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We consider planar liquid crystal elastomers: two-dimensional objects made of anisotropic responsive
materials that remain flat when stimulated, however change their planar shape. We derive a closed form,
analytical solution based on the implicit linearity featured by this subclass of deformations. Our solution
provides the nematic director field on an arbitrary domain starting with two initial director curves. We
discuss the different gauge choices for this problem and the inclusion of disclinations in the nematic order.
Finally, we propose several applications and useful design principles based on this theoretical framework.
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A self-shaping surface is a thin sheet, made of natural or
artificial environmentally responsive materials or metama-
terials, that is designed to undergo a specific shape change
upon an external actuation. Such objects have been
thoroughly studied in recent years, both at the fundamental
and at the applicative level. Among the systems studied are
plant tissues [1,2], hydrogels [3,4], smart textiles [5], self-
folding origami [6], inflatables [7], and many more.
One class of self-shaping materials that has been

extensively studied in recent years is that of liquid crystal
elastomers (LCEs), cross-linked polymer networks that
exhibit liquid crystalline nematic order [8]. Such materials
can be actuated in various ways, causing them to undergo a
local shrinking or expansion along predetermined local
principal directions. This is achieved by coupling between
the strain state of the polymer network and the degree of
nematic order, which can be coupled to various external
stimuli. While the magnitude of this local deformation is
constant throughout the entire material, the principal
shrinking direction (the nematic director field) may vary
throughout the sheet. The deformation can be realized by
different agents, typically light [9] or heat [10], but also
magnetic [11] and electric fields [12]. This actuation
mechanism is not limited to LCEs. Systems of diverse
nature exhibit identical shape morphings in response to an
external stimulus; from manmade systems like 3D printing
of a hydrogel or cellulose hybrid ink [13] or pressure-
actuated networks of airways [7] to natural systems like
humidity-responsive plant tissues that drive the opening of
seed pods [2] and even the deformation of individual
cells [14].
Determining the postactuation geometry of a LCE sheet

equipped with a particular two-dimensional director field,
also know as the forward problem, has been solved [15,16]
and amply explored [17–19]. Likewise, the inverse problem
of determining the LCE director field that will deform into
a desired geometry has been shown [20–23] to be solvable

locally in the form of a system of nonlinear hyperbolic
partial differential equations (PDEs).
In this Letter, our objects of interest are flat LCEs that

remain flat upon actuation, however their planar shape is
deformed into a sequence of new shapes as a function of the
actuation parameter, as exemplified in Fig. 1. We shall
henceforth refer to these as planar LCEs or PLCEs. Even
though the experimental realization of such sheets is not
different from the case of generic, out-of-plane-deforming
LCE sheets, the mathematical treatment is substantially
simplified. We show that the absence of Gaussian curvature
in the desired, target geometry implies linearity of the PDEs
governing the problem, therefore allowing for a closed,
exact integral solution for the director field.
It is worth noting that such solutions, which mathemati-

cally represent mappings from the plane to itself, are well
known in the mathematical literature as constant principal
strain (CPS) mappings, and significant results have been
derived for them using analytical methods [24–27]. Of
cardinal importance to our context is Gevirtz’s capability
theorem [25], which states that CPS mappings cannot

FIG. 1. Planar liquid crystal elastomer (PLCE) deformations of
a circular domain. The elongations along (by factor λ1) and
perpendicular (λ2) to the director field deform the sheet and
change the shape of its boundary, without buckling out of the
plane (regardless of the sheet’s thickness).
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transform a given domain into an arbitrary second one.
The immediate conclusion is that some planar shape
deformations are just not possible in LCEs, regardless of
how extreme the local deformation gets. The inverse
problem for planar domain deformations is not generically
solvable.
Model.—The director field imprinted on the initial

surface is typically written as n̂ ¼ ðcos θ; sin θÞ in
Cartesian coordinates, and the induced Gaussian curvature
of the actuated surface is written as some function of θ and
its derivatives [15,16]. However, as emphasized in
Ref. [15], except for particular, highly symmetric configu-
rations, this setup is not convenient for the solution of the
inverse problem, even in the flat cases that we are
considering. Alternatively, it is useful and in many aspects
natural to use a coordinate system based on the integral
curves of the director field and their perpendiculars [20,28].
In these coordinates, the director field is everywhere
tangent to the local coordinate frame. Denoting by u and
v the coordinates for the n̂ and n̂⊥ curves, respectively, one
may write the preactuated state as rðu; vÞ ¼ ½xðu; vÞ;
yðu; vÞ�. The tangency condition is expressed as

