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The Heisenberg limit to laser coherence C—the number of photons in the maximally populated mode of
the laser beam—is the fourth power of the number of excitations inside the laser. We generalize the
previous proof of this upper bound scaling by dropping the requirement that the beam photon statistics be
Poissonian (i.e., Mandel’s Q ¼ 0). We then show that the relation between C and sub-Poissonianity
(Q < 0) is win-win, not a tradeoff. For both regular (non-Markovian) pumping with semiunitary gain
(which allows Q → −1), and random (Markovian) pumping with optimized gain, C is maximized when Q
is minimized.
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Introduction.—The characteristic ability of a laser to
produce optical fields with a high degree of coherence has
led to their widespread application in precision technology.
This is especially true in the quantum regime, as the ability
to access such fields has directly permitted quantum optics
to flourish [1–5], paving the way for the advent of quantum
technology [6,7]. This defining feature of coherence can be
quantified for a continuous-wave laser by C, the mean
number of photons in a maximally populated mode of the
beam [8]. For a laser, unlike other light sources, this
number will typically be enormous, and may be far greater
than the number of excitations stored inside the laser itself.
Considering a laser beam with “ideal” properties—being
describable by a coherent state undergoing pure phase
diffusion [9–11]—C can be intuitively expressed in terms
of the photon flux from the laser, N , and its linewidth, l,
as C ¼ 4N =l.
The foundations of laser theory was the derivation, by

Schawlow and Townes, of the laser linewidth, l [12]. This
formula sets a bound on l, and hence C in terms of an
energy resource, namely, CSTL ¼ Θðμ2Þ [13]. Here, μ is the
mean number of total coherent excitations within the laser
(including photons, atomic excitations, excitons, etc). This
limit was long thought to have been an absolute limit, but
recent works have shown that this may be greatly surpassed
[8,14]. In particular, the authors of Ref. [8] considered the
Heisenberg limit (HL) for C, that is, the ultimate achievable
limit that is imposed by quantum mechanics, rather than by
standard technologies. They proved rigorously, under some
natural conditions, that the HL is

CHL ¼ Θðμ4Þ: ð1Þ

These conditions conceive of a laser as a device that
produces an output closely approximating an ideal laser
beam without restricting the processes by which it achieves
this, other than that the phase of the beam proceeds only

from the phase of the excitations stored within the device.
The key to attaining this quadratic quantum enhancement is
to change both the pumping and output coupling of the
laser to be highly nonlinear, a feat that is potentially
achievable in circuit QED [8,14].
This Letter advances the physics objectives within this

field in two ways. First, we generalize the salient result of
Ref. [8], such that the HL scaling C ¼ Oðμ4Þ is rederived
under significantly relaxed conditions on the beam. This is
motivated by the prospects of experimental realization. The
strict conditions placed on the beam given in Ref. [8] will
probably not be satisfied in the most feasible near-term
experimental hardware that would surpass the standard
quantum limit for C [15].
Second, this relaxation permits us to study the photon

statistics of Heisenberg-limited lasers [i.e., those achieving
Eq. (1)]. This has furnished us with a fundamental insight
to the nature of laser radiation. That is because the more
general HL derived here applies to laser beams exhibiting
“sub-Poissonian” photon statistics, even allowing the
number fluctuations to vanish for long counting intervals.
Interest in the production of sub-Poissonian light from
lasers started in the 1980s and early 1990s [16–25]. It has
remained an active area of research since then [26–29] due
to the foreseeable broad application in areas such as
quantum-enhanced measurement, communication, sensing,
and information processing [30–41].
Among the early work within this area, several theo-

retical studies were conducted to determine if a tradeoff
existed between the coherence and degree of sub-
Poissonianity in standard laser beams [i.e., those which
achieve C ¼ Θðμ2Þ at best]. It was shown that for a laser
with standard output coupling, pumping that achieves a
sub-Poissonian output does not necessarily significantly
increase the phase diffusion rate [42–45] (though in other
models it does [22]). In this Letter, we extend the results
from these early studies to the extreme case, to laser models
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that exhibit a phase-diffusion rate that is as small as
permitted by the laws of quantum mechanics.
We show that there is no tradeoff between coherence and

