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Dark photons can be the ultralight dark matter candidate, interacting with Standard Model particles via
kinetic mixing. We propose to search for ultralight dark photon dark matter (DPDM) through the local
absorption at different radio telescopes. The local DPDM can induce harmonic oscillations of electrons
inside the antenna of radio telescopes. It leads to a monochromatic radio signal and can be recorded by
telescope receivers. Using the observation data from the FAST telescope, the upper limit on the kinetic
mixing can already reach 10−12 for DPDM oscillation frequencies at 1–1.5 GHz, which is stronger than the
cosmic microwave background constraint by about one order of magnitude. Furthermore, large-scale
interferometric arrays like LOFAR and SKA1 telescopes can achieve extraordinary sensitivities for direct
DPDM search from 10 MHz to 10 GHz.
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Introduction.—Ultralight bosons are attractive dark mat-
ter (DM) candidates, including QCD axions, axionlike
particles, dark photons, etc. [1–3]. Dark photons mixed
with photons through a marginal operator at low energy is
one of the simplest extensions beyond the standard model
of particle physics [4–9]. It can be a force mediator in the
dark sector [1,10,11] or a DM candidate itself [12–15].
This Letter focuses on the dark photon dark matter

(DPDM) with a mass mA0 , comparable to the energy of
radio frequency photons (20 kHz–300 GHz). Ultralight
DPDM can be produced through inflationary fluctuations
[15–25], parametric resonances [26–31], cosmic strings
[32], and the nonminimal coupling enhanced misalignment
[13,14,33] with possible ghost instability [34,35]. Radio-
frequency DPDM can be constrained indirectly by cos-
mic microwave background (CMB) spectrum distortion
[14,36–38] and directly by haloscope experiments like
TOKYO [39–42], FUNK [43], DM pathfinder and Dark
E-field [44,45], SHUKET [46], WISPDMX [47], SQuAD
[48], and recent experiments [49–52]. Axion haloscope
search results [53–73] can be interpreted to DPDM limits
[11,74], but some searches relying on the magnetic veto,

e.g., RBF [75] and UF [76], cannot be translated into
DPDM limits [11,77]. Proposals and future experiments to
search for DPDM include plasma haloscopes [77,78], Dark
E-field [45], DM-Radio [79–82], MADMAX [83], and
solar radio observations [84,85].
One category of broadband haloscope experiments uses

a dish reflector to look for dark photons [86–88]. The
original proposal uses a spherical reflector to convert
A0 → γ, and the monochromatic photons with energy
mA0c2 are emitted perpendicular to the surface, thus
focusing on the spherical center. This method has been
applied to room-sized experiments [39–43,45,46], with
variations using plane or parabolic reflectors or dipole
antenna placed in a shielded room.
In this Letter, we propose to use existing and future radio

telescopes to search for DPDM directly. With huge effec-
tive areas and great detectors, the sensitivities of large-scale
radio telescopes can surpass current astrophysics bounds on
radio-frequency DPDM by several orders of magnitude. We
perform two types of studies: one exploits a single large
dish antenna to convert dark photons into radio signals; the
other uses antenna arrays forming interferometer pairs to
receive radio signals, taking advantage of the long DPDM
coherence.
Figure 1 summarizes our main results. The FAST data

excludes the region surrounded by the solid red curve. The
dashed red, blue, and brown curves show the projected
sensitivities of FAST, LOFAR, and SKA1 [89] telescopes,
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assuming one-hour observation. For comparison, CMB and
haloscopes constraints are shown by the black and gray
shaded regions, respectively. The results show that large
radio telescopes can play an essential and complementary
role in DPDM searches.
Model.—We consider the dark photon Lagrangian

L ¼ −
1

4
F0
μνF0μν þ 1

2
m2

A0A0
μA0μ −

1

2
ϵFμνF0μν: ð1Þ

F0 and F are dark photons and SM photons field strength; ϵ
is the kinetic mixing. After appropriate rotation and
redefinition, one can eliminate the kinetic mixing term
and arrive at the interaction Lagrangian for A0, the SM
photon A, and the electromagnetic current jμem,

