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We analytically show that the effective interaction potential between microwave-shielded polar
molecules consists of an anisotropic van der Waals–like shielding core and a modified dipolar interaction.
This effective potential is validated by comparing its scattering cross sections with those calculated using
intermolecular potential involving all interaction channels. It is shown that a scattering resonance can be
induced under microwave fields reachable in current experiments. With the effective potential, we further
study the Bardeen-Cooper-Schrieffer pairing in the microwave-shielded NaK gas. We show that the
superfluid critical temperature is drastically enhanced near the resonance. As the effective potential is
suitable for exploring the many-body physics of molecular gases, our results pave the way for studies of the
ultracold gases of microwave-shielded molecular gases.
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Introduction.—Ultracold gases of polar molecules [1,2]
provide a unique platform for exploring quantum informa-
tion [3], quantum computing [4,5], quantum simulation
[6,7], quantum chemistry [8,9], and precision measure-
ment [10–12]. For more than one decade, tremendous
experimental efforts have been paid to create the high-
phase-space-density molecular gases [13–22]. Recently,
degenerate Fermi gases of molecules have become available
in experiments via the association of double degenerate
atomicBose-Fermimixtures [23–25] and subsequent evapo-
rative cooling [26–30]. Particularly, the stable molecular
gases via the microwave shielding [29–32] provide an ideal
platform for investigating strongly correlated many-body
systems with the long-range and anisotropic dipole-dipole
interaction (DDI) [33,34].
The DDI between microwave-shielded molecules

(MSMs) is attractive in the plane of the microwave
field. It may lead to exotic p-wave superfluids [35–37].
Remarkably, the microwave-dressing scheme provides
tuning knobs to shape the shielding potential and to change
the symmetry of DDI, which gives rise to distinct shape
scattering resonances [32,38]. Across these resonances, a
novel crossover [39–42] from a molecular superfluidity to
a Bose-Einstein condensation (BEC) of tetramers may
emerge. Theoretically, the simple model composed of a
bare DDI and a short-range hard wall [35,36,43–47] fails to
describe the microwave-induced scattering resonances, and
thus, is inappropriate to study the superfluidity of MSMs.

Yet, a complete description of the intermolecular interac-
tion involving multiple dressed rotational states [31,48] is
cumbersome for studies of many-body physics in a single
shielded dressed state. Therefore, a simple and accurate
effective potential is an essential ingredient for exploring
the many-body physics of molecular gases.
In this Letter, we analytically derive an effective poten-

tial for two MSMs, and apply it to study the Bardeen-
Cooper-Schrieffer (BCS) superfluidity in the NaK gas. At
large intermolecular distance the potential is a negated
DDI, while at short range it is of the 1=r6 type and
anisotropically repulsive. Since the size of the DDI induced
shielding core is much larger than that of the interatomic
potential, the short-range part of the effective potential has
a big impact on the two- and many-body physics. We then
study the scattering of two molecules and show that the
effective potential leads to the correct scattering cross
sections and resonances. Finally, using the accurate effec-
tive potential, we find that the critical temperature of the
BCS superfluidity can be efficiently enhanced via tuning
the Rabi-frequency of the microwave field toward the
scattering resonance. Not only is the well-behaved effective
potential suitable for exploring the many-body physics, but
it also provides a reliable guidance for the polar molecule
experiments.
Effective molecule-molecule interaction.—We consider a

