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We show that a chiral spin liquid spontaneously emerges in partially amorphous, polycrystalline, or
ion-irradiated Kitaev materials. In these systems, time-reversal symmetry is broken spontaneously due
to a nonzero density of plaquettes with an odd number of edges nodd. This mechanism opens a sizable gap,
at small nodd compatible with that of typical amorphous materials and polycrystals, and which can
alternatively be induced by ion irradiation. We find that the gap is proportional to nodd, saturating at
nodd ∼ 40%. Using exact diagonalization, we find that the chiral spin liquid is approximately as stable to
Heisenberg interactions as Kitaev’s honeycomb spin-liquid model. Our results open up a significant
number of noncrystalline systems where chiral spin liquids can emerge without external magnetic fields.
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The search for topological phases and materials has
focused on crystals due to the convenience of translational
symmetry to calculate topological invariants. Hence, amor-
phous solids represent the largest subset of materials that
remain unclassified in terms of their topological properties
[1–3]. This observation opens a large material class [4] to
search for topological phenomena. Their phenomenology
can parallel that of crystals, as all strong topological phases
can exist in amorphous lattices [5–9], but also extend it,
for example, due to the presence of average symmetries
[10,11]. In that sense, amorphous topological phases add to
the zoo of topological phases that exist because of disorder,
rather than in spite of it [12–16].
Amorphous materials could bring a new perspective on

other fundamental open problems, such as the challenge
of finding quantum spin-liquid materials. Quantum spin
liquids are entangled phases of matter characterized by the
absence of symmetry breaking at zero temperature. The
search for new candidate materials displaying clear spin-
liquid signatures remains a central goal, despite encourag-
ing experimental evidence [17–19]. As in the search of
new topological phases and materials, amorphous solids
represent a new pool of available materials and new
physical properties.
The paradigmatic Kitaev honeycomb model [20] is a

good starting point to find amorphous spin-liquid candi-
dates. First, Kitaev material Li2IrO3 has already been
grown amorphous [21], and more materials [22–26] could
soon follow, as nearly all crystals can be grown amorphous
[1]. Second, the three-colored Kitaev spin-1=2 model can
be defined on any (crystalline or amorphous) three-
coordinated lattice and remains exactly solvable through
a mapping to a model of free Majorana fermions coupled to
a static Z2 gauge field. Third, amorphous materials may
facilitate the observation of a chiral spin liquid by removing

the need for a magnetic field. Indeed, as already noted by
Kitaev [20], in the presence of odd plaquettes (plaquettes
with an odd number of edges), the ground state sponta-
neously breaks time-reversal symmetry. This occurs in the
decorated honeycomb lattice [27,28], the pentaheptite tiling
[29], and in the amorphous graphene lattice [30], which all
host a finite density of odd plaquettes.
These observations suggest that there exists an unex-

plored and advantageous phenomenology to engineer a
chiral spin liquid in amorphous and polycrystalline materi-
als (see Fig. 1). To take advantage of it, we need to
determine the minimal amount of structural disorder, or
density of odd plaquettes, needed to obtain a chiral spin

FIG. 1. As the density of odd plaquettes, nodd ¼ Nodd=Ntot, is
increased from (a) nodd ¼ 0 to (b) nodd ¼ 0.36 to (c) nodd ¼ 0.49,
the honeycomb Kitaev model undergoes a transition from a
gapless or gapped spin liquid with Chern number C ¼ 0 into a
gapped phase with Chern numbers C ¼ 0 or C ¼ �1 and broken
time-reversal symmetry.
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liquid, and realistic methods to engineer a density of defects
experimentally.
In this Letter, we propose experimental pathways to