Lint ¼ ejμemðAμ − ϵA0
μÞ: ð2Þ

e is the electromagnetic coupling. Therefore, free electrons
in telescope antennas will be accelerated by the DPDM
electric field, E0 ¼ − _A0 −∇A00, and then produce EM
equivalent signals.
Since the local DM velocity is about 10−3c, where c is

the speed of light, E0 oscillates with a nearly monochro-
matic frequency, f ≈mA0=2π. Therefore, radio telescopes
will detect a monochromatic radio signal, broadening the
center value of about 10−6. The DPDMwavelength is about

103c=f, 103 times the same-frequency EM wavelength.
Next, we analyze DPDM signals for the dipole antenna,
dish antenna, and antenna arrays.
Response of the dipole antenna.—A dipole antenna

usually comprises conductive elements like metal wires
or rods. Considering a linear dipole antenna of length l
lying on the horizontal plane observing a radio signal from
the zenith direction with frequency f, it will detect an
oscillating electric field

EEM ¼ E0 cosψ cos ð2πft − k · xÞ: ð3Þ

E0 is the amplitude, k is the wave number, and ψ is the
angle between the electric field and the antenna rod. l is
usually around half of the EM wavelength designed to
detect. However, the DPDM wave number k0 is about
Oð10−3Þ times smaller than k due to the small DM velocity.
Therefore, according to Eq. (2), the antenna will register an
equivalent electric field,

Eeqv
EM ¼ ϵE0

0 cosψ
0 cos ð2πft − k0 · xÞ;

≃ ϵE0
0 cosψ

0 cos ð2πftÞ: ð4Þ

E0
0 is the amplitude of the dark electric field. ψ 0 is the angle

between the dark electric field and the antenna rod.
Thus, typical dipole antennas respond to EM and DPDM

fields differently, mainly by factors of ϵ and the polarization
angle. Additionally, for the DPDM case, the antenna can
always be seen as a short dipole antenna since k0l ≪ 1 for
proposed frequencies, modifying the antenna efficiency by
an Oð1Þ number. Therefore, for general dipole antennas,
one can define a DPDM-induced equivalent EM flux
density,

Ieqvdipole ≡ Cdipoleϵ2hE02i ¼ Cdipoleϵ2ρDM: ð5Þ

ρDM ¼ 0.3 GeV=cm3 is the conservative local DM energy
density [90,91]. Cdipole is an Oð1Þ numerical factor. For
telescopes like LOFAR and SKA1-Low, detailed antenna
designs are needed to simulate the exact values of Cdipole,
which is beyond the scope of the present work. Instead,
we prove that Cdipole ≥ 1 for the antenna with linear di-
pole configuration, showing that the DPDM signal gains
enhancement over the EM signal in Sec. II of the
Supplemental Material [92,93]. In this Letter, we conserva-
tively assume Cdipole ¼ 1 to estimate the potential sensitivity
of LOFAR and SKA1-Low.
Response of the dish antenna.—Some large radio tele-

scopes are constructed as dish antennas like FAST [94] or
dish antenna arrays like MeerKAT [95] and SKA1-Mid
[96]. A dish antenna usually comprises a parabolic reflector
with the feed receiving reflected EM waves at the focus.
Dishes are commonly made of metal plates. According to
Eq. (2), DPDM causes free electrons on metal plates to
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FIG. 1. Constraints and projected sensitivities on the kinetic
mixing ϵ between DPDM and photon in the randomized
polarization scheme. The 95% confidence level (C.L.) exclusion
limit for DPDM using the FAST data is represented by the solid
red curve with an Oð10%Þ uncertainty in cyan, while the dashed
red curve indicates its future sensitivity projection. The blue and
brown dashed curves show the future sensitivity projections of
LOFAR and SKA1 interferometric array telescopes. The existing
limits are from CMB constraints [14,36–38], solar radio obser-
vations [84,85], various haloscope searches [45–52], and axion
experiments [53–73] translated to randomized polarization
scheme [11,74].
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oscillate. Thus, each area unit can be seen as an oscillating
dipole emitting EM waves with the same frequency as
DPDM. Then, the feed signal is the integration over the
dipole units. In Sec. I of the Supplemental Material [92], we
show that the induced dipole with area dS is

