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We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective
spin-boson systems and permutationally invariant systems. The condition relates a nonzero macroscopic
cumulant correlation in the steady state to the presence of gapless modes in the Lindbladian. In phases
arising from competing coherent and dissipative Lindbladian terms, we argue that such gapless modes,
concomitant with angular momentum conservation, can lead to persistent dynamics in the spin observables
with the possible formation of dissipative time crystals. We study different models within this perspective,
from Lindbladians with Hermitian jump operators, to non-Hermitian ones composed by collective spins
and Floquet spin-boson systems. We also provide a simple analytical proof for the exactness of the mean-
field semiclassical approach in such systems based on a cumulant expansion.
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Nonequilibrium quantum many-body dynamics consti-
tutes a fundamental and open research field [1–3]. The
dissipative dynamics of a quantum system embedded in an
environment can, in general, be quite cumbersome due to
its high complexity. A common useful approach relies on
Born-Markovian approximation, for which the effective
dynamics for the quantum system is described by a
Lindbladian master equation [4]. Among its emergent
phases, a new form of spontaneous symmetry breaking
(SSB) so-called dissipative time crystal (TC) [5], has
gained much attention recently. These nonequilibrium
phases break spontaneously the time-translation symmetry
of the system, leading to persistent oscillations of macro-
scopic observables in the thermodynamic limit. Despite
intense theoretical and experimental activity (see
Refs. [6,7] for interesting reviews) many aspects of these
new phases are still being unraveled, with particular
attention to the precise role of its many-body correlations
[8,9], symmetries [10–13] and basic mechanisms for the
stabilization of such peculiar nonequilibrium phases.
The spectral properties of a Lindbladian master equation

host valuable information on the system dynamics and
phases [14–19]. The Lindbladian gap in particular can
characterize the critical behavior in dissipative phase tran-
sitions, the emergence of symmetry breaking phases as well
as the asymptotic relaxation dynamics towards the steady
states of the system. In dissipative TCs the Lindbladian
spectrum features gapless excitations generating long-lived
asymptotic dynamics towards the steady state, with a
divergent lifetime in the thermodynamic limit [18,19].
These gapless excitations appear along with coherent
dynamics within their subspace inducing the persistent
oscillations of the system observables. The determination

of the Lindbladian gap, however, is not, in general, a
trivial task. Apart from models sharing specific structures
[20–23] (as quadratic fermion or boson Lindbladians,
symmetries, integrability) for which one can determine
it spectral properties and steady states analytically (or
quasi-analytically), for general interacting systems its
computation relies either in the diagonalization of the
Lindbladian superoperator in an extended Hilbert space or
inferring from the dynamics of the observables of the
system in the asymptotic limit; in both cases an often
nontrivial and challenging task.
In this Letter we discuss a simple sufficient condition to

ensure the gapless nature of a Lindbladian, based only on
its steady state correlations. Although (long-range) corre-
lations are expected to be connected to gapless excitations
and ground state SSB phases in closed Hamiltonian
settings, in this Letter we obtain an analytical proof of
this correspondence for a class of open-systems driven by
Lindbladian master equation. The condition is based on the
exactness of mean-field semiclassical approach for such
systems, which we proof using a cumulant expansion, and
the fact that the macroscopic spin magnetizations of the
nonequilibrium steady state (NESS) cannot be dynamically
reached in the thermodynamic limit due to spin total
angular momentum conservation [as illustrated in
Fig. 1]. Studying different collective spin-boson models
we see that such gapless excitations, or the inability of the
dynamics to reproduce the spin NESS magnetizations, are
usually associated to the appearance of persistent dynamics
and possible dissipative TC phase, indicating an intimate
connection among them.
The model.—We consider M spin ensembles, each

composed of N spin-1=2 subsystems, interacting with a
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bosonic mode and coupled to a Markovian environment.
The time evolution for the system is described by the
Lindbladian master equation [4],

d
dt

ρ̂ ¼ L½ρ̂� ¼ −i½Ĥ; ρ̂� þ
XM
i¼1

Di½ρ� þDa½ρ�; ð1Þ

with L the Lindbladian superoperator. The coherent driving
term is given by Ĥ ¼ Ĥspin þ Ĥboson þ Ĥspin−boson, where
Ĥspin ðbosonÞ corresponds to the spin (boson) term and

