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We study the signal and background that arise in nuclear magnetic resonance searches for axion dark
matter, finding key differences with the existing literature. We find that spin-precession instruments are
much more sensitive than what has been previously estimated in a sizable range of axion masses, with
sensitivity improvement of up to a factor of 100 using a 129Xe sample. This improves the detection
prospects for the QCD axion, and we estimate the experimental requirements to reach this motivated target.
Our results apply to both the axion electric and magnetic dipole moment operators.
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The axion, a light scalar whose leading interactions
exhibit a shift symmetry, is one of the most compelling
extensions to the standard model of particle physics.
Originally proposed as an elegant solution to the strong
CP problem [1–4], axions have since been appreciated for
both their ubiquity in string theory [5–7] and the generic
expectation that they contribute to cold dark matter
through, for example, misalignment production [8–10].
The continuous shift symmetry of the axion leads to a
natural expectation that the axion should be an extraordi-
narily light state, with mass ma ≪ 1 eV suppressed by its
decay constant fa, which arises from breaking the con-
tinuous symmetry to a discrete one via instanton effects.
Such a small mass implies that axion dark matter on Earth
should be well described by a classical wave.
At low energies, the possible interactions of an axion, a,

with a nucleon N take the following form:

L ⊃ gNð∂μaÞN̄γμγ5N −
i
2
gdaN̄σμνγ5NFμν: ð1Þ

In the presence of an axion-wave background, these
interactions source an oscillating magnetic dipole (MD),
weighted by gN ∝ 1=fa, and an oscillating electric dipole
(ED), weighted by gd ∝ 1=mNfa, with mN the nucleon

mass. For the QCD axion, gN depends on the charge
assignments and field content of the UV theory, where-
as gd depends on the term that resolves the strong CP
problem, ða=faÞGμνG̃μν, and is fixed to gd ¼ ð3.7� 1.5Þ ×
10−18 GeV−2ð1015 GeV=faÞ [11]. For a nonrelativistic
nucleus, these interactions lead to the Hamiltonian,
Hint ¼ −2ðgN∇aþ gdaE�Þ · S. Here, S is the nucleon spin
operator, and E� is the effective electric field felt by a
nucleus (and differs from the applied field by at least 2
orders of magnitude due to shielding by the atomic
electrons). By drawing an analogy between the interaction
of spins and a magnetic field, the axion-nucleus interaction
can be characterized as an effective axion magnetic field,

BaðtÞ ¼ −
2

γ

�
gN∇aðtÞ ðMDÞ;
gdE�aðtÞ ðEDÞ; ð2Þ

with γ being the gyromagnetic ratio of the nucleon. This
axion-induced magnetic field can be detected using spin-
precession techniques such as nuclear magnetic resonance
(NMR), as originally proposed in the seminal CASPEr
papers [12,13], and it was further developed experimentally
and theoretically in Refs. [14–23]. The CASPEr approach
is opening up a frontier for axion dark-matter direct
detection beyond the widely exploited axion-photon cou-
pling (for related proposals, see Refs. [24–44]).
In this Letter, we revisit the sensitivity of spin-precession

experiments, clarifying fundamental aspects of the behav-
ior of the expected axion signal and noise sources. The
system depends on three fundamental timescales: the axi-
on coherence time, τa ∼ ð4 neV=maÞ sec, the transverse
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spin-relaxation time, T2, and the experimental integration
time, T. We demonstrate that there are two previously
overlooked effects that enhance the growth of the signal
when τa < T2, a realization that improves the prospects for
QCD axion detection with spin-precession instruments, and
we comment on the requirements to achieve this goal. We
further reconsider a dominant noise source—spin-projec-
tion noise—and demonstrate that it is larger at high axion
masses, thereby reducing the utility of using materials with
large magnetic moments.
The NMR axion signal.—We begin with a brief review of

spin-precession axion experiments. Fundamentally, they
involve a macroscopic sample of atoms with nonzero
nuclear spin placed within a static magnetic field, B0.
The field induces a bulk magnetization M0 that is parallel
to B0. A perpendicular magnetic field—such as that
induced by the axion—will rotate the nuclear spins by a
small amount. However, as soon as they do, the spins will
precess around B0 at the Larmor frequency, ω0 ≡ γB0,
generating an oscillating transverse magnetization, which
can then be detected with a sensitive magnetometer. For
ma ∼ ω0, the effect is resonantly enhanced, with the width
of the system’s response controlled by the transverse
relaxation time, T2, which is a macroscopic property of
the sample and quantifies how long the precession of the
transverse spins can be maintained coherently. By varying
B0, the instrument can scan a range of axion masses.
To study the dynamics of the magnetization, we turn to

the Bloch equations. Preparing the sample with
M0 ∝ B0 ∝ ẑ, the Bloch equations read

dM
dt

¼ M × γB −
Mxx̂þMyŷ

T2

−
ðMz −M0Þẑ

T1

: ð3Þ

The longitudinal relaxation time commonly satisfies
T1 ≫ T2, and we will work in the limit where T1 is much
longer than any other timescale of interest, so that it will
play no further role in our discussion. We decompose the
magnetic field as B ¼ B0ẑþBaðtÞ. As jBaðtÞj ≪ B0,
we study the magnetization perturbatively, taking M≃
M0 þMa, and we will work only to linear order in the
axion-induced fields throughout [45]. Working to this
order, MzðtÞ ¼ M0, leaving the dynamics to the transverse
magnetizations,

