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Current-biased Josephson junctions exhibit hysteretic transitions between dissipative and super-
conducting states as characterized by switching and retrapping currents. Here, we develop a theory for
diodelike effects in the switching and retrapping currents of weakly damped Josephson junctions. We find
that while the diodelike behavior of switching currents is rooted in asymmetric current-phase relations,
nonreciprocal retrapping currents originate in asymmetric quasiparticle currents. These different origins
also imply distinctly different symmetry requirements. We illustrate our results by a microscopic model for
junctions involving a single magnetic atom. Our theory provides significant guidance in identifying the
microscopic origin of nonreciprocities in Josephson junctions.
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Introduction.—The nonreciprocal behavior of diodes
constitutes a central element of electronics [1,2]. Non-
reciprocity is also central to microwave and radio-
frequency technology [3]. It is clearly a question of both
applied and fundamental concern, whether nonreciprocal
behavior can be realized in superconductors. Recent experi-
ments on superconductors [4–11] as well as related theory
[12–16] indicate that the critical current can indeed depend
on the current direction.
These experiments have been extended to Josephson

junctions, which are particularly promising for device
applications, for instance in the context of superconducting
qubits. A variety of current-biased junctions have been
found to exhibit nonreciprocal behavior [17–25]. Many
junctions are in the weak-damping regime, where the
voltage response is hysteretic [Fig. 1(a)] and the nonre-
ciprocal behavior can occur in multiple characteristic
currents. When increasing the bias current, the junction
switches into the resistive state at the switching current Isw.
Conversely, when reducing the current bias, the junction
will retrap into the supercurrent state at a smaller retrapping
current Ire. The switching and retrapping currents are in
general different from one another and from the critical
current Ic of the junction, the maximal supercurrent that the
junction can in principle support [26]. While the dominant
nonreciprocity is typically in the switching current
[17,21,23,25], it is in the retrapping current in a recent
experiment [27].
Theoretical work [29–37] has largely focused on explor-

ing scenarios in which the current-phase relation and hence
the critical current are asymmetric. Here, we present a
general discussion of nonreciprocities in the various char-
acteristic currents of current-driven Josephson junctions.
Focusing on the low-damping limit with well-developed
hysteresis, we show that nonreciprocities in the switching

and retrapping currents have different microscopic origins
and require different sets of broken symmetries. While
dominant nonreciprocity in the switching current results
from an asymmetric current-phase relation, dominant non-
reciprocity in the retrapping current originates in asym-
metric quasiparticle dissipation. We illustrate our results by
a microscopic calculation for junctions including a single
magnetic atom. Our results give important guidance for the
design and interpretation of experiments on nonreciprocal
Josephson junctions.
Model.—The dynamics of Josephson junctions is con-

ventionally described within the model of a resistively and
capacitively shunted Josephson junction (RCSJ) [26]. This
model assumes that the junction carries capacitive (IC),
dissipative (Id), and noise (δI) currents in parallel to the
supercurrent (I0). Current conservation implies that these
currents sum to the bias current Ib [Fig. 1(b)],

IC þ I0 þ Id þ δI ¼ Ib: ð1Þ

The conventional RCSJ model assumes a sinusoidal
current-phase relation I0 ¼ Ic sinφ, Ohmic dissipation
Id ¼ V=R by a shunt resistance R, and a capacitive current
IC ¼ C _V. Johnson-Nyquist noise associated with the shunt
resistor introduces a fluctuating current with correlator
hδIðt1ÞδIðt2Þi ¼ ð2T=RÞδðt1 − t2Þ at temperature T. The
Josephson relation V ¼ ℏ _φ=2e turns Eq. (1) into a
Langevin equation for the stochastic dynamics of the
superconducting phase difference φ across the junction.
In its conventional form, the RCSJ model predicts

reciprocal characteristic currents. Nonreciprocal behavior
can in general be introduced by modified capacitive,
dissipative, or supercurrent terms. Misaki and Nagaosa
[32] showed that nonreciprocal behavior can originate in
nonlinear contributions to the quantum capacitance. This
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mechanism requires different carrier densities on the two
sides of the junction and applies to junctions joining two
different superconducting materials.
The recent experiments [17,21,23,25,27] were per-

formed on junctions made of a single superconductor.
For this reason, we concentrate on nonreciprocities origi-
nating in the supercurrent I0 and the dissipative current Id.
To this end, we allow for general current-phase relations
I0ðφÞ and dissipative currents Id ¼ IdðVÞ. Using Eq. (1)
and the Josephson relation, the phase dynamics is then
described by [38,39]