the degree of sub-Poissonianity (quantified by the Mandel-
Q parameter [46]) in Heisenberg-limited laser beams.
Moreover, a “win-win situation” occurs in both of the
families of laser models we introduce. These models
exhibit Heisenberg-limited coherence as well as sub-
Poissonian beam photon statistics in certain parameter
regimes, and there is a perfect correlation between an
increase in the coherence and a decrease in the Mandel-Q
parameter of the beam. An important point to stress here is
that “external squeezing” is not an alternative to our
models. The conception of a “laser” in Refs. [8,14] and
this Letter means considering the whole device, encom-
passing all processes that give rise to both the coherence
and the sub-Poissonianity in the beam, as a laser.
Throughout, we refer to the companion paper [15] for
details of proofs and much more.
Beam coherence and sub-Poissonianity.—We start with

the two quantities relating to a laser beam that are the focus
of this Letter. The first of these is “laser coherence,” C,
which relates to the phase fluctuations of the beam. A
unidirectional beam of light produced by a laser can be
aptly described as a scalar quantum field with the single-
parameter field annihilation operator, b̂ðtÞ. For such a field,
C is defined as the maximally populated mode (within
some frequency band, if required) [8],

C ≔ max
u∈u

hb̂†ub̂ui: ð2Þ

Here, b̂u ¼ ð1= ffiffiffiffiffi
Iu

p Þ R∞
−∞ dtuðtÞb̂ðtÞ defines the annihila-

tion operator for mode u, which is normalized such
that Iu ¼

R
∞
−∞ dtjuðtÞj2.

We can gain intuition about this quantity by analyzing
Eq. (2) under some additional assumptions that are char-
acteristic of an “ideal” laser beam. First, for a beam with
translationally invariant statistics, C=2π is simply the peak
of the power spectrum PðωÞ, the Fourier transform of the
correlation function hb̂†ðtþ τÞb̂ðtÞi [8]. Additionally, the
early work on laser theory during the 1960s and 1970s
[9,10] showed that, when technical noise is negligible, the
state of a laser beam can be well-approximated by the
eigenstate

jβðtÞi ¼ j
ffiffiffiffiffi
N

p
ei

ffiffi
l

p
WðtÞi ð3Þ

of b̂ðtÞ for each t, whereWðtÞ represents a Wiener process.
That is, it is a coherent state undergoing pure phase
diffusion at rate l. For such a state, the photon statistics
are Poissonian [9,47] and the power spectrum is
Lorentzian,

PðωÞ ¼ C
2π

ðl=2Þ2
ðω − ω0Þ2 þ ðl=2Þ2 ; ð4Þ

where ω0 is the central frequency. Since the linewidth of
this ideal beam is entirely due to phase diffusion, the
coherence time, 1=l, can be thought of as the time for the
phase of the laser to become fairly randomized.
Multiplying this by the photon flux, N ¼ R

dωPðωÞ,
one has N =l ¼ C=4. In the context of such an ideal laser,
C may therefore be interpreted roughly as the number of
photons emitted into the beam with a well-defined phase
relationship.
Second, to characterize the intensity fluctuations in the

beam, we employ the Mandel-Q parameter [46] defined on
the output field over the duration T:

QT ≔
hðΔn̂TÞ2i − hn̂Ti

hn̂Ti
; ð5Þ

with n̂T ≡ R T0þT
T0

dsb̂†ðsÞb̂ðsÞ as the number operator for
the section of the beam over the interval ðT0; T0 þ T�. Note
thatQT does not depend on T0 for a stationary field. This is
an affine function of the variance in the number of photon
detections made by an ideal detector monitoring the beam.
It is defined so that Q ∈ ½−1; 0Þ implies sub-Poissonian
photon statistics (a variance less than the mean) in the beam
over the interval ðT0; T0 þ T�. Here, we consider the limit
of long counting intervals, T → ∞. That is, the measure
of beam intensity fluctuations we seek to minimize is
Q≡QT→∞.
Generalizing the Heisenberg limit for C.—In Ref. [8]

four conditions were considered for a laser and the beam it
produces. For a device satisfying these conditions, it was
shown that C≲ 2.9748μ4, representing a Heisenberg limit
for the coherence of its beam. One of these conditions
implies a beam that exhibits QT ≈ 0. Here, we summarize
these four conditions and the motivation behind them,
before showing how they can be modified such that a more
general Heisenberg limit for C can be derived. This
generalized limit applies to lasers that produce a beam
for which its photon statistics can have a significant degree
of sub-Poissonianity. The original four conditions are as
follows.
Condition 1, or “One Dimensional Beam,” states that the