_Mx ¼ ω0My − T−1
2 Mx −M0γBay;

_My ¼ −ω0Mx − T−1
2 My þM0γBax: ð4Þ

These equations can be decoupled. If we measure the x̂
component of the magnetization, the equation to solve is

M̈x þ 2T−1
2

_Mx þ ω2
0Mx ≃ FðtÞ;

where; FðtÞ ¼ γM0½ω0Bax − _Bay�: ð5Þ

Here and throughout, we neglect terms of Oð1=ω0T2Þ, as
they are significantly suppressed. Equation (5) has reduced
the system to the form of a simple harmonic oscillator with
a resonant frequency ω0 and bandwidth 1=T2, that is being
driven by the axion wave. Assuming Mxð0Þ ¼ Myð0Þ ¼ 0,
the solution is given by [46]

MxðtÞ ¼
1

ω0

Z
t

0

dt0 eðt0−tÞ=T2 sin ½ω0ðt − t0Þ�Fðt0Þ: ð6Þ

To complete our solution for the magnetization, we
require a model for the axion field. Here we treat the axion
as a field with a fluctuating phase—we show that our
results are reproduced when the axion is modeled as a sum
over plane waves in [47]. The axion is taken to have
constant amplitude a0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
=ma, fixed by the local

dark-matter density, and oscillates with frequency
ωa ≃mað1þ v2=2Þ. The statistics of the field are then
encoded by requiring the field, which carries velocity
v ∼ 10−3, obtain a new random phase uniformly sampled
on ½0; 2πÞ, every coherence time, τa ¼ 2π=mav2 [48]. Each
time the phase is updated, we further update the direction of
the axion field’s momentum, k (where jkj ¼ mav), though,
parametrically, our results are insensitive to the stochastic
nature of the momentum vector. In summary,

FðtÞ ¼ A cos½ωatþ φðtÞ�;

A≡ 2M0a0

�
gN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0ðk · x̂Þ2 þ ω2

aðk · ŷÞ2
p

;

gdω0E�;
ð7Þ

where we focus on the dominant term in the driving force,
which carries a phase φðtÞ, uniformly sampled on ½0; 2πÞ,
but shifted from the axion phase. Furthermore, we assumed
E� ∝ x̂ for the ED operator. From Eq. (5), a resonant
response is induced in the system when jω0 − ωaj≲
πmax½τ−1a ; T−1

2 �. We will assume a scan strategy such that
this condition is always satisfied, and thereby assume
ωa ≃ ω0.
Whenever t ≪ τa, the axion behaves as if it were a

perfectly coherent driving force: φ and k are constant, so
that Eq. (6) yields the following oscillating solution

MxðtÞ ≃ ð1 − e−t=T2ÞAT2

2ω0

sin½ω0tþ φ�: ð8Þ

For t ≪ T2, the amplitude grows linearly in time. Beyond
T2, however, the growth saturates.
We next extend these results to finite τa. Because of the

stochastic variation of φ and k for t > τa, it is useful to
compute the autocorrelation function of the induced mag-
netization, Cðt; t0Þ≡ hMxðtÞMxðt0Þi,

Cðt; t0Þ ¼ 1

ω2
0

Z
t

0

dt̄
Z

t0

0

dt̄0e−ðt−t̄Þ=T2e−ðt0−t̄0Þ=T2

× sin ½ω0ðt − t̄Þ� sin ½ω0ðt0 − t̄0Þ�hFðt̄ÞFðt̄0Þi: ð9Þ
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The expectation value vanishes unless the random phases
are identical, which requires jt̄ − t̄0j < τa, so that

hFðt̄ÞFðt̄0Þi ¼ 1

2
hA2i cos ½ω0ðt̄ − t̄0Þ�Θðτa − jt̄ − t̄0jÞ; ð10Þ

in terms of the step function Θ. (Here, we have also used
that φ and k are uncorrelated.) The remaining expectation
value can be determined by averaging over the incident
direction of the axion, yielding

hA2i ≃ ð2M0a0ω0Þ2
� ðgNω0vÞ2=3;
ðgdE�Þ2: ð11Þ

At short times (t; t0 ≪ τa) where the axion is continuous,
we have [cf. Eq. (8)],