∂r
∂u

¼ αn̂;
∂r
∂v

¼ βn̂⊥; ð1Þ

with some scale factors αðu; vÞ and βðu; vÞ.
By construction, the length element of the preactuated

sheet in these coordinates reads ds2 ¼ α2du2 þ β2dv2. The
deformation upon actuation is a local contraction or
expansion along the director field n̂ by a factor λ1, and
along the perpendicular n̂⊥ by λ2. This results in an
actuated geometry of the exact form (in the same uv
coordinates), with uniformly rescaled scale factors αA ¼
λ1α and βA ¼ λ2β. The degree of anisotropy of the local
deformation is controlled by the parameter λ1=λ2; for LCEs
this value typically ranges between ∼0.5 and ∼10, corre-
sponding to strains between 40% and 400% along the
nematic director [29].
The compatibility conditions that impose zero Gaussian

curvature in the initial sheet andKA in the actuated one take
the form [20]

1

β

∂b
∂v

¼ b2 −
KA

λ−21 − λ−22
; ð2aÞ

1

α

∂s
∂u

¼ −s2 −
KA

λ−21 − λ−22
; ð2bÞ

where b and s are the nematic bend and splay [20,28]:

b ¼ ∇ × n̂ ¼ −
∂vα

αβ
; s ¼ ∇ · n̂ ¼ ∂uβ

αβ
: ð3Þ

Replacing Eq. (3) into Eq. (2), one obtains a self-contained
PDE system for only α and β:

∂

∂v

�
1

β

∂α

∂v

�
¼ αβK; ð4aÞ

∂
∂u

�
1

α

∂β

∂u

�
¼ −αβK; ð4bÞ

with K ¼ ðλ−21 − λ−22 Þ−1KA.
As discussed in Ref. [20], these equations are a hyper-

bolic set whose characteristic curves are the u, v lines
themselves. Different types of initial conditions may be
added to make a well-posed integrable problem. For our
purposes, it is useful to set a Goursat problem [20]; the
initial value data are given along two intersecting character-
istic curves. Namely, we consider a protocol in which we
are given two plane curves that intersect perpendicularly.
We then wish to design a PLCE such that one of the input
curves is everywhere parallel and the other everywhere
perpendicular to the nematic director. In our uv coordinate
system, these curves would correspond to v ¼ v0 and
u ¼ u0. We are free to choose parametrization along these
curves, namely, α0ðuÞ≡ αðu; v0Þ and β0ðvÞ≡ βðu0; vÞ,
respectively (we later discuss this gauge freedom in detail).
These initial conditions, together with Eq. (4), make a well-
posed Goursat problem, to which a unique solution exists
locally.
Solution.—The system in Eqs. (4) is in general genuinely

nonlinear; however, when K ¼ 0 it reduces to

∂

∂v

�
1

β

∂α

∂v

�
¼ ∂

∂u

�
1

α

∂β

∂u

�
¼ 0; ð5Þ

and could readily be integrated once to read

∂αðu; vÞ
∂v

¼ rðuÞβðu; vÞ; ∂βðu; vÞ
∂u

¼ tðvÞαðu; vÞ; ð6Þ

with rðuÞ and tðvÞ arbitrary functions. Comparing with
Eq. (3) reveals that these functions are not independent of
our previous gauge choice, since

bðu; vÞ ¼ −
rðuÞ

αðu; vÞ ; sðu; vÞ ¼ tðvÞ
βðu; vÞ : ð7Þ

The bend bðu; v0Þ and splay sðu0; vÞ are simply the
geodesic curvatures of the director and director-
perpendicular initial curves, respectively, setting an alge-
braic relation between rðuÞ, tðvÞ and α0ðuÞ; β0ðvÞ.
Importantly, relations (7) hold not only at the initial curves,
but everywhere within the solution domain.
For any choice of rðuÞ and tðvÞ we can find the solution

to this linear Goursat problem using Riemann’s method
(full derivation in Supplemental Material [30]). In short, we
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find a convolution kernel (also known as a Riemann’s
function) based on the integrals

RðuÞ≡
Z

u

u0

du0rðu0Þ; TðvÞ≡
Z

v

v0

dv0tðv0Þ: ð8Þ

The solution is then given by

αðu;vÞ−α0ðuÞ
rðuÞ ¼

Z
u

u0

du0α0ðu0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TðvÞ
RðuÞ−Rðu0Þ

s

×I1f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RðuÞ−Rðu0Þ�TðvÞ

p
g

þ
Z

v

v0

dv0β0ðv0ÞI0f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðuÞ½TðvÞ−Tðv0Þ�

p
g;