beam propagates away from the laser in one direction at a
constant speed, occupying a single transverse mode and
polarization. This allows the output of the device to be
described by a scalar quantum field with the annihilation
operator b̂ðtÞ satisfying ½b̂ðsÞ; b̂†ðtÞ� ¼ δðs − tÞ.
Condition 2, or “Endogenous Phase,” requires that

coherence in the beam proceeds only from within the laser.
This is satisfied if a phase shift imposed on the laser state at
some time T0 will lead, in the future, to the same phase shift
on the beam emitted after time T0, as well as on the laser
state. When considering specific laser models in practice,
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this follows naturally if the mechanisms of gain and loss of
excitations in the laser correspond to Uð1Þ-covariant
processes [8,48].
Condition 3, or “Stationarity,” requires the laser and the

beam it produces to have a long time limit that is unique
and invariant under time translation. This means that the
mean excitation number within the laser, hn̂ci, has a unique
stationary value μ.
Condition 4, or “Ideal Glauberð1Þ;ð2Þ Coherence,” states

that the stationary first- and second-order Glauber coher-

ence functions [49] of the laser beam—gð1Þlaserðs; tÞ and

gð2Þlaserðs; s0; t0; tÞ, respectively—well-approximate those of
an ideal standard laser beam state given by Eq. (3). The
motivation for this condition is that it allows the beam to
exhibit the typical properties of an ideal laser beam to a
good approximation (such as a Lorentzian power spectrum
and Poissonian beam statistics), while also allowing the
upper bound on C to be obtained by the specific method of
proof used in Ref [8].
In this Letter, we adopt Conditions 1–3 outright as

requirements for a laser to satisfy. However, Condition 4 is
significantly relaxed to encompass a much more general
range of laser models. The new Condition 4 that we
consider, “Passably Ideal Glauberð1Þ;ð2Þ Coherence,”
requires bounding the differences between the Glauber
coherence functions (first and second order) for the laser
beam in question and an ideal beam as follows:

jgð1Þlaserðs; tÞ − gð1Þidealðs; tÞj ¼ Oð1Þ; ð6aÞ

jgð2Þlaserðs; s0; t0; tÞ − gð2Þidealðs; s0; t0; tÞj ¼ OðC−1=2Þ; ð6bÞ

for all values of the time arguments such that the difference
between any two times is Oð ffiffiffiffi

C
p

=N Þ.
The original Condition 4 of Ref. [8] is the same as the

one above, except for having o in place of O in Eqs. (6a)
and (6b). As we will show, this revised condition now
allows for models that produce highly sub-Poissonian
beams, where Q approaches its minimum of −1, corre-
sponding to vanishing photon noise in the beam for long
counting intervals. Specifically, this is permitted because of

the weaker constraint on gð2Þlaserðs; s0; t0; tÞ.
We note here that because gð1Þlaserðs; tÞ is relatively uncon-

strained by Eq. (6a), the interpretation provided for C
below Eq. (4) would not generally be valid for a laser
device satisfying this criteria. However, for the laser models
presented in this Letter, gð1Þðs; tÞ does exhibit an exponen-
tial decay characteristic of an ideal beam to a very good
approximation [15]. Thus, we can still think of C as the
number of photons emitted in a coherence time.
A proof for the upper bound on C for a beam satisfying

these more relaxed conditions is now outlined; for details,
see Ref. [15].

Theorem 1 (generalization of the upper bound on C
for sub-Poissonian lasers): For a laser that satisfies
Conditions 1–3, along with the new Condition 4, stated
above, the coherence is bounded from above:

C ¼ Oðμ4Þ; ð7Þ

with μ the mean number of excitations within the laser.
The methodology applied to show this follows closely

that of Ref. [8], which boils down to comparing the
precision between different methods of estimating the
optical phase of a laser. In particular, we consider a laser
model satisfying Conditions 1–3, and the Passably Ideal
Glauber Coherence condition, operating at steady state.
One observer, Effie, then encodes a random phase, ϕF, onto
the laser state by performing a “filtering” heterodyne
measurement on its beam over the time interval [T − τ, T).
It is the job of a second observer, Rod, to estimate this

encoded optical phase. We consider two methods to
achieve this. The first is a “retrofiltering” heterodyne
measurement of the beam over the interval ðT; T þ τ�.
From the theory of heterodyne detection [50], it is possible
to quantify how correlated Rod’s retrofiltering measure-
ment outcome, ϕR, is with Effie’s result, ϕF. Considering
the relative difference, in the deviations of the estimates,
between the laser model and that of an ideal beam [15], we
arrive at the expression

