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We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum
impurity models. Rather than propagating an initial state to long times, the method is directly formulated in
the steady state. This eliminates any need to traverse the transient dynamics and grants access to a much
larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on
equilibrium Green’s functions of quantum dots in the noninteracting limit and in the unitary limit of the
Kondo regime. We then consider correlated materials described with dynamical mean field theory and
driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a
bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven

quantum dots.
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Introduction.—Nonequilibrium driving can have pro-
found effects on strongly correlated materials. Experi-
mental probes have revealed intricate phenomena ranging
from electrically induced metal-insulator transitions [1-8]
to metastable nonequilibrium states [9-12] and driven
superconductivity [13-16]. The rich variety of electronic
phases and their sensitive dependence on external fields
makes the physics of driven correlated electron systems a
promising basis for next-generation nanoscale electronics
[17]. The theoretical description of such physics, however,
remains a challenging task.

To study a strongly correlated system out of equilibrium,
one may expose it to short external stimuli or quenches, after
which time propagation can be probed. This is the guiding
principle for pump-probe approaches [13,18-25]. Another
strategy is driving the correlated material into a time-
independent nonequilibrium steady state, e.g., by applying
an external bias voltage or temperature gradient. This is the
approach taken in transport experiments [3,26-31].

Theoretical methodologies for the accurate description
of transport experiments should ideally (i) be able to
describe all aspects of correlation physics without intro-
ducing spurious artifacts and (ii) be able to access the
steady state. The development of numerically exact meth-
ods that meet these requirements is an active field of
research [32-38]. Successful approaches have so far relied
on time propagation from a tractable initial state [36-38].
This strategy may become challenging when targeting
strongly correlated steady states, where coherence times
can be orders of magnitude longer than the intrinsic
timescales in the electronic Hamiltonian [39-41]. Since
most numerically exact methods face an exponential
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scaling of computational cost with simulation time [42—
50], numerically exact simulations of steady states for
correlated systems are often prohibitively expensive.

In this Letter, we present a numerically exact algorithm,
applicable to strongly correlated systems, that provides
direct access to the nonequilibrium steady state of quantum
impurity models without propagation from an initial
state. The method is based on the inchworm quantum
Monte Carlo IQMC) method [51] and enables the inves-
tigation of steady states forming at timescales that are
orders of magnitude longer than what is accessible by
techniques based on direct time propagation.

We use the equilibrium Anderson impurity model to
benchmark our method against analytical limits and state-
of-the-art numerical methods. We then apply our method to
correlated materials within the equilibrium dynamical
mean-field theory (DMFT) framework [52], demonstrating
that it can be used to obtain real frequency spectra without
the need for analytical continuation [53,54]. Using non-
equilibrium DMFT [55-57], we finally consider a strongly
correlated material placed between two metallic leads and
subjected to a bias voltage [56,58]. This setup bears
resemblance to a quantum dot driven by a bias voltage,
as considered by Meir et al. [59], where it was shown that
the Kondo peak or Abrikosov-Suhl resonance can be split
by the voltage [60-69]. We investigate the effect of non-
equilibrium driving on the quasiparticle peak, which is the
lattice counterpart of the Kondo effect in the strongly
correlated metallic regime. There, we show that an analo-
gous—though, intriguingly, more subtle—splitting occurs.

Inchworm Monte Carlo method in the steady state.—
Consider a quantum impurity model described by the
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Hamiltonian H = H; 4+ Hp + H,p, consisting of an inter-
acting impurity H;, a noninteracting bath Hp, and the
coupling or hybridization between them H;z. The central
object of our method is the restricted propagator between
two times on opposite branches of the Keldysh contour,
®(1.1) = Trp{pylale’™|B) (Bl |a)}. Here, a and p
are states in the impurity subspace, and a is the impurity’s
initial condition. pp is the initial bath density matrix and
Trp denotes a trace over the bath degrees of freedom. A
detailed discussion of these propagators is given in
Refs. [66,70].

We calculate the restricted propagators using an expan-
sion in the impurity-bath hybridization H;g. The resulting

high-dimensional integral expression for d)g(t, t') can be
evaluated by means of Monte Carlo methods [71-74].
A direct summation of all contributions results in the
dynamical sign problem, an exponential growth in the
required computational resources with simulation time
[40,66,71,72,75-77] that effectively limits this approach
to short times. The dynamical sign problem can often be
overcome by the IQMC method [51,78-82]. Instead of
calculating the restricted propagator directly, the IQMC
method makes optimal use of the information incorporated
in short-time dynamics to construct more efficient expan-
sions for longer times. However, as the IQMC method
requires knowledge of restricted propagators at all previous
times, the algorithm scales at least quadratically with
simulation time.