Cðt; t0Þ ¼ hA2iT2
2

8ω2
0

cos½ω0ðt − t0Þ�

× ð1 − e−t=T2Þð1 − e−t
0=T2Þ: ð12Þ

At longer times, the stochastic fluctuations in the axion
associated with τa must be accounted for. Combining
Eqs. (9) and (10), for t; t0 ≫ τa we can evaluate the integral
by rotating coordinates to t̄� t̄0, yielding

Cðt; t0Þ ¼ hA2iT2τa
16ω2

0

cos½ω0ðt − t0Þ�

× e−ðtþt0Þ=T2ðe2 minðt;t0Þ=T2 − 1Þ: ð13Þ

Equations (12) and (13) allow us to infer the growth of the
magnetization in the presence of a finite τa, as Cðt; tÞ ¼
hM2

xðtÞi. First, for t ≫ T2, we see that the growth saturates
even with a finite coherence time in the driving force,
implying saturation occurs in this limit regardless of the size
of τa. For t ≪ T2, however, the behaviors differ,

lim
t≪T2

hM2
xðtÞi ¼

hA2i
8ω2

0

�
t2 t ≪ τa;

τat t ≫ τa:
ð14Þ

The first result, that the amplitude of the magnetization
grows linearly with time for t ≪ τa; T2, is consistent with
Eq. (8). However, for τa < t < T2, we see that the amplitude
continues to grow, leading to an ever-increasing size, albeit
as

ffiffi
t

p
. Intuitively, this transition in behavior can be under-

stood as the magnetization executing a random walk. For
t > τa,MxðtÞ in Eq. (6) is now a sum of contributions from
the axion field at different coherence times, all of which are
out of phase. The sum is analogous to a 2D random walk
with steps of length τa (given the growth for t < τa), and
with a number of steps t=τa, so that we expect jMxðtÞj ∝ffiffiffiffiffiffi
tτa

p
, exactly as found (cf. Ref. [50]). In Fig. 1 (left), we

show the growth of the magnetization for various axion
masses, computed directly from Eq. (9). The three regimes
(t < τa, τa < t < T2, T2 < t) can be clearly observed.
To compute the experimental sensitivity to a highly

coherent axion signal, it is convenient to move to the
frequency domain. We imagine a dataset fMn ¼ MxðnΔtÞg

FIG. 1. Projections for the sensitivity of a prototypical spin-precession experiment to the magnetic dipole moment operator,
gNð∂μaÞN̄γμγ5N. Left: The axion-induced growth of the magnetization determined from the Bloch equations. At short times the
magnetization grows ∝ t, saturating at T2. If τa < T2, the amplitude grows ∝

ffiffi
t

p
for τa < t < T2. The magnitudes are compared to those

from a SQUID and spin-projection noise, evaluated at k� ≡ ω0T=2π, and assuming an integration time T ¼ T2. Right: Projected
sensitivity to gN (solid) in comparison to previous projections of Ref. [12] (dashed), for an almost identical scan strategy. Strengthened
sensitivity for ma ≫ 2π=v2T2 arises primarily due to the signal growth we account for when τa < t < T2, whereas the suppression at
lower masses arises partially from a refined estimate of the spin-projection noise. Blue and red lines correspond to xenon and helium
targets, and for the latter we label a “QCD axion targeted” for the results that could be obtained with negligible spin-projection noise and
five years of integration time.
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of measurements of the magnetization collected at a
frequency 1=Δt, for an integration time T ¼ NΔt. We
can then compute the power spectral density (PSD) as [51],

Pk ¼
Δt2

T
hjM̃kj2i; M̃k ≡

XN−1

n¼0

e−i2πkn=NMn: ð15Þ

We can compute the PSD exactly for arbitrary T, T2, and τa
[52]. The result is particularly simple for T ≫ T2, taking
the form

Pa
k ≃

hA2iT2
2

16ω2
0

8<
:

4
Δω2

kT
sin2½1

2
ΔωkT� T ≪ τa;

τa
1þΔω2

kT
2
2

T ≫ τa;
ð16Þ

withΔωk ≡ 2πk=T − ω0. Because of the resonant response
of the sample, the signal peaks for Δωk ≃ 0. For
T2 ≪ T ≪ τa, the signal falls dominantly in a single k
bin, or, exactly, if ω0T=2π ∈ N. Once T > τa; T2, the
signal becomes resolved into multiple bins. This will
impact the signal-to-noise scaling, as we will discuss after
considering the relevant background contributions.
Noise sources.—The axion signal must be detected on

top of three relevant Gaussian background contributions:
thermal noise, SQUID noise, and spin-projection noise
[54]. Thermal noise arises in the readout circuit and can be
suppressed by cooling the apparatus, and we assume this
can be done sufficiently for this noise source to be
neglected (for details, see Ref. [23]). The transverse
magnetic field, related to the transverse magnetization by
an Oð1Þ factor which we take to be unity (see Ref. [47]), is
read out using a SQUID. This magnetometer noise is
frequency independent for f ≳ 10 Hz [56,57] and can be
modeled as,