realize a chiral spin liquid in the laboratory. We first
determine the amount of amorphicity required to transform
a Kitaev spin liquid into a gapped chiral spin liquid. We
find that the gap linearly increases with the density of odd
plaquettes nodd, saturating at a value of 0.1 times the Kitaev
exchange coupling J at nodd ∼ 40%. Since threefold coor-
dinated amorphous materials, such as amorphous graphene
[31], typically experimentally exhibit a density of odd
plaquettes of nodd ∼ 30%, a sizable gap seems well within
experimental reach. Moreover, we find that Kitaev materi-
als grown as polycrystalline samples with a sufficiently
homogeneous spread of defects [as in Fig. 1(b)] or samples
patterned with a focused-ion beam could realize a chiral
spin liquid. We also determine the stability of the chiral spin
liquid to Heisenberg nearest-neighbor interactions, which
are expected to be present in Kitaev materials. We find that
amorphicity does not significantly change the stability of
the Kitaev spin liquid, i.e., the amorphous chiral spin liquid
is almost as stable as its crystalline gapless spin-liquid
counterpart.
We start with the Kitaev model [20] defined on a lattice

of coordination three,

Hk ¼
X
i;j;α

JKα σαi σ
α
j ; ð1Þ

where σα¼x;y;z
j is the spin-1=2 Pauli operator acting on site

j, and the nearest-neighbor bonds α satisfy the three
coloring of the lattice. The flux operator Wp ¼ Πσiσk is
defined on each plaquette as the product over all bonds at
its boundary; all Wp commute with Hk and with them-
selves. The ground state is found in the flux sector ϕp such
that ϕp ¼ −ð�iÞnsides , as recently shown in Ref. [30]. On the
honeycomb lattice, the phase diagram is conventionally
represented by the triangle where

P
α J

K
α ¼ 1, with JKα > 0

[see inset of Fig. 2(b)]. At the center of the triangle
JKx ¼ JKy ¼ JKz , and the model realizes a gapless spin
liquid. In contrast, when one of the Jα dominates, the
ground state is gapped and preserves time-reversal sym-
metry, as the Chern number of the underlying Majorana
model is C ¼ 0.
We now solve this model in lattices with different

densities of odd plaquettes nodd ¼ Nodd=Ntot and JKα .
Each lattice is generated by voronization of a point set
[33]. The voronization procedure finds the area closest to a
given point of the point set. The edges and vertices of each
area define the edges and vertices of a threefold coordinated
lattice. For a perfect triangular point set of size Lx × Ly, the
voronization procedure produces a perfect hexagonal
lattice. By displacing the points of a triangular point set,
with a probability drawn from a normal distribution with
standard deviation w, we can generate lattices with different

values of nodd, controlled by w, as seen in Fig. 1. For a given
lattice, the three coloring is then implemented using the
algorithm of Refs. [30,34].
The density nodd and the anisotropy of the coupling terms

Jα determines the phase and gap size of the ground state of
Eq. (1). We show in Figs. 2(a) and 2(b) the gap and Chern
number diagram of the model for different values of JKx ¼
JKy ¼ ð1 − JKz Þ=2 and nodd. The gap is computed by solving
numerically (1) in the Majorana representation with peri-
odic boundary conditions. Because the system lacks trans-
lational invariance, we compute the real-space local Chern

FIG. 2. Phase diagram showing the magnitude of the (a) gap in
units of JKz and (b) Chernmarker center valueC as a function of the
coupling JKz and the fraction of odd plaquettes nodd¼Nodd=Ntot.
The parameters satisfy JKx ¼ JKy ¼ ð1 − JKz Þ=2 and define a
vertical cut of the phase diagram of the crystalline Kitaev model
[vertical dashed line in triangle inset of (b)]. Taken together, (a) and
(b) indicate a chiral gapped spin-liquid phase with C ¼ 1 on the
lower right of the phase diagram. Both plots are calculated for a
Voronoi seed of size Lx ¼ Ly ¼ 30 (see main text), resulting in
∼1400 sites and ∼900 plaquettes. (c) and (d) show a JKz ¼ 0.3 cut
in the phase diagrams of (b) and (a), respectively, as a function of
system size [horizontal dashed line in (a) and (b)]. The vertical axis
values are computed from 20 disorder realizations for each w, by
binning the resulting nodd axis in 60 bins and taking the average
within each bin. The bin center gives the horizontal value nodd. The
standard deviations for each bin are shown as error bars. The
vertical dashed lines in (c) indicate the nodd after whichC is within
1% of the quantized value. The vertical dashed line in (d) indicates
the approximate nodd ≈ 0.4 after which the gap saturates. (e) Local
Chern marker [32] deep in the chiral spin-liquid phase, with a bulk
quantized value of C ¼ 1.
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marker [32,33,35] in the bulk of the system C of the
quadratic Majorana Hamiltonian corresponding to each
disorder realization, using the method of Refs. [34,35].
We focus on a line with JKx ¼ JKy and JKx þJKy þJKz ¼1,