gas of the NaK molecules in the 1Σðv ¼ 0Þ state which
exhibits a molecular-frame dipole moment d ¼ 2.72 debye.
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Under ultracold temperature, only the rotational degree of
freedom is relevant such that the Hamiltonian of a single
molecule is ĥrot ¼ BrotJ2, where Brot=ℏ ¼ 2π × 2.822 GHz
is the rotational constant and J is the angular momentum
operator. Since the rotation spectrum, BrotJðJ þ 1Þ, is
anharmonic, we focus on the two lowest rotational mani-
folds (J ¼ 0 and 1) which are split by an energy
ℏωe ¼ 2Brot. Correspondingly, the Hilbert space for the
internal states of a molecule is defined by four states:
jJ;MJi ¼ j0; 0i, j1; 0i, and j1;�1i. Furthermore, the
electric dipole moment of a molecule is dd̂, with d̂ being
the unit vector along the internuclear axis of the molecule.
For microwave shielding, molecules are illuminated
by a position-independent elliptically polarized microwave
field, Emw ¼ Emwe−iω0teikzzðê1 cos ξþ ê−1 sin ξÞ þ c:c:,
propagating along the z axis, where Emw is the amplitude
of the microwave, ω0 is the frequency of the microwave,
ê�1 ¼∓ ðêx � iêyÞ=

ffiffiffi
2

p
, and ξ is the elliptic angle.

Within the internal-state Hilbert space, the coupling
between the microwave and the molecular rotational states
gives rise to the Hamiltonian ĥmw ¼ ðℏΩ=Þ2e−iω0tjξþi×
h0; 0j þ H:c:, where Ω ¼ 2Emwd=ð

ffiffiffi
3

p
ℏÞ is the Rabi fre-

quency and jξþi≡ cos ξj1; 1i þ sin ξj1;−1i. Then, in the
interaction picture, the eigenstates of the internal-state
Hamiltonian, ĥin ¼ ĥrot þ ĥmw, are j0i≡ j1; 0i, jξ−i≡
cos ξj1;−1i − sin ξj1; 1i, jþi≡ uj0; 0i þ vjξþi, and j−i≡
ujξþi − vj0; 0i, where u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − δ=ΩeffÞ=2

p
and v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ δ=ΩeffÞ=2

p
with δ ¼ ωe − ω0 being the detuning

and Ωeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þΩ2

p
the effective Rabi frequency. The

corresponding eigenenergies are E0 ¼ Eξ− ¼ δ and
E� ¼ ðδ� ΩeffÞ=2. Figure 1(a) schematically shows the
level structure of a molecule.
For two molecules with dipole moments dd̂1 and dd̂2,

the DDI between them is

VðrÞ ¼ d2

4πϵ0r3
½d̂1 · d̂2 − 3ðd̂1 · r̂Þðd̂2 · r̂Þ�; ð1Þ

where ϵ0 is the electric permittivity of vacuum, r ¼ jrj, and
r̂ ¼ r=r. To express DDI in the two-molecule internal
Hilbert space, we note that the two-particle Hamiltonian
Ĥ2 ¼

P
j¼1;2 ĥj þ Vðr1 − r2Þ possesses a parity symmetry,

where ĥj ¼ −ℏ2∇2
j=ð2MÞ þ ĥinðjÞ with M being the mass

of the molecule. This suggests that the symmetric and
antisymmetric two-particle internal states are decoupled in
the Hamiltonian Ĥ2. Here, we focus on the ten-dimensional
symmetric subspace in which the shielding states of the
molecules lie. It turns out that, under the rotating-wave
approximation, VðrÞ in the seven-dimensional (7D) sym-
metric subspace, S7 ≡ fjνig7ν¼1, is decoupled from the
remaining three-dimensional symmetric subspace, where
j1i ¼ jþ;þi, j2i ¼ jþ; 0is, j3i ¼ jþ; ξ−is, j4i ¼ jþ;−is,
j5i ¼ j−; 0is, j6i ¼ j−; ξ−is, and j7i ¼ j−;−i with

ji; jis ¼ ðji; ji þ jj; iiÞ= ffiffiffi
2

p
. Correspondingly, with respect

to the asymptotical state jν ¼ 1i, the energies of these states
are Eν ¼ f0; 1

2
ðδ − ΩeffÞ; 12 ðδ −ΩeffÞ;−Ωeff ;

1
2
ðδ − 3ΩeffÞ;