CSQðt; t0Þ ¼ δðt − t0Þ 1

A2
eff

PSQ
ΦΦ ⇒ PSQ

k ¼ 1

A2
eff

PSQ
ΦΦ; ð17Þ

where by default, we take PSQ
ΦΦ ≃ ðμΦ0Þ2=Hz, with Φ0 the

magnetic flux quantum, and Aeff is the effective area of the
sample sensed by a pickup loop, which we take to be
≃0.3 cm2, following Ref. [13].
The final background source we consider is spin-pro-

jection noise, which originates directly from the quantum
nature of the nuclear spins in the sample [58]. We can
determine its magnitude from the autocorrelation function.
Consider two successive measurements of the spin operator
along the x̂ direction, Sx, taken at t and then t0. The
operators are related through the time evolution operator,
UðtÞ ¼ expðiω0SztÞ, Sxðt0Þ ¼ U†ðt0 − tÞSxðtÞUðt0 − tÞ. The
magnetization can be determined from the sum over all
nuclear spins, and assuming the sample is hyperpolarized
(i.e., unit polarization fraction) we obtain,

CSPðt; t0Þ ¼
γ2

2V2
e−jt−t0j=T2

X
i

hSðiÞx ðtÞSðiÞx ðt0Þi þ H:c:

¼ γ2nJ
2V

e−jt−t0j=T2 cos ½ω0ðt − t0Þ�; ð18Þ

where J is the nuclear spin, n is the number density of
spins, and V is the volume of the sample. The exponential
factor is included to account for transverse-spin relaxation,
and for further details, see Ref. [47]. Equation (18) exhibits
a V−1 scaling, which suggests that for a large enough
sample, this noise source can be suppressed. The corre-
sponding PSD for t; t0 ≫ T2 is given by

PSP
k ¼ γ2nJ

2V
T2

1þ Δω2
kT

2
2

: ð19Þ

This result determines the spin-projection noise for an
arbitrary J, assuming a hyperpolarized sample.
Experimental sensitivity.—We now combine the above

results to forecast the expected sensitivity to an axion-
induced signal. We use the signal PSD in the τa ≫ T and
τa ≪ T limits and compare it to the background PSD, using
all k-bins and the likelihood framework presented in [47]
(employing the formalism of Ref. [50] and inserting the
Asimov dataset [59]). Above the transition region of
τa ¼ T, we interpolate between the two regimes with a
horizontal line. In principle, one could extend our analysis
to handle the intermediate regime. Detailed projections
require us to specify explicit experimental parameters.
Even before this, we can determine the sensitivity scaling
with integration time, which varies depending on the
hierarchy between τa, T2, and T. Specifically,

T ≪ τa; T2 ⇒ g ∝ T−3=2

τa ≪ T ≪ T2 ⇒ g ∝ T−1

T2 ≪ T ≪ τa ⇒ g ∝ T−1=2

τa; T2 ≪ T ⇒ g ∝ T−1=4; ð20Þ

where g ¼ gN; gd. The growth becomes slowest once T is
the largest timescale, and the signal is resolved into
multiple bins. These scalings are derived in [47], however,
they arise from comparing the growth of the signal and
background. For instance, for T2 ≪ T ≪ τa, where the
signal is dominantly in a single bin, k� ≡ ω0T=2π, we see
that Pa

k� ∝ T from Eq. (16), whereas PSQ
k� and PSP

k� are
independent of T. Estimating sensitivity by matching the
signal to the background, we find the limit scales as
g ∝ T−1=2.
To provide quantitative projections, we match the

parameters specified in the CASPEr papers [13,24], focus-
ing on the magnetic dipole operator. The accessible Larmor
frequencies set the mass range we consider, and we take
10−14 eV < ω0 < γBmax, with Bmax the maximum mag-
netic field. We fix T2 ¼ 100 sec and for each mass, adopt a
variable integration time, T ¼ max½τa; T2�, to ensure we
always run until the T−1=4 growth sets in from Eq. (20).
This implies that the signal, and therefore the likelihood,
remains dominated by a single frequency bin. To ensure
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each mass is covered only once, resonant frequencies are
adjusted by 2πmax½τ−1a ; T−1

