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We address the sliding thermodynamics of van der Waals-bonded bilayers by continuum electro-
mechanics. We attribute the robustness of the ferroelectricity recently observed in h-BN and WTe, bilayers
to large in-plane stiffness of the monolayers. We compute the electric susceptibility and specific heat in a
mean-field self-consistent phonon approximation. We compare critical temperatures and electric switching

fields with the observed values.
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The discovery of ferroelectricity in van der Waals
stacked bilayers of two-dimensional (2D) WTe, and
hexagonal boron nitride (h-BN) with out-of-plane polari-
zation substantially expands the family of ferroelectric
materials [1-9]. The dipolar order arises from the precise
stacking of two polar van der Waals-bonded monolayers
that change sign by a small shear motion. The potential
barriers for switching between the up and down polariza-
tion states are very low (<meV per unit cell) [1,2,8].
Surprisingly, the “sliding ferroelectricity” remains stable
even above room temperature [4,6,7,9], in contrast to the
ferromagnetism in van der Waals mono or bilayers [10-17].

From a theoretical perspective, long-range order weak-
ens with reduced dimensionality (d) [18]. According to the
Mermin-Wagner-Hohenberg theorem [19,20] at any finite
temperatures an isotropic short-range force cannot order
spin system with d <2 due to the infrared divergence
caused by gapless Goldstone modes. An anisotropy or a
switching barrier is thus essential for phase transitions in
d <2. 2D magnets are stable at room temperature only
when the magnetic anisotropy amounts to tens of meV per
magnetic moment. The mechanism underlying the high
thermal stability of sliding ferroelectrics in spite of the low
switching barriers appears to be unexplained.

In this Letter, we present a thermodynamic model of 2D
sliding ferroelectrics that explains this conundrum. We
associate the sliding ferroelectric phase transition with the
shear motion of the entire layer with macroscopic mass that
is driven by thermally fluctuating forces. The model
parameters include the mass density, intralayer stiffness,
and interlayer bonding. The phase transition is triggered by
a soft “sliding phonon” of the bilayers and the high Curie
temperature follows from the interplay between the ultra-
low switching barrier and intralayer rigidity. This mecha-
nism is not unique for ferroelectrics, but also holds for
structural sliding instabilities in nonferroelectric bilayers, in
which the phase transition can be observed in the specific
heat. However, the ferroelectricity serves as a unique
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monitor of a bistability that can be controlled by
temperature-dependent critical switching fields.

We consider a bilayer of two atomic monolayers that
may slide relative to each other along a particular direction,
e.g., the armchair (long lattice vector) direction in the
parallel stacked h-BN (WTe,) bilayer. The energy minima
correspond to states with opposite polarity that are sepa-
rated by a saddle-point (SP) potential barrier (A) defined by
an intermediate nonpolar configuration, as sketched in
Fig. 1. In the presence of a perpendicular electric field
E, the Hamiltonian of a bilayer under a relative sliding
displacement ii; along the x direction reads [21,22]
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FIG. 1. The interlayer binding energy landscape in sliding
ferroelectrics illustrated for hexagonal BN bilayers. The AB and
BA stacking configurations correspond to two opposite sponta-
neous polarization states that are separated by saddle-shaped
potential with minimum energy barrier A (per unit area). Boron
and nitrogen atoms in the top (bottom) layer are represented by
large (small) orange and blue circles, respectively.
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where p, = p/2 is half of the mass density p of a single

layer, 7, = p,ii, the conjugate momentum to i, 4, and u the
2D Lamé coefficients, and V the interlayer binding energy
density. P(ii,) is the electric polarization density that
depends on &, and should be evaluated self-consistently
below. Here we consider only one-component sliding
motion, disregarding the interlayer displacements that do
not directly affect the polar states such as out-of-plane
flexural modes. We also neglect weak modulations of the
electrostatic energy beyond the Stark interaction —EP.
P(i1y) is an odd function of it with respect to the nonpolar
SP, to leading order therefore P(ii,) = Zit + O(&t}), where Z
1s a constant that measures the interlayer polarization by the
ionic charges. When Z = 0, the electric polarization and field
effect vanish; our model then describes a sliding structural
phase transition between degenerate ground states [23].
V(ity) is in general periodic for a large sliding distance.
However, since the polar states are usually separated by a
very low barrier and a small sliding displacement, we may
adopt an approximate inverted camelback potential [2]