Ĥspin boson to the spin-boson interaction. Specifically,

Ĥspin ¼
XM
i¼1

X
α

ωðiÞ
α Ŝαi þ

1

S

XM
i;j¼1

X
α;β

ωði;jÞ
α;β Ŝαi Ŝ

β
j ;

Ĥboson ¼ ωbâ†â;

Ĥspin boson ¼
XM
i¼1

X
α

gαffiffiffiffi
N

p ðâþ â†ÞŜαi ; ð2Þ

where Ŝαi ¼
P

N
k¼1 σ̂

α
i;k=2 [24], with α ¼ x, y, z are the

collective spin operators for the ith ensemble, σ̂αi;k are the
Pauli spin operators for the kth spin in the ith ensemble,
S ¼ N=2 is the total angular momentum of the system and
â the annihilation operator of the bosonic mode satisfying

½â; â†� ¼ 1. The parameter wðiÞ
α describe local fields on the

collective spins, wði;jÞ
α;β the collective spin-spin interactions,

ωb the bosonic mode excitation energy and gα the spin-
boson couplings. The collective spin operators inherit the
SU(2) algebra of their subsystems satisfying the commu-
tation relations ½Ŝαi ; Ŝβj � ¼ iϵαβγŜγiδi;j. Because of the collec-
tive nature of the interactions, the model conserves the total
spin S2i ¼ ðŜxi Þ2 þ ðŜyi Þ2 þ ðŜzi Þ2.
The dissipative boson and spin terms of the Lindbladians

are defined by

Da½ρ� ¼ κb

�
â ρ̂ â† −

1

2
fâ†â; ρ̂g

�
; ð3Þ

Di½ρ� ¼
1

S

X
α;β

ΓðiÞ
α;β

�
Ŝαi ρ̂Ŝ

β
i −

1

2
fŜβi Ŝαi ; ρ̂g

�
; ð4Þ

with κb representing the boson loss rate and ΓðiÞ
α;β ∈ C the

elements of the dissipative spin matrix ΓðiÞ ∈ C3x3 with
α; β ¼ x, y, z. Although in the examples discussed in the
Letter we consider cases with ΓðiÞ positive semidefinite,
representing in fact a Lindbladian master equation, our
proofs are independent of such constraint, thus valid for
more general dynamics not fully in Lindblad form.
Exactness of the mean-field (MF) approach.—Because

of the collective character of the spin operators, the spins
within each ensemble are permutationally invariant. This
symmetry simplifies considerably the description of the
macroscopic observables

x̂ ¼ â† þ âffiffiffiffiffiffiffiffiffiffiffiffi
2Nωb

p ; p̂ ¼ i
â† − âffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N=ωb

p ; m̂α
i ¼ Ŝαi =S ð5Þ

in the thermodynamic limit. Specifically, in this limit MF is
proven exact as we show using a cumulant expansion
approach [25–28] (different proofs are also known [29,30]
using different methods). Such an approach shall be useful
both to (i) define variables of interest for our gapless
condition, (ii) set clear limits of validation for the MF; and
(iii) extend the proof for more general systems (discussed
later in the manuscript). The reasoning behind our proof is
as follows. The first, second, and third order cumulants of
general observables are defined, respectively, by

KðÔjÞ ¼ hÔji;
KðÔj; ÔlÞ ¼ hÔjÔli − hÔjihÔli;

KðÔj; Ôl; ÔmÞ ¼ hÔjÔlÔmi þ 2hÔjihÔlihÔmi
− hÔjÔlihÔmi − hÔjÔmihÔli
− hÔlÔmihÔji: ð6Þ

Deriving the Heisenberg equations of motion for the
second cumulant of the macroscopic observables, which

FIG. 1. Dynamics of macroscopic spin magnetizations hm̂αi for
a collective spin-1=2 model with competing coherent Hamilto-
nian (ωx) and dissipation κ [Eq. (12)], for ωx=κ ¼ 2. We show the
dynamics for different initial conditions and system sizes—
N ¼ 22 (blue), 23 (yellow), 26 (red), and semiclassical limit
N → ∞ (black). The crosses are the corresponding NESS, and
the spherical shell represents the semiclassical set of states with
null macroscopic cumulants, hm̂xi2 þ hm̂yi2 þ hm̂zi2 ¼ 1. The
NESS lie inside the spherical shell (i.e., with nonzero macro-
scopic cumulant correlations). In the thermodynamic limit the
dynamics is constrained to the shell and therefore cannot reach
such NESS leading to the appearance of gapless Lindbladian
excitations, featuring in this case a persistent dynamics.
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we denote with a lower case notation ôj¼m̂α
i , x̂ or p̂, we ob-

serve that _Kðôj;ôlÞ¼f½hKðôpÞKðôq;ôrÞ;hKðôp;ôq;ôrÞ;
hh0=N;h=ðh0NÞ� with f a linear function of its arguments,
p, q ranging from the possible observables of the system

and h, h0 the possible coupling parameters (ω½…�
½…�, gα, κ or Γ)