1 − jheiðϕR−ϕFÞij2 ¼ OðC−1=2Þ; ð8Þ

for the choice τ ¼ Θð ffiffiffiffi
C

p
=N Þ, which minimizes the scal-

ing of the mean-square error (MSE) in Rod’s measurement
[8]. It should be recognized that the lhs of this equation
provides a measure of phase spread, as for small errors θ,
1 − jheiθij ≈ hθ2i − hθi2 represents the MSE.
Equation (8) highlights a key difference here with the

result of Ref. [8]; there, a specific prefactor was able to be
obtained in Eq. (8). Because of our relaxed constraints
imposed on the beam by our fourth condition, a prefactor
for this quantity, and hence for the upper bound on C, is no
longer able to be attained. Regardless of this, we are still
able to derive a limit for the scaling of C with μ, which is
sufficient to talk of a Heisenberg limit.
To derive this, consider Rod’s second method for

obtaining an estimate for ϕF: performing a direct phase
measurement on the laser device at time T. It is a known
result [51] that the MSE of such an estimate, ϕD, is
bounded below, asymptotically,

1 − jheiðϕD−ϕFÞij2 ¼ Ωðμ−2Þ: ð9Þ

Finally, ϕR obtained via the retrofiltering measurement
outlined above cannot outperform ϕD as an estimate of the
encoded laser phase ϕF [8]. It therefore follows from
Eqs. (8) and (9) that C ¼ Oðμ4Þ represents the Heisenberg
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limit for any laser satisfying the stated conditions. From our
adopted method of proof, these are the loosest requirements
on the laser for which this μ4 scaling can be proven to be
the HL.
Sub-Poissonian, Heisenberg-limited laser models.—We

now present two families of laser models, both satisfying
our four conditions [15], and both exhibiting Heisenberg-
limited coherence with C ¼ Θðμ4Þ. Figure 1 shows
the key components of these: the laser “cavity” (a D-level
system with the nondegenerate number operator n̂c ¼P

D−1
n¼0 njnihnj) storing an average of μ excitations at steady

state, a pump that adds incoherent excitations into the
cavity, a vacuum input, which, upon reflection, becomes
the beam, and finally a sink for all excitations that leave the
cavity but not in the beam.
The two families have been developed by making

generalizations to the original laser model of Ref. [8], with
particular regard to the pumping mechanisms. In a frame
rotating at cavity resonance, the dynamics of the laser
cavity for this original model can be written in terms of a
master equation in Lindblad form _ρ ¼ D½Ĝ�ρþD½L̂�ρ,
where D½ĉ�•≔ ĉ • ĉ†−ð1=2Þfĉ†ĉ;•g is the usual Lindblad
superoperator [50]. Here, Ĝ and L̂ are the single-excitation
gain and loss operators, which, in the number basis, have non-
zero matrix elements Ĝn;n−1 ∝ 1 and L̂n−1;n ∝ ðρn−1=ρnÞ1=2.
Here, ρn ¼ hnjρssjni are the nonzero elements of the cavity
steady state,

ρn ∝ sin4
�
π
nþ 1

Dþ 1

�
; 0 ≤ n ≤ D − 1: ð10Þ

In this scenario, we say that the gain operator is “quasi-
isometric” (Ĝ†Ĝ ¼ 1 − jD − 1ihD − 1j). This laser model
produces a beam that exhibits Poissonian beam photon
statistics, in accordance with the strict Ideal Glauberð1Þ;ð2Þ-
Coherence condition of Ref. [8]. The ansatz for the cavity

steady state, Eq. (10), was suggested by numerical optimi-
zation of C based on infinite matrix product state (iMPS)
techniques [8,52].
The first family of models that we introduce can be

described with a master equation in the same form as that
described above, while making the substitutions Ĝ → ĜðλÞ

and L̂ → L̂ðλÞ. Here, the parameter λ ∈ R generalizes the
gain and loss operators according to