. A
V(i) = — (5 - ag)?, (2)

o
where A represents the barrier height per unit area and 2a,
is the distance between the two minima. When E = 0,
Eq. (2) hosts two degenerate minima at +a, with polari-

zation Py = +Za,.
In general,
iy (r.1) = () + &(r.1), (3)
where (---) denotes the thermal average, &,(r,r) are

the spatiotemporal fluctuations with (& (r,7)) =0, and
(En(r, 1)) = (&") is independent of time and space. At
equilibrium the force on each layer vanishes, i.e.,

A

; TR

(g, 0)) = =2 ([&:(r.0). H]) =

With Bosonic commutation relations [#(r, 1), it, (¥, 1)] =
—ihd(r —1') and [#,(r, 1), #,(r', )] = O, this leads to
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since the spatial gradient terms in Eq. (1) vanish on
average. The dynamic equation for the fluctuations
can be found from Heisenberg’s equation of motion,

Ay = (—i/n)[#,, H], as
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We solve Egs. (4) and (5) in the self-consistent phonon
scheme [24,25] using the mean-field approximations

E ~ (8 and & ~ 3(E)E,. Equation (4) then reduces to

4
ZaOE

() ((8)* +3(&) — a) = (6)
When E =0, two roots are ferroelectric (i) = +(a3 —
3(£2))1/2 and one is paraelectric (i,) = 0. With Eq. (6), we
can rewrite Eq. (5) in the form of a harmonic oscillator in
momentum space with £,(q.7) = [ d*ré (v, t)e"iar

E(q.1) = —Q2&,(q, 1), (7)

with frequency dispersion that acquires a gap ~v/A:

0y~ 30+ 38—+ (4 20|
)

Quantum mechanics enters the problem at low temper-
atures 7 and high frequencies when thg kgT, where
h(kg) is Planck’s (Boltzmann’s) constant. The mean-square
of the fluctuations from the equilibrium position of an
ensemble of harmonic oscillators reads

&) = / /%coth <2Z?T>D(Q)d9, 9)

where D(Q) = 1/(27)? [ d*q8(Q — Q,) is the density of
state of the sliding phonons. We regulate the divergence of
the integral over Q by a Debye frequency Q, cutoff chosen
such that the degrees of freedom of the sliding motion per
unit cell is conserved, i.e., fQSQD D(Q)dQ = 1/A,, which

leads to

47r\//4(/1+2/4)’ (10)
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where Ay is the unit-cell area. ) = Qq_, is the temper-

ature- and field-dependent sliding phonon gap related to the

polarization reversal (see below). Carrying out the integral

in Eq. (9) leads to

kgT sinh 2522,

22\ _ 25T _ o )n
) = g s e = (0 (1D

A real Q, demands that a physically stable phase of the
system should fulfill the condition 3(#i,)*> + 3f — aj > 0.
When E = 0, from Eq. (6) we have the paraelectric (it;) =0
and ferroelectric (it,) = 4-(a2 —3f)"/? states for 3f > a2
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and 3f < a3, respectively; When E # 0, always (i) # 0
[see Eq. (6)] and

ZEa}

<i’\‘s>2 = a% - 3f<<ljt‘>, T) + 4A<ft> P

(12)

which coincides with the ferroelectric case when £ = 0 but
(1) # 0. The gap of the sliding phonons under the different
conditions are

2 o [Gf=a)? E=0and (2,)=0
Q():iz e A2 Za4E 1/2 fOI' . N
ag\l p [2<u5> RN J otherwise

(13)

In the ferroelectric phase without the field (i.e., £ =0
and (@i,) #0), Eq. (13) implies that Q, softens with
increasing temperature by the average amplitude |{i;)]|
but then increases with temperature in the paraelectric
phase via (3f —a2)"/?, indicating a dip in Qy(7T) at the
Curie temperature (7'.). We shall show that this softening
leads to an abnormal specific heat at 7.

In the following, we solve Eq. (12) self-consistently
together with Eq. (10) and Eq. (13). Its first term represents
the spontaneous sliding in the absence of fluctuations that
according to the second term is reduced by thermal and
zero-point fluctuations. The last term in Eq. (12) is the
Stark effect.