ð9aÞ

βðu;vÞ− β0ðvÞ
tðvÞ ¼

Z
u

u0

du0α0ðu0ÞI0f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½RðuÞ−Rðu0Þ�TðvÞ

p
g

þ
Z

v

v0

dv0β0ðv0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðuÞ
TðvÞ−Tðv0Þ

s

× I1f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðuÞ½TðvÞ−Tðv0Þ�

p
g; ð9bÞ

with In the modified Bessel function of order n.
Of course, we are interested not in the scale factor

functions α and β, but rather in the director field θðx; yÞ.
Equation (7) implies that rðuÞ ¼ −∂uθðu; vÞ and
tðvÞ ¼ ∂vθðu; vÞ; thus the change in θ along u lines is

independent of the value of v and vice versa. Combined
with Eq. (8), we obtain

θðu; vÞ − θ0 ¼ TðvÞ − RðuÞ; ð10Þ

with θ0 an arbitrary constant. To obtain the solution in the
laboratory Cartesian coordinates we plug the solutions in
Eqs. (9) and (10) to the xy − uv transformation defined by
Eq. (1); thus,

rðu; vÞ − r0 ¼
Z

u

u0

du0αðu0; v0Þn̂ðu0; v0Þ

þ
Z

v

v0

dv0βðu; v0Þn̂⊥ðu; v0Þ: ð11Þ

Together, Eqs. (10) and (11) provide us with xðu; vÞ,
yðu; vÞ, and θðu; vÞ, from which one extracts θðx; yÞ and
can go on to make their PLCE. The algorithm is illustrated
in Fig. 2. An initial domain and two curves that intersect
each other orthogonally are chosen. In the uv plane, these
curves become straight lines, and the solution away from
those lines is given by Eq. (9). With Eqs. (10) and (11), we
map back the solution to the input domain in lab
coordinates.
Singularities.—A solution cannot be further extended

beyond a point where either α ¼ 0 or β ¼ 0, and the PDE
system becomes singular. At these points gradients of the
nematic director diverge; namely, these points are
disclinations. Gevirtz [26] proved that, even though there
is no bound for the number of singularities that can appear
in a given domain, they are of only two types. In the

(a) (b)

(c)

(d)(e)

FIG. 2. Solving the PLCE director field. (a) A domain and two curves that intersect orthogonally are set in the laboratory xy
coordinates; the curves will become director and director-perpendicular integral curves. (b) We fix the gauge functions αðu; v0Þ, βðu0; vÞ
by choosing a parametrization of the initial curves. The geodesic curvatures further fix the gauge functions rðuÞ, tðvÞ. (c) This sets the
Goursat initial value problem, whose (d) solution in the uv coordinates is given by the expression (9). (e) Finally, we map the resolved
director field back to the xy coordinates, and restrict it to the desired domain.
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language of nematic liquid crystals, these types correspond
to very specific realizations of aþ1 and aþ1=2 topological
defect. Theþ1 type has a logarithmic spiral shaped director
[18,19]. The þ1=2 type is made of a purely azimuthal
sector and a purely radial sector, separated by two π=2
constant-director sectors. In both cases, these structures
would generically upon actuation make a cone or an
anticone, the opening angle of which depends on the spiral
or sector angle. However, if one sets the spiral or sector
angle just right, such singular LCEs will make neither a
cone nor an anticone. They will deform in the plane but
remain flat everywhere, including at the defect apex.
This highly nontrivial result extends beyond PLCEs

(since for any bounded Gaussian curvature, at small enough
distances r ≪ jKAj−1=2 the surface appears nearly flat).
Therefore, a point disclination in a LCE sheet would
generically induce a diverging Gaussian curvature near
or at the defect apex upon actuation, unless it is locally one
of the two abovementioned director fields near the tip.
Thus, a smooth LCE sheet that is to remain smooth upon
actuation may only include þ1 and a þ1=2 topological
defects.
Gauge choice.—A natural gauge choice, that grossly

simplifies the integral solution (9), is to set rðuÞ ¼
tðvÞ ¼ −1. This gauge, which we call the Hencky-
Prandtl (HP) gauge for reasons that will become apparent
below, is widely used in different contexts in the math-
ematical literature [31–33]. In the HP gauge, Eq. (6)
becomes the Klein-Gordon equation for both α and β:

∂
2αHP

∂u∂v
¼ αHP: ð12Þ

In this gauge we have that

αHPðu; vÞ ¼ 1

bðu; vÞ ; βHPðu; vÞ ¼ −
1

sðu; vÞ ; ð13Þ

so that α, β correspond to the radii of curvature of the u and
v lines at any point.
In many cases, if α0ðuÞ and β0ðvÞ are simple enough,

Eq. (9) could be integrated explicitly. In particular, Taylor
expanding α0ðuÞ and β0ðvÞ with coefficients αn and βn,
respectively, we obtain a power-series solution (see
Supplemental Material [30]):