For the purpose of this Letter, the established two-time
IQMC scheme can be considered to be a map Fj,,, from
the set of known restricted propagators up to the times
and 1,, to the restricted propagator at (slightly) larger times
t and ¢, with ¢; <t and t, <. This can be written as
follows:

Fien: {@6(z.7)e < 11,7 <1y} = @%(1,7). (1)

As the map Fj,q, is expressed in terms of known propa-
gators, only a subclass of the summands that would appear
in a bare hybridization expansion need to be included;
these contributions are referred to as inchworm proper
[51,79,80]. We have reproduced the detailed derivation for
this map Fj,., together with a diagrammatic representation
in the Supplemental Material [83]. The IQMC method uses
the map F,,, to propagate the restricted propagator
forward in time, sequentially increasing each of ¢ and 7
in a set of small steps until both are sufficiently large [51].

For the steady state, the propagator becomes character-
ized by two simplifying conditions. It is (i) independent of
the impurity’s initial condition « and (ii) invariant to
propagation in the direction f,¢ — t+ At, ¢ + At, or,
equivalently, dependent only on the time difference t — 7
rather than on the explicit values of r and 7. We use these
facts to formulate an IQMC method directly in the steady
state, by explicitly seeking a solution of the form

@)(t,/) = ®P(1— ). From the previous discussion, it
follows that a steady-state ®” (¢ — ¢') must be a fixed point
of the IQMC procedure:

Finen: {®F(1 1)} » (1 —7). (2)

Thatis, given the exact propagator at a// time differences, the
IQMC method will generate the same propagator at each
time difference. We use this property as a self-consistency
condition. The construction of the IQMC map Fj,q,, the
associated diagrammatic representation, and the notion of
inchworm proper diagrams remain identical to the time-
dependent IQMC scheme [51,78,79], which is outlined in
the Supplemental Material [83]. Note that the self-consis-
tency condition we described exists within the IQMC
method, but not within the bare hybridization expansion
[71-74], because in the IQMC method the restricted
propagator for a given time is expressed in terms of restricted
propagators at previous times.

In practice, we start the self-consistency cycle from some
initial guess for ®’(¢ — ') (we used a low-order perturba-
tive result) and iterate Eq. (2) until the last two results are
indistinguishable to within some tolerance. We have
included further details, an explicit example for this self-
consistent cycle, and a discussion on the numerical scaling
in the Supplemental Material [83].

Once ®’(t—1) is known, the steady-state Green’s
functions (GFs) are obtained from existing techniques
[66,78]. In particular, we calculate the retarded steady-state
GF, G!_ (A1) = —i@(At)(dﬁ(At)dZ,(O) + dj;,(O)dﬁ(At)).
The spectral function is then given by the Fourier transform
of the retarded GF, A, (¢) = —Im{G’ ,(e)}.

Anderson impurity model—We present results for the
Anderson impurity model, H; =", eydyd, + U d; dy dI dy,
HB = Zo’k eka}[o—ako'? and HIB = Zl Zkel Zn‘(vkaladﬂ—f—
H.c.). Here, ¢, is the on-site energy on the impurity and U
is the Coulomb interaction strength. d,; and d, respectively,
are annihilation and creation operators with spinc€ {1, | }
on the dot. a;, and azg are their counterparts on the bath
orbitals with energy €. The dot-bath coupling for bath # is
characterized by the coupling strength function I'y(e) =
27> e |Vi|?6(e — €;). T'o(€) is used to model either leads
or an effective DMFT bath, each of which is initially at
equilibrium [56]. Applying different chemical potentials y,
to different leads £ generates nonequilibrium steady states.
As we only consider spin-independent cases, spin indices
will be suppressed henceforth.

Benchmark I: Resonant level model.—We consider the
noninteracting limit U = ¢, = 0 at equilibrium coupled to
a single bath. While this system is exactly solvable and the
underlying physics is well established [84,85], it is a
challenging benchmark for hybridization expansions.
Figure 1 shows the retarded GF and the spectral function
obtained from the steady-state IQMC method at different
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FIG. 1. Resonant level model. Steady-state retarded GF in real

time and spectral function in real frequency (inset). Parameters
are ¢y = U = 0 at temperature 7 = I', with the impurity coupled
to a single, flat bath with bandwidth @, = 1.5I" and cutoff width
1/n=T: T(e) =T/[(1 + enlle=m-d)(1 4 elle=m+ecd)]  and
1 =0. The IQMC scheme converges at order 4 (6) for the
propagator (GF).

orders, together with the analytic result. The noncrossing
approximation (NCA) and one-crossing approximation
(OCA) represent the lowest and next-to-lowest order
truncation of the inchworm hybridization expansion
[66,86-91]. When beyond-OCA diagrams are added, the
propagator (not shown) stabilizes at fourth order, in the
sense that including higher orders does not alter the results
within the Monte Carlo error. In the same sense, the GFs
stabilize at sixth order. The data are consistent with the
exact result to within the Monte Carlo error. A time-
dependent IQMC calculation [51,92] using the same
numerical parameters would have a computational cost
approximately ~1000 times larger, not including the time
needed to overcome the transient dynamics from a known
initial state.