Spontaneous ferroelectricity.—We investigate the spon-
taneous sliding ferroelectrics without an external field.
At zero temperature, the ferroelectricity persists only
when the zero-point fluctuations do not destroy the order,
ie, (f,)?=a}-3f((f,),T=0)>0, which leads to
the condition

) n N
"= A PG R s Y

that does not require ferroelectricity and holds for any
sliding structural phase transitions. The parameter y mea-
sures the ratio of the mean-square amplitude of zero-point
fluctuations to the squared distance between minimum
energy states. y = /z/3 marks a quantum phase transition.
When y > /z/3, ie., the kinetic term dominates, a
quantum paraelectric state as in SrTiO; and KTaOj

TABLE 1.

emerges [26-28]. Equation (14) states that bilayers with
large unit-cell mass (pAg), high intralayer stiffness, and a
large distance between sliding minima favor the order.
According to Table I, the zero-point fluctuations are not
important for WTe, and h-BN bilayers, as expected. At any
finite temperatures, &y — 0 and f((@,), T # 0) — oo when
A — 0, which implies the absence of order as follows from
the Mermin-Wagner theorem [19]. Here we predict a
stricter condition for a sliding phase transition, viz. not
only A > 0 but also y < /7/3.

We next address the thermal dynamics of robust
sliding ferroelectrics such as WTe, and h-BN bilayers,
in which y <« +/7/3. At low temperatures kzT < h€),
and E =0, the small fluctuations (3f) on the right-
hand side of Eq. (12) may be approximated by
(i) ~ +ag[l = 3f (a3, T)/(2a3)], which leads to

(8,(T)) = (8,(0)) —#J%Mexp (—%) (1)

where (i1;(0)) ~ £ag[l —3y/(2y/z)]. In a ferroelctric
(Z # 0) the associated pyroelectric coefficient reads

AP(TY) __ 3kZ Ay (_@) 6)
or 27/ u(A+2p)ag kT P ksT )’

which differs from the 7-!/> prefactor found for 3D
ferroelectrics [25,31]. Equation (15) predicts reduced
polarization at thermal energies far below the sliding
phonon gap Q) ~ (4/ag)(A/p)'/>.

Higher temperatures and larger fluctuations increasingly
reduce the polarization. (it;) does not vanish until the
infrared divergence of lim,)_of((i,),T #0), ie., the
critical fluctuations signal the phase transition, which
indicates a first-order sliding phase transition, see Fig. 2(a).
We estimate the Curie temperature 7. by the condition
limy_7-0(it) /0T — oo. T, solves Eq. (12) with E =0

=0, (17)

<ﬁs>2 - a(Z) + 3f(<ﬁs>v Tc) =0. (18)

The parameter y and Curie temperature 7. calculated for several sliding bilayer ferroelectrics with

model parameters extracted from first-principles calculations [1,3,29,30].

A A H Ay p ag Py Y T.
WTe, 1.37 x 1072 1.89 2.69 21.8 68.18 0.246 0.38 1.69 660
h-BN 1.67 3.37 7.67 5.38 7.81 0.72 2.08 0.71 1.58 x 10*
Units meV/A? eV/A?  eV/A? A2 1077 kg/m? A pC/m 1072 K
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FIG. 2. (a) The polarization P(T) and (b) the critical switching
field —E, normalized by 8A/(31/3P,) as a function of temperature
for various dimensionless switching barriers A = AyA/kpT),
where we adopt y = 0.01.

In h-BN and WTe, bilayers 7Qp < kgT. << u(4+
2u)ag/(ApA) such that

271' TO

o 19
¢ 3(1 +In[l + 2°T3/(6T.Tx))). )
A 3T,
<”s>|T:T; = *ag ZJTTO’ (20)

where kzTo = /u(A+ 2,u)a(2) is a measure of the energy
cost of flipping an individual local dipole while kg7, =

ApA is the barrier per unit cell when switching the entire
polarization coherently. The predicated first-order phase
transition agrees with the conclusion for the R-stacked
WSe2 bilayer [32]. The T, estimated from the balance of the
thermal energy and the barrier of flipping a local dipole [2]
in a mean-field theory of 3D systems cannot be used for the
2D sliding ferroelectrics here.