1
2
ðδ − 3ΩeffÞ;−2Ωeffg. Below, we shall consider the two-

molecule problem only in the subspace S7.
To derive an effective potential between two molecules,

we make use of the Born-Oppenheimer approximation
which holds when the kinetic energy of the molecules is
much smaller than the energy level spacings between
internal states (∼Ωeff ). After diagonalizing VðrÞ in S7, we
find seven adiabatic potentials corresponding to different
dressed-state channels [see, e.g., Fig. 1(b) for the typical
adiabatic potential curves]. Particularly, the effective
potential for two molecules in the dressed state jþi is
the highest adiabatic curve. Remarkably, as shown in
Supplemental Material (SM), for small ξð≲15°Þ and
r3 > d20=ð4πϵ0ΩÞ, the effective potential for the highest
channel is approximately

VeffðrÞ ¼
C6

r6
sin2θf1 − F 2

ξðφÞ þ ½1 − F ξðφÞ�2cos2θg

þ C3

r3
½3cos2θ − 1þ 3F ξðφÞsin2θ�; ð2Þ

where θ and φ are, respectively, the polar and azimuthal
angles of r and F ξðφÞ ¼ sin 2ξ cos 2φ. Moreover, C3 ¼
d2=½48πϵ0ð1þ δ2rÞ� and C6 ¼ d4=½128π2ϵ20Ωð1þ δ2rÞ3=2�
with δr ¼ jδj=Ω. The C3 term represents the modified
DDI that is repulsive along the z axis and attractive in the
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FIG. 1. (a) Schematic of the level structure of a microwave-
dressed molecule. (b) Typical adiabatic potential curves of two
colliding molecules for seven dressed state channels. (c) Effective
potentials along θ ¼ π=2 obtained by numerical diagonalization
(solid lines), numerical fitting (dashed line), and analytical
expressions (dash-dotted lines) for ξ ¼ 0, δr ¼ 0.1, and
Ω=ð2πÞ ¼ 20, 40, and 80 MHz (for three sets of curves in
descending order). The inset maps out VeffðrÞ=h (in units of
MHz) on the xz plane for ξ ¼ 0, δr ¼ 0.1, andΩ=ð2πÞ ¼ 50 MHz,
on which the white region corresponds to the shielding core.
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xy plane. In particular, for a circularly polarized micro-
wave (ξ ¼ 0), the C3 term represents the negated DDI.
When θ ≠ 0 or π, theC6 term is repulsive since jF ξðφÞj ≤ 1

and thus provides a shielding core [49]. Interestingly, even
along the z axis where the C6 term vanishes, DDI itself
is repulsive, which prevents two molecules from getting
close to each other.
In Fig. 1(c), the effective potential Eq. (2) with ξ ¼ 0 is

benchmarked using the highest adiabatic curve obtained by
numerically diagonalizing VðrÞ. Generally speaking, the
expression for C3 is accurate in the sense that it gives rise to
the correct long-range behavior, while the analytical
expression for C6 is a good approximation only when
r3 > d20=ð4πϵ0ΩÞ. In any case, one can alternatively deter-
mine the values of C3 and C6 by fitting the adiabatic
potential curve, which, as shown in Fig. 1(c), yields
satisfactory results in the energy range of interest to us.
We point out that further comparisons for the θ ≠ 0 and
also ξ ≠ 0 cases are presented in SM [50]. For an overall
picture of the effective potential, we map out Veffðx; 0; zÞ in
the inset of Fig. 1(c). In particular, the size of the shielding
core roughly ranges from 600a0 to over 1000a0 which is
significantly larger than that of the interatomic potentials.
Two-body scatterings.—To further justify the effective

potential, we investigate the low-energy scattering of two
molecules interacting via VeffðrÞ. Since this study only
involves a single scattering channel (ν ¼ 1 in S7), its results
should be checked by the scattering calculations involving
all seven channels. To this end, let us briefly outline the
theoretical treatment for the multichannel scattering
[31,32,48,51]. The Schrödinger equations governing the
relative motion of two colliding molecules are