2 �.
We consider two different spin-1=2 samples, and both

assumed to be hyperpolarized. The first consists of pure
xenon-129, which has a nuclear magnetic moment of
0.78 μN and a nuclear spin density of 1.3 × 1022 cm−3,
and we assume Bmax ¼ 10 T. The second is a more
optimistic projection using helium-3—μ ¼ 2.12 μN and
n ¼ 2.8 × 1022 cm−3—and Bmax ¼ 20 T, as well as
assuming the SQUID noise can be decreased by two orders
of magnitude below that discussed around Eq. (17). As
shown in [47], to cover the full mass range, these two
experiments would require a total integration time of 56.1
and 61.5 yr, respectively.
Our results are shown in Fig. 1 (right), and contrasted

with the projections of Ref. [12]. The discrepancy has at
least three sources: (i) the additional growth of the signal
we have accounted for when τa < T < T2, see Eq. (14);
(ii) a different treatment of the spin-projection noise; and
(iii) a different calculation of the Larmor frequency given
Bmax [60]. For the spin-projection noise, we compute the
value for each k with Eq. (19)—recall the signal is
dominantly peaked in a single bin—rather than integrating
a result over a range of frequencies near ω0, as in Eq. (A2)
in Ref. [13]. Further discussion is provided in [47], where
we also contrast our results for the electric dipole operator.
As a final benchmark, in Fig. 1, we also show the helium-3
sensitivity assuming that spin-projection noise could be
evaded, and the mass range is set by assuming five years of
integration time. This benchmark cuts into the QCD axion
parameter space, illustrated by the yellow band [61].
Discussion.—In this Letter we have derived the axion-

induced signal in spin-precession experiments. These
instruments remain one of the most promising paths to
measuring axion-induced magnetic and electric dipoles,
and our calculations demonstrate that their sensitivity is
significantly different to what has previously been esti-
mated. Arguably our most important finding is the
enhanced detection prospects for the QCD axion at high
masses, a result which arises from the continued growth of
the axion-induced signal when integrating beyond the
axion coherence time [62]. Our findings have broader
implications. To name one, they demonstrate that signals
that are less coherent than dark matter—for instance, a
cosmic axion background [63]—are more detectable with
spin-precession instruments than may otherwise have been
concluded [64].

Our work benefited from conversations with Hendrik
Bekker, Yonatan Kahn, Alexander Sushkov, and Arne
Wickenbrock. Further, we thank the anonymous referee
for useful feedback. J. M. L. is supported by the Deutsche
Forschungsgemeinschaft under Germany’s Excellence
Strategy—EXC 2121 “Quantum Universe”—390833306.
The research of J. D. and S. G. is supported in part by NSF

CAREER Grant No. PHY-1915852 and in part by the U.S.
Department of Energy Grant No. DE-SC0023093. Part of
this work was performed at the Aspen Center for Physics,
which is supported by National Science Foundation Grant
No. PHY-1607611.

[1] R. Peccei and H. R. Quinn,CP Conservation in the Presence
of Instantons, Phys. Rev. Lett. 38, 1440 (1977).

[2] R. Peccei and H. R. Quinn, Constraints imposed by CP
conservation in the presence of instantons, Phys. Rev. D 16,
1791 (1977).

[3] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223
(1978).

[4] F. Wilczek, Problem of Strong P and T Invariance in the
Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978).

[5] P. Svrcek and E. Witten, Axions in string theory, J. High
Energy Phys. 06 (2006) 051.

[6] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, String axiverse, Phys. Rev. D 81,
123530 (2010).

[7] J. Halverson, C. Long, B. Nelson, and G. Salinas, Towards
string theory expectations for photon couplings to axionlike
particles, Phys. Rev. D 100, 106010 (2019).

[8] L. Abbott and P. Sikivie, A cosmological bound on the
invisible axion, Phys. Lett. 120B, 133 (1983).

[9] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the
invisible axion, Phys. Lett. 120B, 127 (1983).

[10] M. Dine and W. Fischler, The not so harmless axion, Phys.
Lett. 120B, 137 (1983).

[11] M. Pospelov and A. Ritz, Theta vacua, QCD sum rules, and
the neutron electric dipole moment, Nucl. Phys. 573B, 177
(2000).

[12] P. W. Graham and S. Rajendran, New observables for direct
detection of axion dark matter, Phys. Rev. D 88, 035023
(2013).

[13] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and
A. Sushkov, Proposal for a Cosmic Axion Spin Precession
Experiment (CASPEr), Phys. Rev. X 4, 021030 (2014).

[14] Y. V. Stadnik and V. V. Flambaum, Axion-induced effects in
atoms, molecules, and nuclei: Parity nonconservation, ana-
pole moments, electric dipole moments, and spin-gravity
and spin-axion momentum couplings, Phys. Rev. D 89,
043522 (2014).

[15] C. Abel et al., Search for Axionlike Dark Matter through
Nuclear Spin Precession in Electric and Magnetic Fields,
Phys. Rev. X 7, 041034 (2017).

[16] T. Wang, D. F. Jackson Kimball, A. O. Sushkov, D.
Aybas, J. W. Blanchard, G. Centers, S. R. O’ Kelley, A.
Wickenbrock, J. Fang, and D. Budker, Application of spin-
exchange relaxation-free magnetometry to the cosmic axion
spin precession experiment, Phys. Dark Universe 19, 27
(2018).