ðℏC=2eÞφ̈þ Idðℏ _φ=2eÞ þ I0ðφÞ þ δI ¼ Ib: ð2Þ
The correlator hδIðt1ÞδIðt2Þi ¼ KðV ¼ ℏ _φ=2eÞδðt1 − t2Þ
of the current fluctuations is related to the dissipative

current by the fluctuation-dissipation theorem. In the limit
of low temperatures, this impliesKðVÞ ¼ 2T½IdðVÞ=V� (for
a detailed discussion, see Supplemental Material [28]).
Equation (2) describes the dissipative motion of a phase
particle in a tilted washboard potential UðφÞ ¼ U0ðφÞ −
ðℏ=2eÞIbφ with I0ðφÞ ¼ ð2e=ℏÞðdU0=dφÞ. For definite-
ness, we restrict our attention to (periodic) potentialsU0ðφÞ
with a single minimum (φmin

0 ) and maximum (φmax
0 ) per

period.
Nonreciprocity and symmetries.—The nonreciprocity in

the switching and retrapping currents have distinctly differ-
ent origins. This can be seen by directly simulating the
Langevin dynamics for a weakly damped junction.
Resulting histograms for the switching and retrapping
currents are shown in Fig. 2. The histograms are indepen-
dent of the direction of the bias current Ib for the conven-
tional RCSJ model [Fig. 2(a)]. Only the switching current is
nonreciprocal, when the junction has an asymmetric
current-phase relation, I0ðφÞ ≠ −I0ð−φÞ, but symmetric
dissipative current, IdðVÞ ¼ −Idð−VÞ. In contrast, only the
retrapping current is nonreciprocal for asymmetric IdðVÞ,
but symmetric I0ðφÞ.
This difference between switching and retrapping cur-

rents reflects that switching and retrapping are due to
different underlying physics. Switching is caused by escape
from a minimum of the tilted washboard potential UðφÞ,
thus requiring asymmetry in the U0ðφÞ and hence I0ðφÞ.
In contrast, retrapping back into a minimum of UðφÞ is
induced by frictional energy loss, which depends directly
on the dissipative current IdðVÞ for the particular bias
direction. This also implies that nonreciprocities in the
switching and retrapping currents have different symmetry
requirements. Asymmetries in the current-phase relation
require breaking of both time-reversal and inversion

FIG. 2. Histograms of retrapping (ire;�) and switching (isw;�)
currents for bias currents ib of both signs (�). (a) Conventional
RCSJ model. (b) Asymmetric current-phase relation I0ðφÞ and
symmetric dissipative current IdðφÞ. (c) Symmetric I0ðφÞ and
asymmetric IdðφÞ. Parameters: [28].

FIG. 1. RCSJ model for weakly damped Josephson junctions.
(a) Hysteretic dependence of time-averaged voltage on bias
current (T ¼ 0: red, dashed; T ≠ 0: green) and characteristic
currents. Trace generated for asymmetric current-phase relation
I0ðφÞ (left inset) and dissipative current IdðVÞ (right inset).
Dotted traces in insets show corresponding curves used in the
conventional RCSJ model. (b) Equivalent circuit of the RCSJ
model. (c) Phase-space diagram of the deterministic junction
dynamics with coexisting trapped (orange) and running (green)
solutions. Parameters: [28].
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symmetry [4,35]. In contrast, asymmetries of the dissipa-
tive current, IdðVÞ≠−Idð−VÞ, require breaking of particle-
hole symmetry (in the normal-metal sense) and inversion
symmetry, while time reversal need not be broken (as for
conventional diodes). The dissipative current has contri-
butions from the quasiparticle current of the junction as
well as the electromagnetic environment. While the latter is
typically symmetric, the quasiparticle current is generically
nonlinear and asymmetric in the absence of inversion and
particle-hole symmetry.
Fokker-Planck description.—To develop an analytical

theory, we follow standard considerations to convert Eq. (2)
into the Fokker-Planck equation [40,41]