X7
ν0¼1

�
−
ℏ2∇2

M
δνν0 þ Vνν0

�
ψν0 ðrÞ ¼

ℏ2k2ν
M

ψνðrÞ; ð3Þ

where ψνðrÞ is the wave function of the νth scattering
channel, Vνν0 ¼ hνjVjν0i, and kν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 −MEν=ℏ2

p
is the

incident momentum of the νth scattering channel. To solve
Eq. (3), we first expand the wave functions ψνðrÞ ¼P

lm Ylmðr̂ÞϕνlmðrÞ=r in the partial-wave basis, where l
is odd for identical fermions. The equations for ϕνlm can be
numerically evolved from r ¼ 0 to a sufficiently large value
r∞ using Johnson’s log-derivative propagator method [52].
Then, by comparing ϕνlm with the asymptotical boundary
condition, we obtain the scattering amplitude fν

0l0m0
νlm and

cross section σν
0l0m0
νlm ¼ 4πjfν0l0m0

νlm j2 for the ðνlmÞ to ðν0l0m0Þ
scattering. Numerically, to ensure the convergence of the
scattering cross sections, we choose k0r∞ > 32 and
lc > 11, where lc is the truncation imposed on the orbital
angular momentum. As a special case of the multichannel
scattering, the Schrödinger equation for single-channel
scattering can be obtained by projecting Eq. (3) in the

ν ¼ 1 channel with V11 being replaced by Veff, and we
denote the single-channel scattering cross section as σl

0m0
lm .

For simplicity, we consider the ξ ¼ 0 case for which the
interaction possesses an axial symmetry. Here, we focus on
the scattering cross section of the p wave since it is
dominant over all other partial waves [50]. Figure 2(a)
plots the Ω dependence of σ1111 and σ111111 for δr ¼ 0.1 and
k1=kF ¼ 0.04, 0.45, and 1, where kF ¼ ð6π2n0Þ1=3 is the
Fermi wave vector with n0 ¼ 1012 cm−3 being the peak
density of the experimentally realized molecular gas [30]. It
is immediately noticed that, away from scattering reso-
nances, quantitative agreements have been achieved for the
p-wave cross section under different incident momenta.
Moreover, the single-channel calculations can even predict
the position of scattering resonance with high accuracy.
As shown in SM, similar agreements are attained for other
partial waves and even for the ξ ≠ 0 case [50]. These results
then validate the usage of the effective potential.
As to the properties of the p-wave cross section, we find

that, for k1=kF ¼ 0.04, σ111111 barely changes asΩ varies over
a wide range. A narrow scattering resonance then appears at
Ω=ð2πÞ ≈ 87.7 MHz, signaling the formation of a tetramer
bound state. For k1=kF ¼ 1, the resonant peak shifts to
Ω=ð2πÞ ≈ 73.6 MHz with the width of the resonance being
significantly broadened. To understand these changes, let
us recall that (1) there is a centrifugal barrier for the p-wave
potential; (2) a scattering resonance at finite k1 implies the
incident particle is in resonance with a quasibound state
localized inside the barrier. Now, as k1 increases, the energy
of the quasibound state in resonance with the incident
particle also increases and gets closer to the top of the

FIG. 2. (a) p-wave scattering cross sections σ1111k
2
F (solid lines)

and σ111111k
2
F (dashed lines) as functions of Ω for ξ ¼ 0, δr ¼ 0.1,

and k1=kF ¼ 0.04 (black lines), 0.45 (red lines), and 1 (blue lines).
(b) and (c) are the distributions of σ111111k

2
F on the Ω-δr plane with

ξ ¼ 0 andΩ-ξ planewith δr ¼ 0.1, respectively, for k1=kF ¼ 0.45.
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barrier. Consequently, the lifetime of the quasibound state
is shortened due to the large decay rate, which leads to a
broader resonance. Furthermore, as k1 grows, the quasi-
bound state on resonance with the incident energy becomes
shallower, which can be achieved by increasing C6 or
reducing Ω. Therefore, the resonant peak shifts toward the
lower Ω direction with the increase k1. Interestingly, the
fact that the p-wave scattering cross section can be
efficiently tuned viaΩ implies that the short-range potential
(i.e., C6) can strongly influence the scattering properties
due to the large shielding core.
In Fig. 2(b), we further map out σ111111 on the Ω-δr plane

