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The annihilation of two intermediate-coupling renormalization-group (RG) fixed points is of interest in
diverse fields from statistical mechanics to high-energy physics, but has so far only been studied using
perturbative techniques. Here we present high-accuracy quantum Monte Carlo results for the SU(2)-
symmetric S ¼ 1=2 spin-boson (or Bose-Kondo) model. We study the model with a power-law bath
spectrum ∝ ωs where, in addition to a critical phase predicted by perturbative RG, a stable strong-coupling
phase is present. Using a detailed scaling analysis, we provide direct numerical evidence for the collision
and annihilation of two RG fixed points at s� ¼ 0.6540ð2Þ, causing the critical phase to disappear for
s < s�. In particular, we uncover a surprising duality between the two fixed points, corresponding to a
reflection symmetry of the RG beta function, which we utilize to make analytical predictions at strong
coupling which are in excellent agreement with numerics. Our work makes phenomena of fixed-point
annihilation accessible to large-scale simulations, and we comment on the consequences for impurity
moments in critical magnets.
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A comprehensive understanding of critical phenomena
requires one to unravel their underlying renormalization-
group (RG) structure. A scenario of current interest is the
collision and annihilation of two intermediate-coupling
fixed points as a function of an external parameter, such
as spatial dimension, as it leads to the breakdown of naive
perturbative predictions and to an unconventionally slow
RG flow close to the collision, associated with nontrivial
crossover phenomena [1]. Fixed-point collisions have been
discussed in a number of contexts using RG techniques,
including the Abelian Higgs model [2,3], the chiral phase
transition in quantum chromodynamics [1,4], the Q-state
Potts model [5], and deconfined criticality in quantum
magnets [6–8]. Detailed numerical studies are lacking,
however, partly because dimensionality cannot be tuned
continuously.
Dissipative quantum impurity models play a central role

in modern physics, with applications from fundamental
statistical mechanics to biological systems [9]. In con-
densed matter, they can serve as effective models for
magnetic moments in magnets [10,11], but also for

heavy-fermion metals described by extended dynamical
mean-field theory (EDMFT) [12,13] as well as non-Fermi-
liquid behavior in Sachdev-Ye-Kitaev-type (SYK-type)
models [14,15]. Already simple dissipative impurity mod-
els can show nontrivial quantum phase transitions [9,16],
and they have recently been proposed as platform to access
fixed-point annihilation numerically [17,18], but direct
evidence is missing.
It is the purpose of this Letter to close this gap. We utilize

a recently developed wormhole quantum Monte Carlo
(QMC) technique that enables us to simulate dissipative
quantum systems to far lower temperatures than previously
possible [19]. We study an SU(2)-symmetric three-
bath generalization of the S ¼ 1=2 spin-boson model
[10,11,20,21], with a gapless bath spectrum scaling as
ωs. For this model, we firmly establish the existence of both
critical and strong-coupling phases and obtain precise
values for the critical exponents at the associated transition.
The critical phase disappears from the phase diagram for
s < s� ¼ 0.6540ð2Þ due to a collision of RG fixed points.
Using a scaling analysis, we directly monitor this fixed-
point collision in an unprecedented manner. Most impor-
tantly, we find a remarkable duality between the stable and
unstable fixed points located at small and large intermediate
coupling, respectively. This enables us to draw conclusions
on the nature of the strong-coupling expansion and to
deduce exact results near s� even in the absence of a
small parameter. Our work paves the way to high-accuracy
studies of more complex dissipative quantum models and,
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for the first time, makes the fixed-point annihilation
accessible to large-scale simulations.
Model and phase diagram.—The standard spin-boson