∂p
∂τ

¼
�
−v

∂

∂φ
þ ∂

∂v

�
u0ðφÞ þ idðvÞ þ

1

2

∂

∂v
kðvÞ

��
p ð3Þ

for the time evolution of the probability density pðφ; v; τÞ
as a function of the phase φ and its velocity v ¼ φ0. Here,
we have defined a dimensionless time variable τ ¼ Ωpt in
terms of the plasma frequency Ωp ¼ ½4e2EJ=ℏ2C�1=2,
where EJ ¼ d2U0ðφmin

0 Þ=dφ2 is the Josephson energy.
[This implies U0ðφÞ ¼ −EJ cosφ for a sinusoidal current-
phase relation.] Also defining dimensionless currents
i ¼ ðℏ=2eÞI=EJ and potentials u ¼ U=EJ, the Langevin
equation (2) becomes φ00þidðφ0Þþi0ðφÞþδi¼ ib, where
primes denote derivatives with respect to dimensionless
time τ. The noise correlator hδiðτ1Þδiðτ2Þi¼kðφ0Þδðτ1−τ2Þ
involves kðvÞ ¼ 2θidðvÞ=v in terms of the reduced
temperature θ ¼ T=EJ.
At zero temperature, the Johnson-Nyquist noise

vanishes, δi ¼ 0. Then, the dynamics of the phase variable
becomes deterministic, with two types of solutions. For
small bias currents, the phase is locked to a minimum φmin

of the washboard potential uðφÞ and the junction supports
supercurrent flow, ib ¼ i0ðφminÞ. For large bias currents,
there is a running solution corresponding to a resistive state
of the junction. In this state, the phase variable moves in a
fixed direction at all times and the energy gain due to the
current bias is compensated by the friction induced by the
dissipative current.
For weak damping, the two types of solutions coexist

at intermediate bias currents, see the phase-space diagram
in Fig. 1(c). Then, the junction transitions between the
two types of solutions due to Johnson-Nyquist noise
and exhibits hysteresis. The nonreciprocal behavior of
Josephson junctions is controlled by the transition rates
between the trapped and running states, which we now
derive for general current-phase relations and dissipative
currents.
Switching rate.—We first consider the switching rate out

of the trapped into the running state. For weak damping, the
energy—and consequently the action—of the undamped
motion are slowly varying variables. Then, the Fokker-
Planck equation can be reduced to a drift-diffusion equation

for the distribution function pðJÞ of the action J ¼ H
dφv

(here,
H
denotes an integral over one period of the trapped

motion) [42,43]. Using the general drift-diffusion equation
∂τp ¼ ∂J½−vDpþD∂Jp� and deducing the drift velocity
vD ¼ −

H
dφidðvÞ as well as the diffusion coefficient

D ¼ ½2πθ=ωðJÞ� H dφidðvÞ from the Langevin equation,
we obtain (see Ref. [28] for details)

∂p
∂τ

¼ ∂

∂J

�
εdðJÞ

�
1þ 2πθ

ωðJÞ
∂

∂J

��
p: ð4Þ

Here, we introduced the (dimensionless) energy εd ¼H
dφidðvÞ, which is dissipated per period. The current-

phase relation and the bias current also enter via the angular
frequency ωðJÞ ¼ 2πdhðJÞ=dJ of the trapped motion,
where h ¼ 1

2
v2 þ uðφÞ is the Hamiltonian of the undamped

junction.
Deriving the transition rate from the trapped into the

running state is now an escape problem out of a metastable
well [41]. In the low-temperature limit, we find the
(dimensionless) activation rate (see Ref. [28])