dp ¼ 2ϵA0
kdS: ð6Þ

A0
k is the projection of A0 on dS. Then, the EM field at

position r can be obtained by summing up area units,

B ¼ −
ϵm2

A0

2π

Z
dS1A0

k × ðr − r1Þ
eimA0 jr−r1j

jr − r1j2
: ð7Þ

The electric field E can be calculated using B. EM phase at
each dipole unit is determined by the DPDM wavelength,
λ0, different from the phase induced by parallel EM waves
from distant stars. Therefore, the EM wave generated by
DPDM will not focus on the antenna feed. For a single
filled-aperture telescope like FAST, its diameter can be
comparable to λ0. Thus, numerical simulation is necessary
to calculate the induced EM flux into the feed. However, for
dish antenna arrays like MeerKAT and SKA1-Mid, each
dish’s diameter is much smaller than λ0. Therefore, each
dish’s dipole units dp oscillate in phase.
Because of the continuous boundary condition for the

electric field parallel to the metal surface, we have Ek ¼
ϵE0

k right outside the metal surface and the perpendicular

component jE⊥j=jEkj ∼ ðfλ0Þ−1 ≈ 10−3. In Sec. I of the
Supplemental Material [92], detailed calculation shows that
the reflected EM wave propagates nearly perpendicular to
the surface of the metal plate. Right on top of the reflector
surface, its energy density can be estimated as ϵ2jE0j2cos2θ,
where θ is the angle between E0 and the reflector plate.
Since the DPDM-induced EM wave is not focusing, its

flux into the feed is much smaller than the total reflected
flux. The parabolic antenna feed size is usually around the
EM wavelength λ to optimize the absorption, so the
reduction factor is roughly, λ2=A, the ratio between feed
and reflector areas. Therefore, compared to the EM signal
from distant sources, the DPDM-induced equivalent EM
flux density can be written as

Ieqvdish ¼ Cdishϵ2hE02i × λ2

A
¼ Cdishϵ2ρDM

λ2

A
: ð8Þ

Cdish is anOð1Þ numerical factor determined by the detailed
antenna design. Numerical calculations of Cdish are per-
formed by averaging all possible A0 polarization, denoted as
the randomized polarization scheme. Results for FAST and
SKA1-Mid are shown in Sec. I-C of the Supplemental
Material [92].
Sensitivities of antenna arrays.—Radio telescopes using

radio interferometry techniques can effectively enlarge the

effective area and get better sensitivities on faint signals.
The basic observation unit for radio interferometer array is
the antenna pair [97]. Let VmðtÞ and VnðtÞ be the signal
measured by the mth and nth antenna, then up to ampli-
fication factors, the pair’s output signal is

rmn ¼ hVmðtÞV�
nðtÞi: ð9Þ

h� � �imeans the time average. Vm and Vn can be seen as the
voltage measured by antennas, proportional to the elec-
tric field. Therefore, the correlator rmn is proportional to
the EM flux density [97]. A telescope composed of N
antennas has NðN − 1Þ=2 independent pairs. The com-
bined signal increases as NðN − 1Þ=2, whereas the noise
goes like ½NðN − 1Þ=2�1=2. Thus, the signal-over-noise-
ratio increases as ½NðN − 1Þ=2�1=2 ≈ N=

ffiffiffi
2

p
.

For normal EM signals, the minimum detectable spectral
flux density of a radio telescope is

Smin ¼
SEFD

ηs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npolBtobs

p : ð10Þ

npol ¼ 2 is the number of polarizations, ηs is the system
efficiency, tobs is the observation time, B is the bandwidth,
and SEFD is the system equivalent (spectral) flux density,

SEFD ¼ 2kBTsys

Aeff
: ð11Þ

Tsys is the antenna system temperature. Aeff is the antenna
array’ s effective area, increasing with the number of
antennas N.
For the DPDM-induced signal, the correlation length is

determined by its wavelength λ0, beyond which the DPDM
oscillation is out of phase; thus, the correlation is sup-
pressed. For two antennas with distance dmn, the correlation
signal is suppressed by

Smn ≈ expð−m2
A0v20d

2
mn=8Þ: ð12Þ

v0 ≈ 235 km=s is the most probable velocity in the stan-
dard Halo model [98,99]. The detailed derivation uses
truncated Maxwellian distribution, as shown in Sec. III of
the Supplemental Material [92,100–104], consistent with
Ref. [105].
Therefore, for an antenna array composed of N antennas,

the DPDM-induced equivalent EM flux density is

Ieqvarray ¼ SeffI
eqv
single; ð13Þ

where

Seff ¼
2

NðN − 1Þ
XN
m¼2

Xm
n¼1

Smn; ð14Þ
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is the suppression factor. Ieqvsingle is the DPDM-induced EM
flux density for an individual antenna, given by (5) for
dipole antenna and (8) for dish antenna. For dipole array
telescopes like LOFAR and SKA1-Low, the antennas first
form stations, which are further organized into a large
interferometer. Since each station’s size is much smaller
than λ0, we neglect the suppression within a station.
Therefore, the suppression factor becomes