GðλÞ
n;n−1 ∝ ðρn=ρn−1Þλ=2; LðλÞ

n−1;n ∝ ðρn−1=ρnÞð1−λÞ=2: ð11Þ

This preserves the same ansatz for the cavity steady state,
Eq. (10), as in Ref. [8], and the original model corresponds
to λ ¼ 0 (flat gain [13]). This “λ family” of laser models
generally describes a randomly pumped gain mechanism,
which, for λ ≠ 0, is nonisometric (Ĝ†Ĝ is far from the
identity 1) [15].
The second family that we introduce instead describes a

regularly pumped (non-Markovian) gain mechanism,
which is quasi-isometric. The cavity dynamics for this
“q family” can be approximated as

_ρ ¼
�
D½Ĝð0Þ� þ q

2
D½Ĝð0Þ�2 þD½L̂ð−q=2Þ�

�
ρ; ð12Þ

where q ∈ ð−1;∞� represents the Mandel-Q parameter of
the pumping statistics (see Fig. 1). This also has the steady
state, Eq. (10), in the limit D → ∞ [15] and the loss
operator in Eq. (12) is as defined in Eq. (11). Setting q ¼ 0
thus reduces Eq. (12) to the model presented in Ref. [8].
This master equation is only an approximation because
it is a Markovian equation describing a generally non-
Markovian process. Regardless of this, master equations of
this form have long been employed to model regularly
pumped lasers [16,36,42,44,53] and the results that it yields
are physically reasonable. For details, see Ref. [15].
Figures 2(a) and 2(b) show the scaling ofC, for members

of both the above families, with the mean photon number
μ ¼ ðD − 1Þ=2. These quantities were numerically com-
puted by discretizing the output beam and treating the laser
as an iMPS sequential quantum factory [54,55]; see also
Refs. [8,15]. Fitting a power law to each of these curves
reveals C ¼ Θðμ4Þ for every choice of λ and q, thus
saturating the upper bound scaling of Eq. (7). These plots
also indicate that the prefactor of these power laws is
optimized by the choice λ ¼ 0.5 in the λ family, and
q ¼ −1 in the q family. These prefactors are roughly,
respectively, a factor of 2 and 4 larger than that of the model
from Ref. [8].
This interesting detail is investigated in more depth in

Figs. 2(d) and 2(e), plotting C and Q for both families of
laser models as functions of λ and q, for fixed D ¼ 1000.
We find that increasing beam coherence is perfectly
correlated with a reduction in beam photon noise.
For the λ family, Cλ ≈ Cλ¼0=½2ðλ − 1=2Þ2 þ 1=2�, while

FIG. 1. Basic schematic of a laser showing the key components
of the two families of models discussed in the text. Top green box
depicts different statistics for the pump, applicable to the q
family, while the λ family is constrained to have Poissonian
pumping statistics.
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Qλ ≈ 2λðλ − 1Þ. For the q family, Cq ≈ Cq¼0=ð1þ q=2Þ2,
while Qq ≈ q, mirroring the Mandel-Q parameter of the
pumping mechanism. These formulas are indicated by the
overlapped white curves and can be derived in the asymp-
totic limit, where D → ∞ [15].
Within the λ family, a minimum value of Q ¼ −0.5 is

attained when λ ¼ 0.5, which defines the matrix elements of
the gain and loss operators as reciprocals to one another. This
value for Q corresponds to a 50% reduction below the shot
noise limit. With the q family, we instead find that 100%
noise reduction in the beam is achievable by imposing a
completely regular pump with q → −1. Creating a sub-
Poissonian beam in this manner, by means of subjecting the
laser to a pumpwhich itself is sub-Poissonian, iswell-known
[36,45]; it is also known that imposing such a pump in an
otherwise standard laser has no effect on the rate of phase
diffusion (and hence coherence) [42–45].What is interesting
about the results at hand is that themodels we study exhibit a
phase diffusion vastly smaller than standard, and for both
families, sub-Poissonian statistics in the output field ensue
when measures are taken to increase the coherence. In other
words, we find that there is a “win-win relationship”
between coherence and sub-Poissonianity for optimized
Heisenberg-limited lasers.
In this Letter we have shown how the Heisenberg limit

for laser coherence may be generalized to encompass

beams that may be highly sub-Poissonian. From this result,
we have found that reducing the photon noise for such a
beam can in fact be advantageous for a reduction in the
phase noise. This marks a generalization of past studies into
sub-Poissonian lasers with standard (linear) photon loss, to
beams which exhibit phase noise that is as small as
permitted by the laws of quantum mechanics. This
Letter could have applications in technologies requiring
minimized noise in both intensity and phase, such as
quantum information processing.
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