Benchmarks II: Kondo regime.—Providing an accurate
description of Kondo physics is a paradigmatic benchmark
for methods applicable to correlated systems. In Fig. 2, we
consider parameters that were recently studied using two
state-of-the-art algorithms: the quantum quasi-Monte Carlo
(QQMC) [93,94] and the fork tensor product state (FTPS)
[95] methods. We compare the spectral function of the
Anderson impurity model in the Kondo regime, as calcu-
lated by the steady-state IQMC method, to the QQMC data
provided in Ref. [93] and validated there against the FTPS
method. With our implementation, the computational cost
for the steady-state IQMC result is ~10000 core hours.
While this might be a daunting number for many types of
numerical methods, the fact that Monte Carlo simulations
are extremely parallelizable makes it entirely manageable
and is a crucial element in their appeal. The agreement
between the data is very good, yet the principles underlying
the two methods are very different: QQMC is an interaction
expansion while IQMC is a hybridization expansion; and
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FIG. 2. Steady-state spectral function in the Kondo regime. The

bath consists of a single semielliptic band I'(¢) = £ VA — ¢ at
u =0, where |¢] <A, with A= 11.476". Parameters are
particle-hole symmetric with U = —2¢, = 8T, the temperature
is T = 107®T". The IQMC scheme converges at order 15 (9) for
the propagator (GF). QQMC data are extracted from Ref. [93].
Inset: low energies and Kondo resonance.

the IQMC method entails fewer assumptions regarding the
analytical structure of the problem and the properties of the
integrand characterizing the expansion. The spectral func-
tion exhibits a sharp Kondo peak at the Fermi level and
two Hubbard bands centered around e ~+U /2. Within
Monte Carlo errors, the IQMC data reproduce the Friedel
sum rule Im{G”(e = 0)] = —1/I" [96] and resolve the low
energy frequency dependence well (see inset of Fig. 2).
These features and the associated physical interpretation as
well as the temperature dependence of the Kondo reso-
nance are discussed in the literature [96-98]. In contrast,
while the NCA and OCA capture the main features, they
fail to provide quantitative results, especially at low
energies.

Equilibrium DMFT.—Interacting lattice models can be
mapped self-consistently onto effective impurity models
with DMFT [52,56,99,100]. The method is in general
approximate, but becomes exact for the infinite co-
ordination number Bethe lattice [52]. In order to contrast
the spectral features of an impurity with that of a correlated
material, we consider three different scenarios: (i) an
impurity coupled to two noninteracting leads, (ii) an
isolated Bethe lattice in the infinite coordination number
limit, describing a correlated material in equilibrium
[101-103], and (iii) an infinite-coordination Bethe lattice
coupled to two noninteracting leads, describing a correlated
material in a junction [56,58,104,105]. Additional details
on the simulation setup for these scenarios are provided in
the Supplemental Material [83].

Figure 3 presents IQMC results for the equilibrium
spectral functions for these three scenarios at different
temperatures. The computational cost for the steady-state
IQMC result ranges from ~1000 core hours per DMFT
iteration for higher temperatures to ~10000 core hours per
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FIG. 3. Interacting local equilibrium spectral function at differ-

ent temperatures for an impurity coupled to leads (top), an isolated
correlated material (bottom), and a correlated material coupled to
leads (middle). The material is modeled as an infinite-dimensional
Bethe lattice with intersite hopping v, which we use as the over-
all energy scale; other parameters are U = —2¢, = 4.6v. The
leads are parametrized by wide, flat bands with smooth cut-
offs: Ty (e) = T'/[(1 + ellemmel=ecl)(1 4 elle=ne)toc)] with T =
0.125v,n = 10/v, 0. = 10v,u, = 0,and ¢ € {L, R}.To estimate
the error, we plot the average and the standard deviation of three
consecutive DMFT iterations (middle and bottom panel), where
typical errors are of the size 3 x 1072 /v.