(see Supplemental Material [25] for detailed calculations).
The function has no independent first-order cumulant terms.
Therefore, assuming h as finite coupling constants, given an
initial uncorrelated state (e.g., a product state) with

lim
N→∞

Kðôq; ôrÞ ¼ 0; lim
N→∞

Kðôp; ôq; ôrÞ ¼ 0; ð7Þ

one has _Kðôj; ôlÞ ¼ 0 implying that the state remains
uncorrelated, and therefore the dynamics shall be con-
strained to the MF first order cumulants, proving its
exactness. We remark that despite MF is usually assumed
exact for collective spin-boson systems, this may not always
be the case. Recall that the derivative function f also
depends on the system couplings and its scaling with
system size. Recently it was proposed collective spin
systems acting as quantum heat engines for which the
coupling strength scales nontrivially with system size [31];
despite still having a well-defined thermodynamic limit, it
leads to the failure of MF due to the unusual scaling and,
consequently, to a nontrivial (enhanced) performance of the
heat engine. Our proof thus provides a simple understanding
for these limitations, and can shed light for engineering
more general systems failing MF with possibly unusual
emergent features. In summary, the MF approach is exact as
long as the weight product between couplings and the initial
state is negligible according to the derivative function f and
Eq. (7). Moreover, since the resulting first order cumulants
describe macroscopic observables, the corresponding
dynamical rates in the Heisenberg equations of motion
must be extensive with the system size (a subtler condition
often not discussed [25]).
Sufficient condition.—For simplicity, we discuss here the

case of a continuous time-independent Lindbladian. The
case of Floquet Lindbladian follows similar reasoning, as
we discuss later. The evolution of a quantum state ρ̂ðtÞwith
the Lindblad master equation is given by

ρ̂ðtÞ ¼ ρ̂NESS þ
X
i

eλitPi½ρ̂ð0Þ�; ð8Þ

where ρ̂NESS is the nonequilibrium steady state of the
dynamics (i.e., L½ρ̂NESS� ¼ 0), λi are the generalized
eigenvalues of the Lindbladian and Pi their corresponding
superoperators. The gap of the Lindbladian is defined as,

ΔN ¼ max
i
ReðλiÞ; ð9Þ

which are always nonpositive. Dissipative TCs breaking
a continuous time-symmetry feature gapless excitations

(i.e., limN→∞ΔN ¼ 0) along with a nonzero imaginary part
for such eigenvalues [ImðλiÞ ≠ 0] inducing nontrivial
coherent oscillation in the system dynamics.
In the case of a nondegenerateLindbladian (ΔN ≠ 0, ∀ N)

we see directly that both limits commute limN;t→∞ρ̂ðtÞ ¼
limt;N→∞ρ̂ðtÞ ¼ ρ̂NESS,whereweuse thenotation limA;B→∞≡
limA→∞limB→∞. On the other hand, if the Lindbladian has
gapless excitations in the thermodynamic limit—and only in
this limit, thus excluding possible decoherence-free sub-
spaces with ΔN ¼ 0 for finite N—one may have a non-
commutativity between these two limits,

lim
N;t→∞

ρ̂ðtÞ ≠ lim
t;N→∞

ρ̂ðtÞ: ð10Þ

The noncommutativity of the NESS properties works as a
sufficient condition for gapless modes in general nonde-
generate Lindbladian, a main property wewill explore in the
Letter.
In the thermodynamic limit the dynamics becomes exact

within a mean-field approach, therefore a natural “order
parameter” to seek for the existence of gapless excitations
follows from the study of cumulant correlations. Specifically,
given an initial uncorrelated state limt;N→∞Kðôj; ôlÞðtÞ ¼ 0
[Eq. (7)], a sufficient condition for noncommutativity follows
from the inverse limit,