for ξ ¼ 0 and k1 ¼ 0.45kF. A resonant peak clearly appears
when the parameters satisfy δr ≲ 0.3 and Ω=ð2πÞ≳
80 MHz. To understand the relation between the position
of the resonance and the microwave, we compute the
WKB phase φp ∝ ½d8Ω2=ð1þ δ2rÞ5�1=12. A resonance
occurs when φ is roughly ðnþ 0.1Þπ with n being an
integer, which implies that φp must be sufficiently large to
induce a resonance. This explains why the shape resonance
appears in the parameter regime with large Ω and small δr.
Finally, we explore the relation between the scattering

cross section and the elliptic angle. Figure 2(c) shows the
distribution of σ111111 on the Ω-ξ plan for δr ¼ 0.1 and
k1=kF ¼ 0.45. It is remarkable that the Rabi frequency
required for shape resonance is dramatically lowered for
nonzero ξ. Particularly, given ξ≳ 10°, two shape resonan-
ces are observed and the first resonance emerges even when
Ω=ð2πÞ is below 10 MHz, a value accessible in current
experiments [38]. The underlying reason for this observa-
tion is analyzed in detail in SM. Here, we present a
qualitative explanation. For ξ ¼ 0, the effective potential
VðrÞ has the cylindrical symmetry, while the positive ξ
makes VðrÞ lower along the y direction.
Superfluid phase transitions.—We now turn to explore

the BCS superfluid phase transition in a homogeneous gas
of MSMs. In particular, we focus on the effect of circularly
polarized microwave field (ξ ¼ 0) to the superfluidity.
Since the inelastic cross sections are much smaller than
that of elastic ones (see SM for details), we may safely
construct the many-body Hamiltonian

Ĥ ¼
Z

d3rψ̂†ðrÞ
�
−
ℏ2∇2

2M
− μ

�
ψ̂ðrÞ

þ 1

2

Z
drdr0ψ̂†ðrÞψ̂†ðr0ÞVeffðr − r0Þψ̂ðr0Þψ̂ðrÞ ð4Þ

in the single dressed-state channel jþi, where ψ̂ðrÞ is the
annihilation operator of molecules and μ is the chemical
potential.
In the superfluid phase, the order parameter takes the

form

ΔðkÞ ¼
Z

dp
ð2πÞ3 Ṽeffðk − pÞhc−pcpi; ð5Þ

where ĉp¼
R
drψ̂ðrÞe−ip·r=ð2πÞ3=2 and the Fourier transform

Ṽeffðk−pÞ¼ð4πÞ2Pll0;mi
l0−lYlmðk̂ÞY�

l0mðp̂ÞṼll0;mðk;pÞ of
VeffðrÞ can be expanded in the partial-wave basis [50].
The mean-field theory gives the pairing function ψΔðpÞ≡
hĉ−pĉpi¼−ΔðpÞ tanhðβEp=2Þ=ð2EpÞ, where β ¼ 1=ðkBTÞ
is the inverse temperature and Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2p þ jΔðpÞj2

q
is the

dispersion of the Bogoliubov quasiparticle with εp ¼
p2=ð2MÞ − μ. We point out that, unlike an ill-defined
potential that requires renormalizations [36,39,43], the
effective potential Veff is well defined due to its repulsive
core. In fact, the two-body wave function ∼e−B=r3 (B > 0)
drops rapidly inside the shielding core, which guarantees
that the integral in Eq. (5) is convergent. Thus, Eq. (5) is
solvable without any interaction renormalization.
Close to the critical temperature Tc, jΔðpÞj ≈ 0 and,

subsequently, Ep ≈ εp. We can linearize Eq. (5) as

ΔlmðkÞ ¼ −
2

π

X
l0
il

0−l
Z

∞

0

p2dpṼll0;mðk; pÞ

×
tanhðβcεp=2Þ

2εp
Δl0mðpÞ; ð6Þ

where βc ¼ ðkBTcÞ−1 and ΔðkÞ ¼ P
lm Ylmðk̂ÞΔlmðkÞ.