which splits the triangle phase diagram in two [see inset of
Fig. 2(b)]. For large enough values of JKz (JKz ≳ 0.4), we
find that the ground state is gapped with C ¼ 0 for any
value of nodd. Below this threshold, two different phases are
possible depending on the value of nodd. When nodd ¼ 0,
the ground state of the Kitaev model is a gapless spin liquid.
As nodd increases, a chiral spin-liquid phase with C ¼ 1 for
the underlying Majorana fermions appears. This phase is
enabled by a finite density of odd plaquettes and it is unique
to adding structural disorder. Our calculation of the local
spin scalar chirality [36] confirms that time-reversal invari-
ance is broken locally around the odd plaquettes.
In Figs. 2(c) and 2(d), we fix JKz ¼ 0.3 and plot the

disorder-averaged bulk Chern marker C and the gap versus
nodd, respectively, for different system sizes. For all system
sizes, the gap in Fig. 2(d) shows a linear increase with nodd,
saturating around to a gap ≃0.03 above nodd ≃ 0.4. The
onset of the Chern marker quantization in Fig. 2(c) shifts to
smaller and smaller nodd as the system size is increased.
This is apparent by the shift of the vertical dashed lines,
which indicate the value of nodd above which the Chern
marker is quantized within 1%. For lower nodd, larger
system sizes are required to reach the thermodynamic limit
and thus to reach exact quantization of the Chern marker,
due to the smaller gap (larger correlation length).
Our results show that a very small critical density of odd

plaquettes ncodd ≲ 0.05 is sufficient to open a gap above the
spin-liquid ground state in the thermodynamic limit.
Numerically, it is challenging to determine whether ncodd
is zero or very small, and our results do not rule out a
zero ncodd. The accuracy of ncodd is limited by the diffi-
culty to access very small (≲0.05) values of nodd, since our
Voronoi procedure only leads to small variations of nodd at
small w.
Overall, our findings presented in Fig. 2 suggest that a

relatively low density of odd plaquettes is needed to turn a
honeycomb lattice Kitaev spin liquid into a chiral Kitaev
spin liquid. Such situation may be realized naturally in
amorphous versions of Kitaev honeycomb materials. For
example, amorphous graphene samples [31], whose crys-
talline phase is also hexagonal, shows regions of hexagons
coexisting with regions with odd plaquettes, mostly hepta-
gons and pentagons as in Fig. 1(b). It is thus likely that a
similar level of structural disorder can occur in amorphous
Kitaev materials.
A more controlled possibility is to create an amorphous

region that is above the 1=4 density threshold in an
otherwise trivial Kitaev material. Specifically, a focused-
ion beam can be used to amorphize a region of a given
sample, Fig. 3(a). Computing the local Chern marker,
Fig. 3(b), we observe that indeed the Chern number is

quantized to C ¼ −1 in the central region, indicating a
defect induced chiral spin-liquid phase.
In candidate Kitaev materials, the Kitaev interaction (1)

comes in addition to other spin interaction terms, predomi-
nantly the nearest-neighbor Heisenberg interaction [22]
(see also Refs. [23–26] and references within). This gives
rise to the Kitaev-Heisenberg Hamiltonian