lim
N;t→∞

Kðôj; ôlÞðtÞ ¼ lim
N→∞

½Kðôj; ôlÞ�NESS ≠ 0; ð11Þ

where ½Kðôj; ôlÞ�NESS ¼ ðhôjôli − hôiihôliÞNESS, showing
that nonzero macroscopic cumulant correlations in the NESS
come along with gapless excitations.
We focus here in the discussion of cumulants, but it is

worth remarking that any other noncommuting feature
could also be employed as a sufficient criterium for gapless
modes. In particular, a class of states with null macroscopic
cumulant correlations are those of coherent pure states—
the mean-field pure state ansatz. Assuming that this relation
is bijective, i.e., any state with null macroscopic cumulants
corresponds to a coherent pure state, our gapless condition
could be rephased in terms of any property not shared by
coherent pure states, which may be simpler to determine
depending on the system. An equivalent condition could
rely in this way on the purity of the state, as studied for spin
systems with p-order interactions [10] or with a modified
parity-time symmetry [12], for which the mixedness of the
steady state was indeed observed in association to gapless
modes and furthermore to the presence of boundary time
crystals.
Considering Eq. (11) is satisfied the mean-field dynam-

ics can behave in different forms due to the existence of
conserved quantities in the system: (i) if the correlations
concern to boson degrees of freedom, the mean-field may
still reproduce the NESS one-body macroscopic observ-
ables correctly, i.e., ½KðôjÞ�NESS ¼ ½KðôjÞ�MF since there
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are no constraints to their expectation values; (ii) however,
dealing with collective spins this can never be reached due
to the angular momentum conservation

P
αhðm̂α

i Þ2i ¼ 1,
and this is a crucial observation. Specifically, this con-
servation can be rewritten as

P
α½Kðm̂α

i Þ�2NESS þ ½Kðm̂α
i ;

m̂α
i Þ�NESS ¼ 1 ¼ P

α½Kðm̂α
i Þ�2MF. Given Eq. (11) and from

the fact thatKðm̂α
i ; m

α
i Þ ≥ 0 ∀ j, there must be at least an α0

such that ½Kðm̂α0
i Þ�NESS ≠ ½Kðm̂α0

i Þ�MF in the equality.
Therefore, in this case the MF fails completely in the
attempt to reproduce the one-body NESS macroscopic
observables, and the dynamics can become “lost” due to its
inability to match these expectation values, as illustrated
in Fig. 1. We study below different models for which the
cumulant gapless condition is satisfied, and find an
interesting connection to persistent dynamics with the
possible formation of dissipative time-crystal behavior
[32]. The inability of MF to reach the NESS values seems
to lie at the core of these behaviors, showing the importance
of conservation laws (as also considered in different models
Refs. [33–36]) and correlations for such phases.
Hermitian Lindblad operators.—Perhaps the simplest

case correspond to Lindbadians with Hermitian jump
operators, for which the dissipation leads to a collective
dephasing on the spins or boson degrees of freedom
suppressing the off-diagonal terms in the density matrix
with respect to their eigenstate basis. If the Lindbladian has
no degeneracy for finite system sizes, given any initial state
the dynamics is driven towards the maximally mixed state
ρ̂I ¼ I=d, with d the normalization constant, which by
definition has nonzero macroscopic cumulant correlations.
The steady state in this case is trivial for any strength of
dissipation, with no specific ordering among the spins. This
class of Lindbladians satisfy Eq. (11) and therefore always
support gapless modes. A simple example follows a single
spin ensemble (M ¼ 1) driven by a coherent field
Hamiltonian along the x direction (ωx) and a dissipation
along the orthogonal z direction (Γz;z), with all other
parameters null in the Lindbladian [Eq. (1)]. The gap
eigenvalue λ1 (the one with largest nonzero real part) of the
Lindbladian shows in the limit of large system sizes a
gapless scaling −Reðλ1Þ ∼ 1=N with an imaginary term
jImðλ1Þj ∼ ωx. While the decay rate (real part) arises from
the dephasing, the coherent oscillations (imaginary term)
follow directly from the field applied to the spins, with both
features acting roughly independently of each other (see
Ref. [25]). Although one may still observe persistent
dynamics on its observables, it arises simply from the
applied field on the spins (notice that the frequency is
independent of the dissipation), and not due to a correlated
dynamics. A different situation arises, however, for systems
with non-Hermitian Lindblad operators. In this case the
competing coherent and dissipative dynamics can generate
nontrivial steady states and possibly ordered dissipative
time-crystal phases. We discuss examples below.