γsw ¼ εdðJBÞω0

2πθ
exp

�
−
εB
θ

�
: ð5Þ

The transition rate depends exponentially on the activation
barrier εB ¼ hðJBÞ − hðJ ¼ 0Þ out of the metastable well.
[Here, JB is the action of the undamped separatrix motion
beginning and ending at the unstable maximum φmax, see
red dashed contour in Fig. 1(c), and J ¼ 0 corresponds to
the phase particle at rest in the stable minimum φmin.]
Dissipation only affects the preexponential attempt fre-
quency through εdðJBÞ, the limit of the dissipated energy
per period as the separatrix between running and trapped
motion is approached. ω0 is the oscillation frequency in the
minimum of the tilted washboard potential uðφÞ.
Retrapping rate.—We now consider the retrapping rate

from the running into the trapped state. For weak damping,
the retrapping current is parametrically smaller than the
critical current and proportional to the strength of dissipa-
tion. We can thus restrict attention to small bias currents
implying a weakly tilted washboard potential. Under these
conditions, we focus on the action J ¼ R 2πsgnðvÞ

0 dφv evalu-
ated for the Hamiltonian h0 ¼ 1

2
v2 þ u0ðφÞ of the unbiased

junction. Note that the action J is now defined as an integral
over all φ, as appropriate for the running state. The action is
again slowly varying with time and satisfies a drift-diffusion
equation [44]. The drift involves a contribution from the
bias current ib in addition to the dissipative term, vd ¼
−
R 2πsgnðvÞ
0 dφ idðvÞ þ 2πjibj. The diffusion constant be-

comes D ¼ ½2πθ=ωðJÞ� R 2πsgnðvÞ
0 dφ idðvÞ. This gives [28]

∂p
∂τ

¼ ∂

∂J

�
εdðJÞ − 2πjibj þ εdðJÞ

2πθ

ωðJÞ
∂

∂J

�
p ð6Þ
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for p ¼ pðJÞ. Here, εdðJÞ ¼
R 2πsgnðvÞ
0 dφ idðvÞ is the dis-

sipated energy per period in the running state.
Following analogous steps as for the switching rate, we

obtain the (dimensionless) retrapping rate [28]

γre ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i0dðv̄Þ

idðv̄Þ=v̄
½jibj − ir0;��2

2πθ

s

× exp

�
−

1

2θ

1

i0dðv̄Þ idðv̄Þv̄

½jibj − ir0;��2
�
: ð7Þ

Here, we define the retrapping currents ir0;sgnv ¼
ð1=2πÞ R 2πsgnðvÞ

0 dφ idðvðJBÞÞ in the absence of fluctua-
tions, where JB is the action of the separatrix beginning
and ending at neighboring unstable maxima φmax

0 . The
average phase velocity v̄ is the solution of ib ¼ idðv̄Þ and
the upper (lower) sign applies for ib > 0 (ib < 0). The
expression for the retrapping rate is valid at low temper-
atures and for bias currents sufficiently far from ir0;�.
For Ohmic friction and sinusoidal current-phase relation,
our result reduces to the classic expression of Ben-Jacob
et al. [45].
Nonreciprocity of switching and retrapping currents.—

With these preparations, we are in a position to discuss
nonreciprocity in weakly damped Josephson junctions in
rather general terms. First, consider the nonreciprocity
properties of the switching rate. If u0ðφÞ is symmetric
about φ ¼ 0 [and thus i0ðφÞ ¼ −i0ð−φÞ], Eq. (4) gov-
erning the switching rate is explicitly symmetric under sign
changes of the bias current ib. This follows since the
dissipation parameter εd and the frequency ωðJÞ are
expressed as integrals over a full period of the trapped
motion, in which the phase velocity v changes sign [28].
This conclusion remains true even if the dissipative current
idðvÞ is asymmetric in v. We thus find that as for the critical
current, nonreciprocal switching rates require breaking
of time reversal symmetry, such that u0ðφÞ is no longer
symmetric under φ → −φ and the barrier εB becomes
dependent on the sign of the bias current ib.