Hkh ¼ JK
X
i;j;α

σαi σ
α
j þ JH

X
hiji

σi · σj; ð2Þ

where we have set JKx ¼ JKy ¼ JKz ¼ JK . Unlike the pure
Kitaev model (1), Eq. (2) does not map to a problem of
noninteracting Majorana fermions. The Kitaev-Heisenberg
phase diagram has been established on the honeycomb
lattice [37,38], showing that the Kitaev spin liquid is
surrounded by various phases with long-range order. We
can hope that the amorphous lattice will frustrate these
ordered phases, thus increasing the stability of the spin
liquid. In the absence of Heisenberg interactions (JH ¼ 0),
the amorphous ground state is a chiral spin liquid [30]
regardless of the sign of JK due to the particle-hole
symmetry of the Majorana Hamiltonian. We now investigate
its phase boundaries, and we leave the investigation of the
full Kitaev-Heisenberg phase diagram to future studies.
To determine the stability of the amorphous Kitaev spin

liquid, we use exact diagonalization of finite-size clusters
with up to 26 spins and periodic boundary conditions. As is
typical in the numerical studies of the Kitaev-Heisenberg
model pioneered in Ref. [37], we calculate the second
derivative of the ground state energy, whose singularities
indicate the position of the phase transitions. Our results,
summarized in Fig. 4, indicate that the stability of the
amorphous chiral spin liquid depends on the signs of JK ,
JH, and is either the same or somewhat smaller than the
stability of the honeycomb Kitaev spin liquid. In the case of
ferromagnetic Kitaev interactions (JK ¼ −1), we find that
the spin liquid is stable up to JH ≃�0.12. Similar to the
honeycomb geometry, the JK ¼ 1 spin liquid appears less

FIG. 3. Engineering a chiral spin liquid: (a) A focused-ion
beam can turn an crystal region into an amorphous solid. If the
underlying sample is a Kitaev spin-liquid candidate, this method
can turn the irradiated part of the system into a chiral spin liquid,
signaled by a finite local Chern marker (b). The couplings in (b)
are chosen to be JKx ¼ JKy ¼ JKz ¼ 1.
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stable, up to JH ≃�0.01. Yet, our JK ¼ 1 results are harder
to analyze due to larger finite-size effects. Indeed, different
amorphous realizations show qualitatively different behav-
iors, and the phase boundaries of the honeycomb lattice still
vary by a factor of 2 between the two largest system sizes
we have looked at (24 and 26 spins). Additional exact
diagonalization results, including results for 24 spins, are
presented the Supplemental Material [36].
We now focus on the ferromagnetic Kitaev regime

(JK ¼ −1), where our numerical results are more reliable.
Overall, the spin-liquid ground state appears similarly
robust to Heisenberg interactions in geometries as different
as the honeycomb and amorphous lattices. This is espe-
cially surprising since one ground state (honeycomb) is
gapless, while the other (amorphous) is gapped. Explaining
the quantitative value of JH=JK at the phase transition is a
challenging task beyond the scope of this Letter. Yet, we
note that for a large enough −JH, a ferromagnetic ground
state is expected irrespective of the lattice geometry, which
may explain some similarities. The situation is more subtle
for JH > 0, where the ground state has stripy long-range
order on the honeycomb lattice and cannot be easily
generalized to the amorphous lattice.
To gain insight into the amorphous ground state at

JH > 0, JK < 0 we focus on the Hamiltonian JH ¼
−JK=2, which admits an exact stripy ground state on the
honeycomb lattice. The Hamiltonian reads

HkhðJH ¼ −JK=2Þ ¼ JH
X
i;j

ð−σαi σαj þ σβi σ
β
j þ σγiσ

γ
jÞ: ð3Þ

On the honeycomb lattice, it is possible to apply a
site-dependent spin rotation σ → σ̃ such that the inter-
action becomes ferromagnetic on all bonds (Hkh ¼
−JH