Collective spin-1=2 model.—A model with non-
Hermitian Lindblad operators supporting nontrivial steady
states corresponds to a single spin ensemble (M ¼ 1)
driven by competing coherent transverse field ωx and a
dissipative decay with

Γx;x ¼ Γy;y ¼
ffiffiffi
κ

p
; Γy;x ¼ i

ffiffiffi
κ

p ¼ Γ�
x;y; ð12Þ

[equivalently, the dissipation corresponds to a decay
Lindblad jump operator

ffiffiffi
κ

p
Ŝ−, with Ŝ� ¼ ðŜx � iŜyÞ],

while all other parameters are null. As discussed in
Ref. [18] in the thermodynamic limit (and only in this
limit) the model features persistent oscillations of its
macroscopic magnetization (dissipative TC) for the weak
dissipative regime ωx=κ > 1 (see Fig. 1), while in the
strong dissipative case ωx=κ < 1 it shows a relaxation to its
steady state. We show in Fig. 2(a) the dynamics for the
cumulants in the dissipative TC phase with its oscillations
and nonvanishing thermodynamic limit (inset). The gapless
excitations tend to spread correlations among the spin
constituents of the ensemble. In Fig. 2(b) we compute the
cumulant phase diagram for the steady state of the model.
While for stronger dissipation the spins dominantly decay,
roughly pointing all down along the z direction and
therefore with null correlations among them, for weaker
dissipation there are indeed nonzero macroscopic correla-
tions in the NESS. The region with dissipative TC phase is
therefore precisely the one with non-null macroscopic
cumulants, corroborating our arguments. We also analyzed
extended models composed by a pair of interacting spin-
1=2 systems (M ¼ 2). Our results show again a connection
between cumulant correlations to dissipative TCs (see
Ref. [25] for details).
Floquet spin-boson system.—We also consider time-

dependent Floquet Lindbladian dynamics. Specifically, a
modulated open Dicke model with a single spin ensemble
(M ¼ 1) interacting with a single-mode cavity. This model
of interacting systems supports dissipative time-crystals
phase robust to perturbations, as examined in detail by
Gong et al. in Ref. [19]. The Lindbladian is defined as

(a) (b)

FIG. 2. (a) Dynamics of cumulants C ¼ P
α Kðm̂α

i ; m̂
α
i Þ for

different system sizes, with ωx=κ ¼ 2. The inset shows the finite
size scaling analysis, converging to a non-null value in the
thermodynamic limit. (b) NESS cumulants for varying ratio ωx=κ
and system sizes.
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Eq. (1) where the spin-boson coupling gxðtÞ is modulated
periodically,

gxðtþ TÞ ¼ gxðtÞ ¼
�
g; 0 ≤ t ≤ T

2
;

0; T
2
≤ t ≤ T;

ð13Þ

with T the Floquet period, the cavity (spin) field is given

by ωb (ωð1Þ
z ) and cavity loss by the rate κb. All other

parameters are null. The model can break its discrete time-
translation symmetry showing subharmonic oscilations
with period nT, for n > 1.
In the case of Floquet dynamics we must revisit the gap

definition. It is now appropriate dealing with the Floquet-

Lindblad superoperator UF ¼ T e
R

T

0
dtLðtÞ. The Floquet

steady state is described by the eigenvalue of the operator
UF with λi ¼ 1. The gap describing the slowest relaxation
mode of the system is the closest to the unit ratio, i.e.,

Δ½Floquet�
N ¼ 1 −max

fλig
jλij: ð14Þ

With this definition all our gapless condition arguments
remain unchanged, based on the cumulant correlations of
the Floquet steady state.
The analysis of the dynamics for the system is very

demanding in the limit of large number of spins due to the
high dimensionality of the Hilbert space. Nevertheless, one
can work with an effective description of the model, within
an adiabatic elimination of the spin degrees of freedom and
under specific conditions [19]. The boson-only description
is given by the coherent Hamiltonian,

Ĥ ¼ ωbâ†â −
Ω2ðtÞ
4

ðâ† þ âÞ2 þ Ω4ðtÞ
32N

ðâ† þ âÞ4; ð15Þ

and losses as Eq. (3). The couplings are given by

Ω2ðtþTÞ¼Ω2ðtÞ¼
(
1.5ωb; 0≤ t≤ π

ωb
;