model, where a spin-1=2 is subjected to a transverse field
and coupled to a single bosonic bath, features a quantum
phase transition between a delocalized and a localized
phase [22,23]. This transition obeys a quantum-to-classical
correspondence (QCC) [17,24,25], i.e., is in the same
universality class as the thermal phase transition of the
one-dimensional Ising model with 1=r1þs interactions [26].
Generalizations of the model to multiple baths have been
found to show more complex behavior. In particular, the
existence of a nonclassical critical phase has been pre-
dicted using perturbative RG and large-N techniques
[10,11,20,21]. For the two-bath case, extensive numerical
results have been obtained using matrix-product-state
(MPS) techniques [17,18]; they confirmed the absence
of QCC, but also signaled that the perturbative prediction
becomes invalid for small s where only a strong-coupling
phase was shown to exist. For the more relevant SU(2)-
symmetric three-bath case, high-accuracy results are lack-
ing, as established numerical methods such as MPS [17]
and Wilson’s numerical renormalization group [23,27]
become prohibitively expensive. Consequently, relatively
little precise information is available on the phases and
transitions of this model [28,29]. This is pressing since a
number of conclusions drawn in earlier work rely on
extrapolating the perturbative ϵ-expansion results to ϵ ¼
1 − s → 1 [10–13].
In this Letter, we consider this three-bath generalization

of the spin-boson model,

H ¼
X

i¼x;y;z

X

q

½λqiSiðB̂qi þ B̂†
qiÞ þ ωqB̂

†
qiB̂qi�: ð1Þ

Here, an S ¼ 1=2 spin S⃗ is coupled to three inde-
pendent bosonic baths, whose spectral densities JiðωÞ ¼
π
P

q λ
2
qiδðω − ωqÞ are of power-law form,

JiðωÞ ¼ 2παiω
1−s
c ωs; 0 < ω < ωc ¼ 1; ð2Þ

with ωc being a cutoff energy. The model (1) displays
nontrivial quantum dynamics even in the absence of an
additional external field: The noncommuting character of
the three spin components implies that the localization
tendencies induced by each bath compete. The αi measure
the dissipation strength, and we focus on the SU(2)-
symmetric case αi ≡ α.
Figure 1(a) displays the model’s quantitative phase

diagram obtained from our QMC simulations. For bath
exponents s� < s < 1, both critical (CR) and localized (L)
phases exist and are separated by a continuous quantum
phase transition. In contrast, for s > 1 the model is always
in a free-spin (F) phase, whereas for s < s� any finite
coupling drives the system into the L phase. This L phase

exhibits spontaneous breaking of the SU(2) symmetry,
whereas the F phase features an asymptotically free spin.
Finally, the CR phase is characterized by fractional power-
law spin correlations [10,11,14], χiðωÞ ∝ ω−x where
χiðτÞ ¼ hSiðτÞSið0Þi∼1=τ1−x.
Perturbative RG and fixed-point collision.—Before we

discuss the details of our numerical results, we review what
is known about the fixed-point structure from weak-
coupling perturbative RG [11,30]. The impurity–bath
coupling is marginal at s ¼ 1, and expanding about the
α ¼ 0 free-spin fixed point results in the two-loop beta
function [30,31],

βðαÞ≡ dα
d ln μ

¼ −ð1 − sÞαþ 4α2 − 8α3; ð3Þ

where μ is the RG reference scale. From this beta function,
one deduces the existence of an infrared-stable fixed point
for s < 1, located at

α�CR ¼ 1 − s
4

þ ð1 − sÞ2
8

þO½ð1 − sÞ3�; ð4Þ

this is the CR fixed point corresponding to the CR phase. Its
properties can be obtained in a double expansion in α and
(1 − s). The power-law spin autocorrelations are charac-
terized by the exponent x, and x ¼ s is an exact result
following from the diagrammatic structure of the suscep-
tibility [11,30].
The two-loop beta function in Eq. (3) does display two

nontrivial fixed points at α�1;2 ¼ 1
4
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ð1 − sÞp �,
with α�2 being the stable CR fixed point of Eq. (4), and
α�1 being infrared unstable. These two fixed points approach
each other upon decreasing s from unity, such that they

(a) (b)

FIG. 1. (a) Phase diagram as a function of the bath exponent s
and the spin-boson coupling α. The line of second-order quantum
phase transitions (red) between the CR and L phases terminates
at the point ðs�; α�dÞ, such that the CR phase disappears for
s < s�; for details see text. (b) Local moment m2

loc ¼
limβ→∞hSxðβ=2ÞSxð0Þi for different α. We only show data that
are converged in temperature. For each α, the corresponding
horizontal line in the lower right corner marks the onset of the CR
phase where m2

loc ¼ 0 for s > sðαQCÞ. The dashed line corre-
sponds to m2

locðα → ∞Þ ¼ S2=3 ¼ 1=12.
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collide as s → s�;þ, with s� ¼ 1=2 from (3). Although α�1 is
outside the regime of validity of the epsilon expansion, the
comparison with numerics suggests to identify α�1 with the
quantum critical (QC) fixed point controlling the transition
between the CR and L phases.
The resulting schematic RG flow is depicted in Fig. 2:

Two intermediate-coupling fixed points exist for s� <
s < 1, while they disappear for s < s� leaving only run-
away flow to strong coupling. As we show below, our
numerical results not only prove this picture to be correct
but also indicate a surprising duality between the CR and
QC fixed points; below, we will use this duality with
Eqs. (3) and (4) to make analytical predictions at strong
coupling.
QMC method.—For our simulations, we used an exact

QMC method with global wormhole updates [19] that
samples a diagrammatic expansion of the partition function
in the retarded spin interaction [32], originating from
tracing out the bosonic bath in Eq. (1) analytically. A
detailed description of our method can be found in
Ref. [19].
QMC results.—To determine the phase diagram in

Fig. 1(a), we calculate the dynamical spin susceptibility
χxðiΩnÞ ¼

R β
0 dτ eiΩnτhSxðτÞSxð0Þi from the imaginary-

time spin correlations in the x direction. Here, Ωn ¼
2πn=β, n ∈ Z, are the bosonic Matsubara frequencies
and β ¼ 1=T is the inverse temperature. The different
phases in Fig. 1(a) can be identified from the low-temper-
ature behavior of the static susceptibility χx ≡ χxðiΩ0Þ: At
α ¼ 0, χxðTÞ ¼ 1=ð4TÞ. In the F and L phases, χxðTÞ ¼
m2

loc=T follows a Curie law as T → 0 with a reduced but
finite local moment; the latter is determined as m2

loc ¼
limβ→∞hSxðβ=2ÞSxð0Þi and shown in Fig. 1(b). We find
that m2

locðs → 0Þ approaches the strong-coupling result
m2

locðα → ∞Þ ¼ S2=3 ¼ 1=12 of the L phase independent
of α; this is the local moment of a classical spin. In the CR
phase, m2

loc ¼ 0 and χxðTÞ ∝ T−s. For further details, see
the Supplemental Material [33].
For a quantitative analysis of criticality, we consider the

correlation length along the imaginary-time axis (correla-
tion time), ξx ¼ ð1=Ω1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χxðiΩ0Þ=χxðiΩ1Þ − 1

p
. In analogy

to the definition of the spatial correlation length [33,37], we
identify the inverse temperature β with the system size in
the imaginary-time direction and the Matsubara frequency
Ω0 with the ordering vector [note that the lowest Matsubara
frequencies determine the long-time decay of χxðτÞ].
Figure 3(a) depicts ξx=β as a function of α for s ¼ 0.75

and different temperatures. We find that ξx=β diverges in
the L phase, but remains finite in the CR phase. Because
ξx=β becomes an RG-invariant quantity at the fixed points
of the beta function, we can identify the two sharp crossings
observed in the insets of Fig. 3(a) with the corresponding
fixed-point couplings αCR and αQC. Moreover, Fig. 3(b)
demonstrates that ξx=β fulfills the scaling ansatz

ξx=β ¼ fðβ1=νðα − αQCÞÞ ð5Þ

near the critical coupling αQC. Here, ν is the correlation-
length exponent and f is a universal function. We observe a
clear data collapse over many orders of magnitude in the
energy scale T=jα − αQCjν and for temperatures T=ωc≲
10−3. Details on how we estimate αCR, αQC, and ν are
provided in the Supplemental Material [33].
Figure 4 shows the critical exponents as a function of s.

The correlation-length exponent ν estimated from Eq. (5)
diverges for both s → 1 and s → s� [see Fig. 4(a)] and the
leading behavior is consistent with the predictions (8) and
(9) derived below. As demonstrated in the Supplemental
Material [33], the remaining exponents are completely

(a) (b)

FIG. 2. Schematic RG flow for (a) 0 < s < s� and
(b) s� < s < 1.