[17] A. Garcon et al., Constraints on bosonic dark matter from
ultralow-field nuclear magnetic resonance, Sci. Adv. 5,
eaax4539 (2019).

[18] C. Smorra et al., Direct limits on the interaction of
antiprotons with axion-like dark matter, Nature (London)
575, 310 (2019).

PHYSICAL REVIEW LETTERS 130, 181801 (2023)

181801-5

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.100.106010
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/S0550-3213(99)00817-2
https://doi.org/10.1016/S0550-3213(99)00817-2
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1103/PhysRevD.89.043522
https://doi.org/10.1103/PhysRevD.89.043522
https://doi.org/10.1103/PhysRevX.7.041034
https://doi.org/10.1016/j.dark.2017.11.003
https://doi.org/10.1016/j.dark.2017.11.003
https://doi.org/10.1126/sciadv.aax4539
https://doi.org/10.1126/sciadv.aax4539
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1038/s41586-019-1727-9


[19] T. S. Roussy et al., Experimental Constraint on Axionlike
Particles over Seven Orders of Magnitude in Mass, Phys.
Rev. Lett. 126, 171301 (2021).

[20] M. Jiang, H. Su, A. Garcon, X. Peng, and D. Budker, Search
for axion-like dark matter with spin-based amplifiers, Nat.
Phys. 17, 1402 (2021).

[21] D. Aybas et al., Search for Axionlike Dark Matter Using
Solid-State Nuclear Magnetic Resonance, Phys. Rev. Lett.
126, 141802 (2021).

[22] D. F. Jackson Kimball et al., Overview of the cosmic axion
spin precession experiment (CASPEr), Springer Proc. Phys.
245, 105 (2020).

[23] D. Aybas, H. Bekker, J. W. Blanchard, D. Budker, G. P.
Centers, N. L. Figueroa, A. V. Gramolin, D. F. J. Kimball,
A. Wickenbrock, and A. O. Sushkov, Quantum sensitivity
limits of nuclear magnetic resonance experiments searching
for new fundamental physics, Quantum Sci. Technol. 6,
034007 (2021).

[24] P. W. Graham and S. Rajendran, Axion dark matter detec-
tion with cold molecules, Phys. Rev. D 84, 055013 (2011).

[25] P. Sikivie, Axion Dark Matter Detection using Atomic
Transitions, Phys. Rev. Lett. 113, 201301 (2014); 125,
029901(E) (2020).

[26] P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran, W. A.
Terrano, L. Trahms, and T. Wilkason, Spin precession
experiments for light axionic dark matter, Phys. Rev. D
97, 055006 (2018).

[27] S. P. Chang, S. Haciomeroglu, O. Kim, S. Lee, S. Park, and
Y. K. Semertzidis, Axionlike dark matter search using the
storage ring EDMmethod, Phys. Rev. D 99, 083002 (2019).

[28] S. Chang, O. Kim, Y. Semertzidis, S. Haciomeroglu, S. Lee,
and S. Park, Axion searches with the storage ring EDM
method, Proc. Sci., ICHEP2018 (2019) 842.

[29] T. Wu et al., Search for Axionlike Dark Matter with a
Liquid-State Nuclear Spin Comagnetometer, Phys. Rev.
Lett. 122, 191302 (2019).

[30] W. A. Terrano, E. G. Adelberger, C. A. Hagedorn, and B. R.
Heckel, Constraints on Axionlike Dark Matter with Masses
Down to 10−23 eV=c2, Phys. Rev. Lett. 122, 231301 (2019).

[31] I. M. Bloch, Y. Hochberg, E. Kuflik, and T. Volansky,
Axion-like Relics: New constraints from old comagnetom-
eter data, J. High Energy Phys. 01 (2020) 167.

[32] Q. Yang, Probe dark matter axions using the hyperfine
structure splitting of hydrogen atoms, arXiv:1912.11472.

[33] F. Abusaif et al., Storage ring to search for electric dipole
moments of charged particles—feasibility study, arXiv:
1912.07881.

[34] V. V. Flambaum, D. Budker, and A. Wickenbrock, Oscillat-
ing nuclear electric dipole moments inside atoms, arXiv:
1909.04970.

[35] E. Stephenson (JEDI Collaboration), A search for axion-like
particles with a horizontally polarized beam in a storage
ring, Proc. Sci., PSTP2019 (2020) 018.

[36] A. V. Gramolin, D. Aybas, D. Johnson, J. Adam, and A. O.
Sushkov, Search for axion-like dark matter with ferromag-
nets, Nat. Phys. 17, 79 (2021).

[37] P. W. Graham, S. Hacıömeroğlu, D. E. Kaplan, Z. Omarov,
S. Rajendran, and Y. K. Semertzidis, Storage ring probes of
dark matter and dark energy, Phys. Rev. D 103, 055010
(2021).