0; π
ωb
≤ t≤ ð2− ϵÞ π

ωb
;

ð16Þ

with Ω4ðtÞ ¼ Ω2ðtÞ. The dynamics of the system can be
studied numerically, truncating the maximum boson occu-
pancy sufficiently large. Given an initial coherent state, we
show in Fig. 3(a) the Floquet dynamics for the system in the
thermodynamic limit, with couplings κb ¼ 0.1ωb and
ϵ ¼ 0.1 supporting a dissipative TC. The macroscopic
position operator, after an initial transient time, is charac-
terized by a stable period doubling dynamics. Performing a
finite-size scaling for the macroscopic cumulant correla-
tions we obtain their scaling with system size shown in
Fig. 3(b). Once more, concomitant with macroscopic
correlations, the system supports gapless Floquet excita-
tions, as shown in the inset of Fig. 3(b).

Permutationally invariant systems.—Our MF proof and
gapless condition can be extended to more general systems,
as we illustrate below. Specifically, we generalize to
Lindbladians satisfying a weaker restriction, that the
expectation values of the spins be permutationally invariant
in the dynamics:

�Yn
j¼1

σ̂
αj
i;kj

�
¼

�Yn
j¼1

σ̂
αj
i;k0j

�
; ∀ kj; k0j; i; n; ð17Þ

where hÔi≡ Trðρ̂ðtÞÔÞ, kp ≠ kq, and k0p ≠ k0q, for p ≠ q,
i.e., for each ith spin ensemble, the n-body correlated
magnetization is independent on the spin microscopic
labels (kj and k0j). We consider as an example a dissipative
spin channel with possible spatial dependence,

Di½ρ̂� ¼
XN
j;k¼1

X
α;β

γðiÞj;kα;β

�
σ̂αi;jρ̂σ̂

β
i;k −

1

2
fσ̂βi;kσ̂αi;j; ρ̂g

�
; ð18Þ

with well-defined thermodynamic couplings, i.e.,

limN→∞
P

N
j¼1 γ

ðiÞj;j
α;β =N and limN→∞

P
N
j≠k γ

ðiÞj;k
α;β =N finite.

The previously discussed collective spin dissipation
[Eq. (4)], as well sufficiently long-range [13] and strictly
local ones (γi;jα;β ¼ δi;jγ̃α;β) lie as specific cases of the above
channel [37]. The proof follows similarly to the previous
discussions (see Ref. [25] for details).
Conclusion.—In this Letter we discussed a condition for

gapless excitations in a class of Lindbladians described by
collective spin-boson models and general permutationally
invariant systems. The condition based only on the macro-
scopic cumulant correlations is important not only for
analytically establishing the fundamental relationship
between NESS properties and system dynamics, but also
from a practical point of view in the spectral determination
without the need for a time evolution integration of the
master equation or its exact diagonalization. These results

(a) (b)

FIG. 3. (a) Stroboscopic dynamics (tn ¼ nT) for the macro-
scopic position operator with N ¼ 60, considering a coherent
state as initial condition. (b) Cumulant correlations Kðôi; ôjÞ in
the NESS for different macroscopic observables. The inset shows

the floquet spectral gap Δ½Floquet�
N [Eq. (14)] with the number of

spins N, highlighting its exponential decay. In all plots we used a
maximum boson occupation of db ¼ 65.
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can be insightful towards a proper understanding of the basic
mechanisms for persistent dynamics in the thermodynamic
limit. Interesting perspectives rely on the generalization for
different models, i.e., nonpermutationally invariant systems
[38]. Moreover, since our condition is a sufficient one, it
would be important to extend to the necessary conditions for
gapless excitations as well. Finally, we expect that our
results will have an impact on the experimental implemen-
tation. Such phases have recently been observed in atom-
cavity systems [39–42]. Envisioned with state-of-the-art
quantum simulation platforms [43–47], one could engineer
different forms of correlated dissipative steady states in spin-
boson systems, and therefore different dissipative time-
crystal implementations.

The codes for the numerical simulations have been
constructed using the open source QuTiP library and free
software Octave [48].
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H. Zanettea, and José Lorenzana, Dynamical phases tran-
sitions in periodically driven Bardeen-Cooper-Schrieffer
systems, Phys. Rev. Res. 5, 023014 (2023).