(a)

(b)

FIG. 3. (a) Correlation length ξx=β as a function of α for different
temperatures and s ¼ 0.75. The insets show close-ups of the
crossings near the CR and QC fixed points. (b) Data collapse for
ξx=β near the QC fixed point. The inset shows a detailed view of
the critical region. Finite-size scaling yields 1=ν ¼ 0.192ð2Þ [33].
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determined by hyperscaling relations. Close to criticality,
the local moment fulfills mloc ∝ ðα − αQCÞβ0 . The magneti-
zation exponent β0 is summarized in Fig. 4(b); it approaches
β0 ≈ 1=2 for s → 1, but diverges for s → s�. This diver-
gence results from the fixed-point collision and leads to an
extremely slow RG flow for intermediate α and s ∼ s� [1].
In particular, the order parameter mloc is exponentially
suppressed [33] in the region α < α�d and s≲ s� in
Fig. 1(b), such that a naive extrapolation of m2

loc to zero
would significantly underestimate s�. This is likely the
reason why the value of s� as estimated in Ref. [29]
significantly deviates from ours. We also note that such a
fixed-point collision is not present in any of the relevant
classical spin models, hence QCC is violated for the model
under consideration.
Figure 5(a) shows the evolution of αCR and αQC as a

function of (1 − s). For small (1 − s), the former closely
follows the RG prediction (4), whereas the latter diverges
proportional to 1=ð1 − sÞ. Remarkably, the evolution of
αCR and αQC as a function of (1 − s) is almost symmetric in
lnðαÞ until they coalesce at ðs�;α�dÞ. The fixed-point
collision appears at s� ¼ 0.6540ð2Þ and α�d ¼ 0.317ð1Þ,
which we estimate from a quadratic fit in lnðαÞ, as shown in
Fig. 5(b). As a function of s, the product αCR × αQC in
Fig. 5(c) varies by around 10%, which is approximately
constant considering that each coupling varies over several
orders of magnitude.
Duality.—The data in Fig. 5 show that the two zeros of

the (exact) beta function are located symmetrically with
respect to lnðα�dÞ for all s to very good accuracy, hence
αQC=α�d ¼ α�d=αCR. We conjecture that this symmetry is
obeyed by the full beta function, ð1=αÞβðαÞ ¼ β̃ðα=α�dÞ
with β̃ðxÞ ¼ β̃ð1=xÞ, see Fig. 6. This implies a duality
between the two fixed-point theories which we discuss in
the following.
First, the properties of QC near s ¼ 1 can be deduced

from the dual of the weak-coupling expansion (3); we note

that a suitable field theory for that is not known.
Introducing ᾱ≡ α�d

2=α, we have by duality

βðᾱÞ ¼ ð1 − sÞᾱ − 4ᾱ2 þ 8ᾱ3; ð6Þ
where the sign change compared to (3) arises from
d ln α=d ln μ ¼ −d lnð1=αÞ=d ln μ. The QC fixed point is
then located at

ᾱ�QC ¼ 1 − s
4

þ ð1 − sÞ2
8

þO½ð1 − sÞ3�; ð7Þ

and its correlation-length exponent is obtained from
expanding βðᾱÞ about ᾱ�QC, resulting in

1=ν ¼ 1 − s −
ð1 − sÞ2

2
þO½ð1 − sÞ3�: ð8Þ

Second, to study the fixed-point annihilation at s�,
we expand the beta function near α�d as βðαÞ ¼ AðsÞ −
BðsÞln2ðα=α�dÞ [1], with AðsÞ ¼ A1ðs − s�Þ and BðsÞ ¼
B0ðs�Þ þ B1ðs − s�Þ. This yields the locations of the two

(a) (b)

FIG. 4. (a) Inverse correlation-length exponent 1=ν associated
with the QC fixed point as a function of s. ν diverges for both
s → 1 and s → s�. The dashed lines show the predictions (8) and
(9) based on fixed-point duality; for the latter, we fitffiffiffiffiffiffiffiffiffiffiffi
A1B0

p ¼ 0.72ð2Þ. (b) Magnetization exponent β0 calculated
from 1=ν via the hyperscaling relation β0=ν ¼ ð1 − sÞ=2.