DMEFT iteration for the correlated regime. The equilibrium
behavior of scenarios (i) and (ii) is well established
[52,57,96-99] and serves to rationalize the behavior of
system (iii). All three systems exhibit a coherence peak at
the Fermi energy at low temperatures, and two Hubbard
bands centered around € ~ £U/2. In all cases, increasing
the temperature results in the melting of the coherence peak
and a redistribution of its spectral weight to higher energies.
In the impurity case (top panel), features are sharpened by a
relatively weak coupling to the leads. In the isolated lattice
(bottom panel), features are more rounded, but the band
edge is sharper. This case is analogous to standard (usually
imaginary time) DMFT calculations, and we have validated
our results against numerically exact imaginary-time
Monte Carlo data (not shown) [106]. Finally, the lattice
coupled to a junction exhibits the most pronounced
correlation effect, since the effective impurity couples to
both the correlated lattice and the leads, and as a result has a
higher Kondo temperature [96]. Its dependence on temper-
ature can be explained based on this increased coupling.
Nonegquilibrium  DMFT.—The infinite-coordination
Bethe lattice coupled to leads can be driven away from
equilibrium by applying a bias voltage ¢ = pu; — pg

1of ————
I — ¢ =0.5v
E 0.8 — ¢p=1v
= i — ¢ =2v
= 0.6 — $=3u
g ¢ = 4v
- 04
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FIG. 4. Nonequilibrium spectral function for a correlated
material in a junction for different bias voltages ¢b. The parameters
are as in the middle panel of Fig. 3, with temperature 7 = v/100.
The average and the standard deviation of three consecutive
DMFT iterations are shown to provide an error estimate, where
typical errors are of the size 3 x 1072 /v. Inset: derivative of the
spectral function with respect to energy. Vertical dashed lines show
value of the chemical potential in the right lead.

between the two leads, making them an electronic junction.
We apply a symmetric bias voltage, y; = —pg. The model
remains exactly solvable by way of nonequilibrium DMFT
[55-57]. Previous studies of similar systems were restricted
to approximate impurity solvers [58,104,105,107,108].
Figure 4 shows the spectral function at different bias
voltages ¢, with ¢ = 0 corresponding to the equilibrium
case in Fig. 3. At low bias ¢ < 1v, we observe a shrinking
of the quasiparticle peak and a formation of a plateau
centered around ¢ = 0, with its width determined by ¢;
peaks in the derivative of the spectral function with respect
to energy appear at € ~ u; /g (see inset in Fig. 4). At higher
bias, ¢ = 2v, the peak splits into two short peaks centered at
€ = py g, Which are narrower than half the width of the
plateau. The splitting is as one would expect in quantum dot
junctions [59,62-66,69,109-113]. The formation of the
plateau at intermediate values of ¢ indicates that the
correlated material stabilizes its equivalent of the Kondo
resonance and pins it to the equilibrium chemical potential,
a mechanism not present in quantum dot junctions. We note
that the plateau formation is not visible in low-order
calculations like the NCA (data not shown). We speculate
that it results from the interplay between several correlation
features: two correlation peaks pinned to the changing
chemical potentials of the leads, and a central peak
remaining at energy zero and associated with Kondo
physics within the Bethe lattice. The latter is suppressed
when the bias voltage is increased, due to reduced
hybridization at zero energy when the other two peaks
are shifted, as well as an increased effective temperature in
the lattice. This eventually destroys the plateau at high
enough bias. To our knowledge, the plateau effect has not
been previously predicted, and obtaining a full theoretical
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understanding of its mechanism remains an open challenge.
As we find this effect in a model where each lattice site is
coupled to its neighbors and to two leads, we expect that the
plateau effect is observable in experiments where this setup
is essentially realized. We hypothesize that the plateau
effect can be observed in transport measurements on quasi-
two-dimensional or thin-film correlated materials [3,114],
layered moiré systems [115,116], and multiple-quantum-
dot systems out of equilibrium [117-119]. The correspond-
ing findings will be indicative for the behavior and the
interplay of different correlation effects in nonequilibrium.

Conclusion.—We presented a Monte Carlo method for
quantum impurity models that is formulated directly in the
steady state and is applicable in and out of equilibrium. The
method, which is based on the inchworm hybridization
expansion, can be used to describe transport through
quantum dot junctions directly, and strongly correlated
materials by way of the DMFT. Our formulation utilizes the
fact that the two-time structure of restricted propagators on
the Keldysh contour can be reduced to a time-difference
representation in the steady state, which enables their
evaluation at a computational cost that is expected to scale
linearly with the coherence time of the system. The scheme
then provides a self-consistency condition for the restricted
propagators, which is solved iteratively. We implemented
and benchmarked the method for the Anderson impurity
model and showed that it can be used to describe a strongly
correlated material using DMFT, providing real frequency
data without resorting to analytical continuation. We then
investigated a correlated material in a junction between two
metallic leads and driven out of equilibrium by a bias
voltage. We found a bias-induced splitting of the quasi-
particle peak, which occurs at higher voltages than one
might expect from our understanding of transport through
quantum dots, and which is preceded by the formation of a
spectral plateau. Our method promises to enable the
numerically exact treatment of a wide variety of problems
spanning quantum transport, equilibrium materials science,
and novel types of strongly correlated nonequilibrium
effects that are of experimental interest.
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