αðu; vÞ ¼ αðu0; v0ÞI0½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − u0Þðv − v0Þ

p
�

þ
X∞
n¼1

�
αn

�
u − u0
v − v0

�
n=2

− βn−1

�
v − v0
u − u0

�
n=2

�

× In½2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu − u0Þðv − v0Þ

p
�: ð14Þ

Equation (7) implies that, in a PLCE, if the nematic bend
b changes sign it does so across v lines, and likewise, the
splay s only changes sign across u lines. Regularity of the

PDE system requires that in the HP gauge b and s do not
change sign. Therefore, this gauge is only useful in cases
where the initial curves’ geodesic curvatures do not change
sign and, as a result, the bend and splay are everywhere
nonzero. Such an example is shown in Fig. 3(a). In cases
where the curvature of the initial curves changes sign, the
HP gauge is rendered impracticable.
One way out is to generalize it so that rðuÞ and tðvÞ are

simple polynomials. A more natural choice, suggested by

(a)

(c)

(b)

FIG. 3. Geodesic curvature changes of the director field integral
curves. (a) the nematic director is everywhere positively bent and
positively splayed. The geodesic curvatures of both sets of
integral curves are everywhere nonzero. (b) here, the bend b
changes sign twice while s remains positive; the change of signs
occurs along v curves, a hallmark of LPCEs. (c) similarly, s could
only change sign across u curves.

FIG. 4. A PLCE designed to change the font weight of a text.
The initial u curves are chosen to run along the letters’ back-
bones, while the v curves are chosen to be straight lines.
Actuation makes the font either lighter (λ2 < λ1) or bolder
(λ1 < λ2), without buckling out of the plane.
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Niv and Efrati (NE) [28] and used in Ref. [20], is to set
α0ðuÞ ¼ β0ðvÞ ¼ 1, which is equivalent to

rNEðuÞ ¼ −bðu; v0Þ; tNEðvÞ ¼ sðu0; vÞ; ð15Þ

and therefore, by Eq. (7),

αNEðu; vÞ ¼ bðu; v0Þ
bðu; vÞ ; βNEðu; vÞ ¼ sðu0; vÞ

sðu; vÞ : ð16Þ

With the Niv-Efrati gauge, explicit integration becomes
harder and will often need to be carried out numerically.
Nonetheless, it allows designing PLCEs with bend and
splay that change sign [Figs. 3(b), 3(c), and 4].
Discussion.—It is worth mentioning that, due to the

purely geometric nature of this problem, the system that we
consider has analogs in other physical and engineering
contexts [34]. The networks of director and director-
perpendicular fields that we obtain for PLCEs are known
as Hencky-Prandtl nets [35,36]. They appear in the field of
structural optimization as load-carrying structures of mini-
mum weight [37–39], and in plasticity theory [31,32,40,41]
as slip line fields, that generate deformation patterns in
plastic solids. In both cases, these solutions emerge due to
the assumed-constant yield stress or strain of the material,
analogs to the constant elongation factors λ1;2 in the PLCE
setting. Several numerical techniques for the construction
of HP nets were developed in the applied mathematics and
engineering literature; the analytical solution Eq. (9) for the
particular case of r ¼ t ¼ −1 was derived using classical
methods by Geiringer [42] and employed in diverse
geometries by various authors [33,43,44].
In the PLCE context, the Goursat problem we solve in

this Letter may at first glance seem artificial. However, as
we show next, it is useful and may be applied in various
ways for design and engineering purposes. Generic LCE
sheets, that develop Gaussian curvature upon actuation
[18,19,23], are inherently elastically frustrated; buckling
out of the plane to realize their non-Euclidean geometry
and reduce stretching will result in an elastic bending cost.
At any nonzero thickness, upon actuation there exists no
stress-free state for such sheet, even when one introduces
director gradients across the thickness to reduce bending
[23]. PLCEs, on the other hand, are inherently compatible
and admit a stress-free state at any thickness and any
actuation parameter level. Thus, the solutions presented
here could be used for making bulk shape-shifting objects,
e.g., long beams that are programmed to change their cross
section upon actuation.
Having a full analytical solution rather than an implicit

system of equations opens the door to several analyses and
applications that are not currently accessible. The singu-
larity horizon could be more easily identified, and the
problem of domain design more accessible (although, as
mentioned in the introduction, the full inverse problem is

not solvable). The analytical solution further provides tools
for optimization problems over the set of solutions,
handling singularities and more.
Finally, the Goursat initial conditions are particularly

useful for design purposes, as one may arbitrarily choose
the two initial curves to induce elongation or shortening
along predefined paths. One example for a useful appli-
cation of this design principle is shown in Fig. 4. If one
chooses the initial curve along the letter backbone of a
certain typeface, the resulting PLCE will change its font
weight upon actuation. As mentioned before, these font
designs will be stress-free and morphologically robust
regardless of their thickness. This and other simple design
principles may build upon this Letter and provide useful
tools for future design and technology applications.
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