelates is noncollinear. We
expect our findings to shed new light on the long-standing
debate on the magnetic structure of bulk nickelates and to
have important implications for other magnetically ordered
systems possessing similar symmetry breaking.
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