[38] K. Gaul, M. G. Kozlov, T. A. Isaev, and R. Berger, Chiral
Molecules as Sensitive Probes for Direct Detection of
P-Odd Cosmic Fields, Phys. Rev. Lett. 125, 123004
(2020).

[39] A. Arvanitaki, A. Madden, and K. Van Tilburg, The
piezoaxionic effect, arXiv:2112.11466.

[40] O. Kim and Y. K. Semertzidis, New method of probing an
oscillating EDM induced by axionlike dark matter using an
rf Wien filter in storage rings, Phys. Rev. D 104, 096006
(2021).

[41] C. Gao, W. Halperin, Y. Kahn, M. Nguyen, J. Schütte-
Engel, and J. W. Scott, Axion Wind Detection with the
Homogeneous Precession Domain of Superfluid Helium-3,
Phys. Rev. Lett. 129, 211801 (2022).

[42] A. Berlin and K. Zhou, Discovering QCD-coupled
axion dark matter with polarization haloscopes, arXiv:
2209.12901.

[43] M. Lisanti, M. Moschella, and W. Terrano, Stochastic
properties of ultralight scalar field gradients, Phys. Rev.
D 104, 055037 (2021).

[44] J. Lee, M. Lisanti, W. A. Terrano, and M. Romalis,
Laboratory Constraints on the Neutron-Spin Coupling of
feV-Scale Axions, Phys. Rev. X 13, 011050 (2023).

[45] This is an excellent approximation. If we take T2; τa → ∞,
then MxðtÞ ∼ gNv

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
M0 sinðω0tÞt for the MD interac-

tion, see Eq. (8). This suggests that with enough time an
infinite magnetization can be generated, which is incon-
sistent with the finite number of spins in the system. Terms
higher order in gN prevent this from occurring. We can
estimate when they must enter by determining when
MxðtÞ ∼M0. Setting gN to the largest allowed value (set
by the SN 1987A bound), we find t ∼ 30 years, dramatically
larger than T1 for any sample we consider, which represents
the longest time we can interrogate the sample for. Including
a finite T2 or τa only strengthens this conclusion.

[46] The solution in Eq. (6) is for the Bloch equation before
terms of Oð1=ω0T2Þ are dropped; cf. Eq. (5).

[47] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.181801 for further
details.

[48] The coherence time is a measure of how long the axion field
can be approximated as a perfectly coherent driving force, or
in the frequency domain how long of a measurement is
required to resolve the intrinsic width of the axion. It is an
approximate notion, as the transition from perfectly coher-
ent to incoherent happens gradually near t ∼ 2π=mav2, not
exactly at τa. For further discussion of the coherence time,
see, for instance, Ref. [49].

[49] J. W. Foster, Y. Kahn, R. Nguyen, N. L. Rodd, and B. R.
Safdi, Dark matter interferometry, Phys. Rev. D 103,
076018 (2021).

[50] J. W. Foster, N. L. Rodd, and B. R. Safdi, Revealing the dark
matter halo with axion direct detection, Phys. Rev. D 97,
123006 (2018).

[51] In Eq. (15) we specify the expectation value of the PSD,
rather than the PSD itself. Given a single experimental
dataset, the average PSD cannot be computed, and it will
vary between realizations as the axion field which gave rise
to it is stochastic. Nevertheless, our goal is to determine
what value we expect to generate, and so we will compute

PHYSICAL REVIEW LETTERS 130, 181801 (2023)

181801-6

https://doi.org/10.1103/PhysRevLett.126.171301
https://doi.org/10.1103/PhysRevLett.126.171301
https://doi.org/10.1038/s41567-021-01392-z
https://doi.org/10.1038/s41567-021-01392-z
https://doi.org/10.1103/PhysRevLett.126.141802
https://doi.org/10.1103/PhysRevLett.126.141802
https://doi.org/10.1007/978-3-030-43761-9
https://doi.org/10.1007/978-3-030-43761-9
https://doi.org/10.1088/2058-9565/abfbbc
https://doi.org/10.1088/2058-9565/abfbbc
https://doi.org/10.1103/PhysRevD.84.055013
https://doi.org/10.1103/PhysRevLett.113.201301
https://doi.org/10.1103/PhysRevLett.125.029901
https://doi.org/10.1103/PhysRevLett.125.029901
https://doi.org/10.1103/PhysRevD.97.055006
https://doi.org/10.1103/PhysRevD.97.055006
https://doi.org/10.1103/PhysRevD.99.083002
https://doi.org/10.22323/1.340.0842
https://doi.org/10.1103/PhysRevLett.122.191302
https://doi.org/10.1103/PhysRevLett.122.191302
https://doi.org/10.1103/PhysRevLett.122.231301
https://doi.org/10.1007/JHEP01(2020)167
https://arXiv.org/abs/1912.11472
https://arXiv.org/abs/1912.07881
https://arXiv.org/abs/1912.07881
https://arXiv.org/abs/1909.04970
https://arXiv.org/abs/1909.04970
https://doi.org/10.22323/1.379.0018
https://doi.org/10.1038/s41567-020-1006-6
https://doi.org/10.1103/PhysRevD.103.055010
https://doi.org/10.1103/PhysRevD.103.055010
https://doi.org/10.1103/PhysRevLett.125.123004
https://doi.org/10.1103/PhysRevLett.125.123004
https://arXiv.org/abs/2112.11466
https://doi.org/10.1103/PhysRevD.104.096006
https://doi.org/10.1103/PhysRevD.104.096006
https://doi.org/10.1103/PhysRevLett.129.211801
https://arXiv.org/abs/2209.12901
https://arXiv.org/abs/2209.12901
https://doi.org/10.1103/PhysRevD.104.055037
https://doi.org/10.1103/PhysRevD.104.055037
https://doi.org/10.1103/PhysRevX.13.011050
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.181801
https://doi.org/10.1103/PhysRevD.103.076018
https://doi.org/10.1103/PhysRevD.103.076018
https://doi.org/10.1103/PhysRevD.97.123006
https://doi.org/10.1103/PhysRevD.97.123006