(b)

(c)

(a)

FIG. 5. Fixed-point duality. (a) Location of the two intermedi-
ate-coupling fixed points CR and QC, as determined from
crossing points of Tsχx [33], as a function of the bath exponent
s. The black dashed line indicates the prediction (4) of the
perturbative RG for αCR. (b) Close to s�, the fixed-point collision
is well approximated by s ¼ s� þ ðB0=A1Þln2ðα=α�dÞ from which
we extract s� ¼ 0.6540ð2Þ, α�d ¼ 0.317ð1Þ where the fixed points
disappear, and A1=B0 ¼ 17.7ð2Þ. (c) Product of the two fixed-
point couplings as a function of s: This is approximately constant
despite the couplings varying over several orders of magnitude.

(a) (b) (c)

FIG. 6. (a) Weak-coupling and (b) its dual strong-coupling beta
function, as in Eqs. (3) and (6). (c) Reflection symmetry of
β̃ðln αÞ around α�d. The zeros of βðαÞ disappear for s < s�.
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fixed points as � lnðα�=α�dÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A1=B0

p ffiffiffiffiffiffiffiffiffiffiffiffi
s − s�

p
and the

correlation-length exponent of QC as

1=ν ¼
ffiffiffiffiffiffiffiffiffiffiffi
A1B0

p ffiffiffiffiffiffiffiffiffiffiffiffi
s − s�

p
: ð9Þ

Both predictions (8) and (9) are in good agreement with the
QMC data in Fig. 4.
While Eq. (9) generically applies near a fixed-point

collision, Eqs. (7) and (8) rely on the conjectured mirror
symmetry of the beta function. Our numerics indicate that
this symmetry is not exact, hence the weak- and strong-
coupling expansions possibly differ in higher loop orders.
Impurities in quantum critical magnets.—Previous work

[10,11] on magnetic impurities in quantum critical magnets
in d ¼ 3 − ϵ space dimensions—a problem closely related
to the three-bath spin-boson model—employed a weak-
coupling expansion similar to that in Eq. (3), with the
difference that interactions among the bath bosons are
RG relevant for d < 3. The physically most interesting
case of d ¼ 2 corresponds to a bath exponent of s ¼ 0.
References [10,11] assumed continuity from small ϵ ¼
1 − s to ϵ ¼ 1, and numerical results have been interpreted
in terms of the CR fixed point [38]. Given that this
continuity does not hold for the noninteracting bath case
studied here, the present results raise the interesting
question whether a strong-coupling phase also occurs for
the impurity-in-a-magnet problem and, if yes, what its
properties are.
Relatedly, conclusions which were drawn from ϵ or

large-N expansion results for quantum critical lattice
models in the framework of EDMFT [12,13,29] need to
be revisited.
Conclusions.—Using high-accuracy QMC simulations,

we have determined the phase diagram and critical proper-
ties of the SU(2)-symmetric spin-boson model. For the first
time, we were able to extract the location of both inter-
mediate-coupling fixed points using a scaling analysis and
to monitor their collision and subsequent annihilation as a
function of the bath exponent s. The fixed points display a
remarkable duality, which we have utilized to deduce
analytical results at strong coupling; we hope that future
studies will give further insight into this novel duality
relation. Our results illustrate the power of the QMC
algorithm of Ref. [19], which makes the analysis of
unconventionally slow RG flow near the collision [1]
accessible to future numerical studies. In the context of
SYK models, it has been suggested that the localized phase
of the single-impurity problem triggers the existence of an
SYK spin-glass state [15]; the role of the fixed-point
annihilation is an interesting open problem.

We thank F. Parisen Toldin for helpful discussions. This
work has been supported by the Deutsche Forschungsge-
meinschaft through the Würzburg-Dresden Cluster of
Excellence on Complexity and Topology in Quantum

Matter—ct.qmat (EXC 2147, Project No. 390858490)
and SFB 1143 on Correlated Magnetism (Project
No. 247310070).

Note added.—Recently, we became aware of Refs. [39–41]
in which the fixed-point annihilation is studied analytically
in the large-S limit. These results indicate that the duality
relation of the beta function becomes exact for S → ∞, but
this is not discussed in Refs. [39–41].
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