[37] Nathan Shammah, Shahnawaz Ahmed, Neill Lambert,
Simone De Liberato, and Franco Nori, Open quantum
systems with local and collective incoherent processes:
Efficient numerical simulations using permutational invari-
ance, Phys. Rev. A 98, 063815 (2018).

[38] Joseph Tindall, Amy Searle, Abdulla Alhajri, and
Dieter Jaksch, Quantum physics in connected worlds,
Nat. Commun. 13, 7445 (2022).

[39] Hans Keßler, Jayson G. Cosme, Michal Hemmerling,
Ludwig Mathey, and Andreas Hemmerich, Emergent limit

cycles and time crystal dynamics in an atom-cavity system,
Phys. Rev. A 99, 053605 (2019).

[40] Hans Keßler, Jayson G. Cosme, Christoph Georges, Ludwig
Mathey, and Andreas Hemmerich, From a continuous to a
discrete time crystal in a dissipative atom-cavity system,
New J. Phys. 22, 085002 (2020).

[41] Hans Keßler, Phatthamon Kongkhambut, Christoph
Georges, Ludwig Mathey, Jayson G. Cosme, and
Andreas Hemmerich, Observation of a Dissipative Time
Crystal, Phys. Rev. Lett. 127, 043602 (2021).

[42] Phatthamon Kongkhambut, Jim Skulte, Ludwig Mathey,
Jayson G. Cosme, Andreas Hemmerich, and Hans Keßler,
Observation of a continuous time crystal, Science 377, 670
(2022).

[43] Lorenza Viola, Evan M. Fortunato, Marco A. Pravia,
Emanuel Knill, Raymond Laflamme, and David G. Cory,
Experimental realization of noiseless subsystems for quan-
tum information processing, Science 293, 2059 (2001).

[44] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S.
Filipp, P. J. Leek, A. Blais, and A. Wallraff, Dressed
Collective Qubit States and the Tavis-Cummings Model
in Circuit QED, Phys. Rev. Lett. 103, 083601 (2009).

[45] Minghui Xu, D. A. Tieri, E. C. Fine, James K. Thompson,
and M. J. Holland, Synchronization of Two Ensembles of
Atoms, Phys. Rev. Lett. 113, 154101 (2014).

[46] Athreya Shankar, John Cooper, Justin G. Bohnet, John J.
Bollinger, and Murray Holland, Steady-state spin synchro-
nization through the collective motion of trapped ions, Phys.
Rev. A 95, 033423 (2017).

[47] D. A. Gangloff, G. Éthier Majcher, C. Lang, E. V. Denning,
J. H. Bodey, D. M. Jackson, E. Clarke, M. Hugues, C. L.
Gall, and M. Atatüre, Quantum interface of an electron and a
nuclear ensemble, Science 364, 62 (2019).

[48] The dynamics for the density matrix with finite N spins and
mean-field equations were computed using Runge-Kutta
numerical integration. We obtain the Lindbladian spectrum
with numerical exact diagonalization of the superoperator
matrix.

PHYSICAL REVIEW LETTERS 130, 180401 (2023)

180401-7

https://doi.org/10.1103/PhysRevLett.126.230601
https://doi.org/10.1103/PhysRevLett.126.230601
https://doi.org/10.1103/PhysRevE.106.014143
https://doi.org/10.1103/PhysRevE.106.014143
https://doi.org/10.1103/PhysRevB.95.214307
https://doi.org/10.1103/PhysRevB.95.214307
https://doi.org/10.1103/PhysRevB.99.104303
https://doi.org/10.1103/PhysRevB.99.104303
https://doi.org/10.1103/PhysRevResearch.3.L042023
https://doi.org/10.1103/PhysRevResearch.3.L042023
https://doi.org/10.1103/PhysRevResearch.5.023014
https://doi.org/10.1103/PhysRevA.98.063815
https://doi.org/10.1038/s41467-022-35090-y
https://doi.org/10.1103/PhysRevA.99.053605
https://doi.org/10.1088/1367-2630/ab9fc0
https://doi.org/10.1103/PhysRevLett.127.043602
https://doi.org/10.1126/science.abo3382
https://doi.org/10.1126/science.abo3382
https://doi.org/10.1126/science.1064460
https://doi.org/10.1103/PhysRevLett.103.083601
https://doi.org/10.1103/PhysRevLett.113.154101
https://doi.org/10.1103/PhysRevA.95.033423
https://doi.org/10.1103/PhysRevA.95.033423
https://doi.org/10.1126/science.aaw2906