Seff ¼
2

NstatðNstat − 1Þ
XNstat

m¼2

Xm
n¼1

Smn: ð15Þ

Nstat is the number of stations. dmn is the distance between
the mth and nth stations.
Next, we will use the criterion

Ieqvarray=B > Smin ð16Þ

to estimate the projected sensitivities of LOFAR and SKA1
arrays for DPDM.
Constraints from FAST observation data.—FAST is

currently the largest filled-aperture radio telescope. Its
designed total bandwidth is from 70 MHz to 3 GHz with
the current frequency resolution B ¼ 7.63 kHz and de-
signed sensitivity SEFD−1 ¼ 2000 m2=K [94,106]. During
observation, a 300-meter aperture instantaneous paraboloid
is formed to reflect and focus the EM wave into the feed.
The DPDM-induced EM wave is not focusing and there-
fore suffers from the suppression factor, λ2=A; see Eq. (8).
The simulation of the factor C for FAST at different
frequencies is detailed in Sec. I-D of the Supplemental
Material [92], from which we can calculate the DPDM-
induced EM spectral flux density detected by FAST,

SeqvFASTðfÞ≡ IeqvFAST

B
≈ 4.6 × 10−6ϵ2

CFASTðfÞ
CFASTð1 GHzÞ

W
m2 Hz

:

ð17Þ

Requiring SeqvFAST > Smin, we can calculate the sensitivity for
the FAST telescope.
Apart from the simulation, we use the 19-beam L-band

(1–1.5 GHz) observation data from FAST to set upper
limits for DPDM. The observation was conducted on
December 14, 2020, lasting 110 min. A time series of
the signal is recorded for each frequency bin. We use the
noise diode temperature to calibrate data and convert the
signal to the EM spectral flux density by pre-measured
antenna gain. DPDM induces a time-independent line
spectrum signal, whereas most noise sources have transient
features and can be reduced by data filtering processes
[107]. Our data filtering process is detailed in Sec. IVof the
Supplemental Material [14,92,107–110].
After data filtering, for each frequency bin i we obtain

the average measured spectral flux density Ōi and the

statistic uncertainty σŌi
. We then use a polynomial function

to locally model the background around the selected
frequency bin i0 with the help of its neighboring frequency
bins. The systematic uncertainty is estimated by the data
deviation to the background fit. Next, we assume a dark
photon signal with the strength S existing at bin i0, and a
likelihood function L can be built between data and
background function with S incorporated. Coefficients of
the background polynomial function are treated as nuisance
parameters. Following the likelihood-based statistical
method [110], we compute the ratio λS between the
conditional maximized-likelihood (e.g., only varying the
nuisance parameters to maximize L while keeping S fixed)
and the unconditional maximized-likelihood (e.g., varying
both the nuisance parameters and S to maximize L). Then
the test statistic, −2 ln λS, follows the half-χ2 distribution
[110]. Thus, we obtain the 95% C.L. upper limit, Slim, for a
constant monochromatic signal, shown in Fig. 2.
Upper limits on the mixing parameter ϵ are obtained

via Slim ¼ SeqvFAST. All 19 beams give similar constraints
as expected. We choose the strongest limit among the
19 constraints for each frequency bin as the final result,
shown in Fig. 1. The upper limits can reach ϵ ∼ 10−12 in
1–1.5 GHz, about 1 order of magnitude better than
the existing constraint from CMB measurement [14]. We
emphasize that every single frequency between 1–1.5 GHz
is constrained by the real data without any extrapolation.
We also explore the rare case where the DPDM signal falls
into two bins due to its broadening. The sensitivity
calculation is similar but with a doubled data bandwidth.
More details about the FAST original data, filtering
processing, statistical methods, and numerical calculations
are given in Sec. IV of the Supplemental Material [92].
Sensitivities of LOFAR and SKA1.—LOFAR is currently