Equation (6) governing the retrapping rate is explicitly
symmetric under sign changes of ib as long as the
dissipative current idðvÞ is symmetric. This is true for
any potential u0ðφÞ. A nonreciprocal retrapping rate origi-
nates in asymmetry of idðvÞ, which leads to ir0;þ ≠ ir0;−.
Thus, a nonreciprocal retrapping rate requires breaking of
particle-hole symmetry (in the normal-metal sense), so that
the contribution of the quasiparticle current to idðvÞ can be
asymmetric. In contrast, breaking of time-reversal sym-
metry [asymmetric u0ðφÞ] is not required.
The switching and retrapping rates allow one to derive

expressions for the average switching and retrapping
currents. We assume a bias-current ramp ibðτÞ ¼ aτ with
rate a. Then the switching current isw can be defined
through PtðiswÞ ¼ 1

2
, where Pt is the probability to be in the

trapped state. Using the switching rate (5), one finds that
the shift in the switching current Δisw;� ¼ isw;� − ic;�
relative to the critical current is equal to [28]

Δisw;�
ic;�

≈
�

θ

εB0
ln

�
εdðJB0Þ

2πa ln 2jφmax
0 − φmin

0 j�

��
1=μ�

; ð8Þ

where JB0 is the action of the separatrix in the ab-
sence of damping and bias current and μ� ¼ jφmax

0 −
φmin
0 j�ic;�=εB0. Similarly, we find that fluctuations shift

the retrapping rate away from ir0;� by [28]

Δire;� ≈
�
θi0dðv̄Þ

idðv̄Þ
v̄

ln

�
θ½i0dðv̄Þ�3
2πða ln 2Þ2

idðv̄Þ
v̄

��
1=2

; ð9Þ

where the right hand side is evaluated for ib ¼ �ir0;�.
These expressions make the nonreciprocities of the average
switching and retrapping currents explicit. While Eqs. (8)
and (9) assume sufficiently high barriers as well as smooth
drift and diffusion of the action [28], our qualitative results
are valid more widely as indicated by the numerical results
in Fig. 3. We also note that while our analytical
results focus on the regime of thermally activated switching
and retrapping, quantum tunneling may become relevant at
sufficiently low temperatures. This will affect explicit

FIG. 3. Microscopic model of Josephson junction with magnetic impurity. (a) I-V characteristics of quasiparticle current due to
YSR state associated with magnetic impurity for different potential scatterings K. (b)–(d) Histograms of switching and retrapping
currents corresponding to I-V characteristics in (a) (note color-coded box), emphasizing the importance of particle-hole symmetry.
Parameters: [28].
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temperature dependences, but leaves our qualitative results
unaffected.
Yu-Shiba-Rusinov junctions.—We illustrate the impor-

tance of particle-hole symmetry for the retrapping current
by microscopic results for a Josephson junction hosting a
magnetic adatom coupled to one of the electrodes (for a
recent experiment, see Ref. [27]). The spin of the adatom
couples to the electrode electrons via both exchange
scattering J and potential scattering K, with the latter
being nonzero only when particle-hole symmetry is broken
[46]. These couplings induce Yu-Shiba-Rusinov (YSR)
resonances within the superconducting gap, which are
symmetric in energy, but in general asymmetric in intensity
for nonzero potential scattering. This provides a micro-
scopic model for an asymmetric quasiparticle current
[Fig. 3(a)] accompanied by a symmetric current-phase
relation. Consistent with our general theoretical analysis,
a simulation of the junction dynamics based on a standard
model for YSR states [47–50] (see Ref. [28] for details)
exhibits asymmetric retrapping currents for nonzero po-
tential scattering K, with the direction of the asym-
metry dependent on the sign of K [Figs. 3(b) and 3(c)].
Symmetric retrapping currents are observed for K ¼ 0,
when particle-hole symmetry is preserved [Fig. 3(d)].
Conclusions.—We have developed a general theory of

nonreciprocity in current-biased Josephson junctions,
focusing on the hysteretic behavior for weak dissipation
(high quality factor). We have shown that a nonreciprocal
switching current originates from nonreciprocity of the
supercurrent. In contrast, a nonreciprocal retrapping current
originates from quasiparticle dissipation which is asym-
metric under a sign change of ib. Moreover, these different
sources of nonreciprocity have different symmetry require-
ments. While nonreciprocal switching currents require
breaking of time reversal symmetry, nonreciprocity of
the retrapping current requires breaking of particle-hole
symmetry, but not of time reversal symmetry. Recent
experiments on weakly damped Josephson junctions
revealed dominant nonreciprocities in both, the switching
and the retrapping current. Our theory implies that these
nonreciprocities have fundamentally different microscopic
origins.
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