Because of the axial symmetry of the system, Δlm for
different m’s are decoupled. In the BCS regime, the
chemical potential is approximated by the Fermi energy,
i.e., μ ≈ εF ¼ ℏ2k2F=ð2MÞ. Thus, Eq. (6) is equivalent to an
eigenvalue problem of the integral Kernel, where the
appearance of the first negative eigenvalue determines Tc.
It is worthwhile to note that Ṽ11;m contains a superficial

divergent term contributed by the 1=r6 shielding potential,
which can be regularized as Ṽ11;m ∼ kp=rUV by a short-
range cutoff rUV [50]. Different from the potential requiring
renormalizations, Vll0;m leads to the convergent solution of
Eq. (6) as rUV → 0. A two-body calculation in the
momentum space reveals that without Ṽ11;m a false bound
state inside the shielding core would appear, while Ṽ11;m

completely removes the false bound state and keeps two
molecules away from each other. This regularization
scheme can also be applied to interaction potentials of
the form 1=rn, e.g., the Lennard-Jones potentials.
It is numerically found that the highest Tc is reached in

the most attractive channel m ¼ �1, thus, hereafter we
take m ¼ 1. In all results presented below, the cutoff
kFrUV ≤ 10−8 (much smaller than the shielding core)
and the truncation lc ¼ 9 of l are sufficient to ensure the
convergence of the solution. In Fig. 3(a), we map out Tc on
the Ω-δr plane away from scattering resonances where
Tc=εF ≈ 0.137 [40] reaches the BEC transition temperature
and the weak-interaction assumption is violated. As can
be seen, Tc can be enhanced by either increasing Ω or
decreasing δr, since φp indicates that by both manners the
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attractive interaction is enhanced. As Cooper pairs of
molecules form around the Fermi surface, Tc is mainly
determined by the scattering cross section at k1 ≈ kF which,
as shown in Fig. 2(a), is very sensitive to the variation ofΩ.
Consequently, Tc can be efficiently tuned via the short-
range potential C6 even when the long-range dipolar
interaction strength C3 is fixed. The inset of Fig. 3(a)
shows that Tc can also be increased as the density grows. In
particular, for δr ¼ 0.1 and Ω=ð2πÞ ¼ 38 MHz, Tc can be
increased by roughly one order of magnitude as n0
increases from 1012 to 5 × 1012 cm−3.
In Fig. 3(b), the normalized ψΔðkÞ on the kx-kz plane

displays a clear anisotropic distribution peaked at the
Fermi momentum kF indicating the formation of Cooper
pairs around the Fermi surface. The large occupationR
k2dkj R dk̂ψΔðkÞY10ðk̂Þj2 ≳ 0.97 in the p wave channel

implies that a p wave superfluidity [36,40,43,44,53] is
achieved over a broad range of Rabi frequency due to
the distinct scattering behavior of microwave shielded
molecules. Finally, in Fig. 3(c) for n0 ¼ 1012 cm−3 and
δr ¼ 0.1, ψΔðkÞ along the kx direction shows the broad-
ening peak width with increasing Ω, which indicates the
formation of Cooper pairs over a broader momentum range
under a stronger attractive interaction.

Conclusion and discussion.—In summary, we have
derived an effective interaction potential for MSMs and
validated it through two-body scattering calculations. We
have also applied the effective potential to study the BCS
superfluidity in the NaK gas and shown that the critical
temperature can be greatly increased by tuning the Rabi
frequency to a shape resonance. Since the typical size of the
shielding core for MSMs is over several hundred Bohr
radii, the short-ranged shielding potential cannot be naively
replaced by a zero-range potential as that in atomic gases.
This observation is of particular importance for fermionic
molecules, as the molecules on Fermi surface is responsible
for the BCS pairings. Therefore, the effective potential,
particularly the short-range part, is essential for exploring
the many-body physics of MSMs.
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