P
hiji σ̃i · σ̃j) [39], leading to an exact ferromagnetic

ground state in the rotated basis (stripy in the original spin
basis). This rotation relies on the particular sequence of
bonds in the Kitaev honeycomb model and cannot be
consistently performed on a generic amorphous lattice.
We confirmed this intuition by checking the level spacing
statistics of Eq. (3)’s energy spectrum; we found that it
follows the Gaussian orthogonal ensemble distribution, as
expected for a time-reversal symmetric Hamiltonian with
no hidden conserved quantity [40]. Let us understand the
impossibility to transform Eq. (3) into a Heisenberg
Hamiltonian in the following. We start by picking a random
initial spin on the lattice. Applying the appropriate spin
rotation (flipping the sign of two out of three spin
components) onto neighboring spins, we obtain three
ferromagnetic bonds. The ferromagnetic tree can grow as
long as one does not form a cycle, where the consistency
cannot be guaranteed [41]. Neglecting the number of cycle-
closing bonds that are ferromagnetic by chance, the number
of ferromagnetic bonds is Ns − 1 (for a total of 3Ns=2
bonds). This result comes from a theorem of graph theory
[42], which states that connected graphs with Ns vertices
admit spanning trees (graphs with the same vertices as the
original lattice, but no cycle) with Ns − 1 edges. In the
thermodynamic limit, the fraction of nonferromagnetic
bonds is thus 1=3 at most. One possible variational state
for the amorphous ground state at JH ¼ −JK=2 may be a
superposition of the ferromagnetic (in the rotated basis)
states obtained for all possible trees of spin rotation (the
number of such trees is expected to be exponential in the
number of spins [43]).
Discussion.—Our work indicates that a chiral spin liquid

spontaneously emerges in the Kitaev model for a small
density of odd plaquettes. The resulting Majorana gap
increases steadily with the density of odd plaquettes and
reaches 75% of the saturating value (0.1J) at defect
densities found in amorphous solids (nodd ∼ 30%). Our
results indicate that a chiral spin liquid, detectable, for
instance, in thermal Hall conductance measurements
[44–47], could be realized in amorphous and polycrystal-
line samples with a sufficiently homogeneous distribution
of defects and threefold coordination. The latter is physi-
cally plausible, as the local site environments of amor-
phous, polycrystalline, and crystalline solids are dictated by
the same local chemical rules [1,31,33,48]. These obser-
vations may have physical relevance for Kitaev candidate
materials that can be grown amorphous, such as Li2IrO3

[21], and adds another element to the rich phenomenology
of the interplay of disorder and spin liquids [49–53].
Contrary to the naive expectation that amorphous lattices
may frustrate long-range order, we found that amorphicity
does not significantly change the stability of the Kitaev spin
liquid with respect to Heisenberg interactions.
Additionally, we also proposed to use a focused-ion

beam to add structural disorder the lattice. By locally
creating an amorphous region, this method can trigger the

FIG. 4. Phase boundaries of the amorphous Kitaev spin liquid
upon adding a Heisenberg term JH , for (a) JK ¼ 1 and
(b) JK ¼ −1, as probed by the second derivative of the ground
state energy d2E=dJ2H in a system of 26 spins (13 plaquettes). Four
random amorphous realizations are shown, with increasing num-
ber of odd plaquettes (4, 6, 8, and 10, in shades of blue), in
addition to the honeycomb system for the same system size (gray).
The phase transitions are signaled by a divergence of d2E=dJ2H.
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formation of a chiral spin-liquid phase, embedded in an
otherwise crystalline and topologically trivial lattice.
We have also checked that the amorphous version of the

decorated honeycomb has a chiral spin-liquid ground state.
However, since the ordered version also breaks time
reversal due the presence of the decorating triangles
[27], it is not surprising that the C ¼ 1 chiral spin liquid
survives amorphization. Once translational invariance is
lost, the decorated amorphous lattices are a subclass of
threefold coordinated amorphous lattices with a large
density of triangles.
As future avenues, investigating the topological transi-

tion as a function of domain size is worthy of further study.
Specifically, the critical nodd needed to form an amorphous
Chern insulator from a random collection of points [5,54]
motivates the study of the percolation transition [55] along
the lines of Ref. [54]. Additionally, the effect of bond
disorder should be considered when modeling realistic
materials, as different bond lengths will lead to different
spin interaction energy JK, JH. Previous studies in amor-
phous systems [11] suggest that gapped topological phases
in amorphous matter survive so long as the typical disorder
strength is not sufficiently strong to close the mobility gap,
a criterion similar to disordered, gapped crystalline
phases. We leave a detailed study of these questions for
future work.
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