the expected PSD throughout. A more careful distinction is
provided in [47].

[52] This is discussed in detail in [47]. Also see
Refs. [41,43,44,53] for related considerations.

[53] A. V. Gramolin, A. Wickenbrock, D. Aybas, H. Bekker, D.
Budker, G. P. Centers, N. L. Figueroa, D. F. J. Kimball, and
A. O. Sushkov, Spectral signatures of axionlike dark matter,
Phys. Rev. D 105, 035029 (2022).

[54] In both the fluctuating phase and plane wave models, the
axion field itself forms a Gaussian random field, and hence
one can show so too does any linear functional of the axion
(see, e.g., Ref. [55], Appendix E).

[55] S. Weinberg, Cosmology (Oxford University Press, Oxford,
2008).

[56] S. M. Anton, J. S. Birenbaum, S. R. O’Kelley, V.
Bolkhovsky, D. A. Braje, G. Fitch, M. Neeley, G. C.
Hilton, H.-M. Cho, K. D. Irwin, F. C. Wellstood, W. D.
Oliver, A. Shnirman, and J. Clarke, Magnetic Flux Noise in
dc Squids: Temperature and Geometry Dependence, Phys.
Rev. Lett. 110, 147002 (2013).

[57] Y. Kahn, B. R. Safdi, and J. Thaler, Broadband and
Resonant Approaches to Axion Dark Matter Detection,
Phys. Rev. Lett. 117, 141801 (2016).

[58] M. Braun and J. König, Faraday-rotation fluctuation spec-
troscopy with static and oscillating magnetic fields, Phys.
Rev. B 75, 085310 (2007).

[59] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymp-
totic formulae for likelihood-based tests of new physics,
Eur. Phys. J. C 71, 1554 (2011); 73, 2501(E) (2013).

[60] For helium our result is exactly a factor of two larger,
whereas for xenon the difference is slightly larger than a
factor of 4. For xenon, this difference is attributed to the use
of a combination of isotopes, whereas we considered a pure
sample of xenon-129.

[61] The band is defined as the region bounded from below
by the KSVZ axion model and from above by the DFSZ
model with the down-type Higgs doublet vacuum expect-
ation value set to zero. (Note that the full range of DFSZ
Higgs’ vacuum expectation values allows the QCD axion
parameter space to fill the entire lower right corner of
Fig. 1.)

[62] In light of our results, one may wonder if its possible to
build an experiment using an element that carries a larger
gyromagnetic ratio than helium-3 to increase the maxi-
mum testable axion mass and improve the coverage of
the QCD axion line. Surveying all measured gyromag-
netic moments of nuclear isotopes, the only element with
a substantially larger value is thallium-200, although
since it carries a half-life of ∼1 day it does not appear
viable. Tritium, atomic hydrogen, and fluorine-19
have larger gyromagnetic ratios than helium-3, but by
less than 40%.

[63] J. A. Dror, H. Murayama, and N. L. Rodd, Cosmic axion
background, Phys. Rev. D 103, 115004 (2021).

[64] J. A. Dror, S. Gori, J. M. Leedom, and N. L. Rodd (to be
published).

PHYSICAL REVIEW LETTERS 130, 181801 (2023)

181801-7

https://doi.org/10.1103/PhysRevD.105.035029
https://doi.org/10.1103/PhysRevLett.110.147002
https://doi.org/10.1103/PhysRevLett.110.147002
https://doi.org/10.1103/PhysRevLett.117.141801
https://doi.org/10.1103/PhysRevB.75.085310
https://doi.org/10.1103/PhysRevB.75.085310
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-013-2501-z
https://doi.org/10.1103/PhysRevD.103.115004