the largest radio telescope operating at the lowest frequen-
cies (10–240 MHz), containing low-band antennas (LBAs)
and high-band antennas (HBAs). LOFAR antennas are
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FIG. 2. Model-independent 95%C.L. upper limits on a constant
monochromatic signal from FAST data in 1–1.5 GHz. It shows the
strongest limit from the 19 beams at each frequency bin.
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grouped into 24 remote stations, each with a core size
smaller than 2 km. DPDM wavelength within the LOFAR
frequency range is 1.2–30 km. Therefore, we propose to
use the core stations to search for DPDM. Station positions
and relevant parameters can be found in Ref. [111]. The
minimal frequency resolution, Bmin, of LOFAR is about
700 Hz [111].
SKA1 continuously covers 50 MHz–20 GHz, including

SKA1-Low and SKA1-Mid telescopes. SKA1-Low has
131 072 dipolelike antennas grouped into 512 stations,
covering 50–350 MHz, with Bmin ¼ 1 kHz. Station posi-
tions and relevant parameters can be found in
Refs. [112,113]. SKA1-Mid contains 133 SKA1 15-m
diameter and 64 MeerKAT 13.5-m diam dish antennas.
Therefore, its sensitivity on DPDM suffers from the addi-
tional suppression factor, λ2=A; see Eq. (8). SKA1-Mid has
five bands, and the sensitivity and frequency range can be
found in [114] and dish locations in [96]. SKA1-Mid
achieves Bmin ¼ 200 Hz smaller than the DPDM natural
width. Therefore, to calculate its DPDM sensitivity, we use
the natural width, B ¼ 10−6f.
The suppression factor Seff for DPDM signal using

LOFAR and SKA1 arrays as interferometry are shown as
the blue and red curves in Fig. 3, respectively. LOFAR is
less suppressed than SKA1 due to lower frequency, thus
longer DPDM coherent wavelength and smaller separation
between stations.
Following Eq. (16), projected sensitivities on ϵ for

LOFAR and SKA1 are shown in Fig. 1. LOFAR can cover
a frequency down to 10MHz, complementary to Haloscope
searches. SKA1 shows competitive sensitivity for higher
frequencies as a broadband search compared to resonant
cavity searches.
Summary and outlook.—The radio telescopes’ antennas

can convert the DPDM field into an ordinary EM wave.
We have analyzed the sensitivities of the commonly used

dipole and parabolic dish antennas. We found that the
parabolic one has a significant suppression factor for the
DPDM-induced equivalent EM flux. For antenna arrays
like LOFAR and SKA1, due to the sizable coherent length
of DPDM, the interferometry technique in radio astronomy
can enhance the sensitivity.
We have used FAST observational data to set limits for

DPDM. The result is encouraging that for 1–1.5 GHz, the
limit ϵ ∼ 10−12 is 1 order of magnitude stronger than
the CMB constraint. We have projected the sensitivities
for FAST, LOFAR, and SKA1 telescopes and found that
compared to room-sized haloscope experiments, they are
competing and complementary in searching for DPDM
directly.
The DPDM can directly interact with electrons through

(2), inducing a signal in the feed. As detailed in the
Supplemental Material [92], the signal induced from the
reflector studied in this work is about 4 times larger than
the direct feed signal, due to geometric reasons. However,
the feed shape is complex, making it difficult to calculate
the direct contribution accurately. The interference between
the reflector and feed, along with the direct signal, may
result in an Oð10%Þ uncertainty for the FAST limits in
Fig. 1. Furthermore, the FAST sensitivity could be signifi-
cantly improved if one can raise the feed to higher locations
as shown in the Supplemental Material [92].
Dark photon mass can be generated through the

Higgs mechanism or the Stückelberg mechanism. For
the Higgsed case, the sub-keV dark photon is constrained
to ϵeD < 10−14 by the stellar lifetime. eD is the dark U(1)
gauge coupling. This assumes the dark Higgs has a dark
charge of one and a mass below keV [115]. Figure 1
demonstrates that the proposed radio search complements
the stellar constraint for small eD cases. For the Stückelberg
case, the UV cutoff of the dark photon model is constrained
by the weak gravity conjecture [116,117]. Although some
production mechanisms for radio DPDM, like inflation-
induced DPDM [15], are no longer favored by certain
constraints [116], evading these constraints is possible by
further developing the models [118]. Therefore, a radio
DPDM search could provide insights into DPDM produc-
tion mechanisms.
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