Intrinsic switching field.—Shorted metallic gates such
as graphene on both sides of the ferroelectric screen
the ferroelectric dipoles, while a voltage bias generates
the electric field E in Eq. (1). The screening modifies the
electrostatic interactions and stabilizes a single domain
configuration compared to a sample without gates, but
otherwise does not affect the physics. According to Eq. (12)
the (nonlinear) ferroelectric susceptibility

 oliy(T.E))
)((T,E)—Z 3E
_ Z%aq 3 of ZalE 17!
= 8an,) [”2<aq>a<as> 8<as°>3A] - @)

A large external field against the polarization destabil-
izes the ferroelectric order by decreasing the phonon gap
until it switches at a coercive field E. determined by
limg_ g y(T,E) = oo:

BA (i)

E(T.A) =
Zag

where (il,),. follows from Eq. (12) for E = E,, i.e.,

3067 = 3 tfae 1)+ ), LU0 D] oy
Since of ((it,), T)/d(it;)* < 0
8A(iiy)?
—E. < Z<Zg> = —E, (24)

where Qy(T,E,) =0. The ferroelectric order therefore
switches before the gap vanishes, in contrast to bulk
ferroelectrics in which Qy(E.) =0, i.e., at relatively
low coercive fields in spite of the high thermal stability.

Figure 2(b) displays numerical solutions of Eq. (22) and
Eq. (23) for E.(T,A) as a function of temperature for
various A with E_. normalized by the classical switching
field 8A/(3v/3P,) in the absence of any fluctuations.
E.(T,A) is well fitted by the power law

The first term in brackets on the rhs represents the effect of
quantum fluctuations. The second one is a Curie-Weiss law
with fitted critical exponent # = 1.35, which is slightly
smaller than that of bulk ferroelectrics with a second-order
phase transition (y = 1.5) [33]. E, is real when the ferro-
electric orderis stable, i.e., wheny < \/7_1/ 3and7 < T,,asit
should. The above coercive field holds for the coherent
switching of a single ferroelectric domain [33,34] and is of
order ~1-10 GV/m for WTe, and h-BN bilayers. This
number is an order of magnitude larger than observed
switching fields [4,6,7]. Structural disorder such as disloca-
tions and twisting should reduce the switching field, but their
modeling is beyond the scope of the present Letter.

Electrocaloric effect and specific heat.—The electro-
caloric effect refers to temperature changes caused by the
adiabatic (de)polarization of the ferroelectric order by
applied electric fields. The effect is especially large around
first-order phase transitions and interesting for heat man-
agement applications [35]. The entropy of an ensemble of
noninteracting bosons reads

S(T.E)=kg» _[(14ng)In(1+nq)—nglnngl,  (26)
q

where nq = {exp[AQq/(kpT)] — 1}" is the Planck distri-
bution of the sliding phonons. The isothermal field deriva-
tive of entropy then reads

oS(T.E) __ pAkg 0% / xet 27)
ok A/ (4 2u)u OF Jy, (e=1)27

176801-4



PHYSICAL REVIEW LETTERS 130, 176801 (2023)

“sp
=4
M
-
%)
A

O 1 1 1 1

0.0 02 0.4 0.6 038 1.0

E (x8A/3V3P,)
FIG. 3. The entropy change per unit mass As(E) with the

electric field at T =T}, where the field is in unit of

8A/(3v/3Py). limg_ o+ T.As(E) corresponds to the latent heat
generated by the polarization of disordered dipoles.

where A is the area of bilayer and xop) = 1 p)/ (ksT).
Figure 3 shows the entropy change As(E) (per unit mass)
as a function of the external electric field at 7 = T} for
WTe, and h-BN bilayers, where limz_ -7 .As(E) corre-
sponds to the latent heat freed by the polarization of the
dipoles. As(E) is significant for the h-BN bilayer being of
the order of JK~! kg~!, but 2 orders of magnitude smaller in
the WTe, bilayer.

For temperature-independent Lamé parameters, the spe-
cific heat of the sliding phonons at a fixed electric field
reads

795 _ pAk3T? w o xder
o 270/ +2u)p v, (' =1)

pAkgT 093 /XD xe*
An/(i+2u)p OT Jyy (e 1)

CE = dx

dx. (28)

The first term in Eq. (28) follows from the conventional 2D
Debye model, while the second one reflects the softening
of Qp and is singular at the phase transition since
05 /0T |_y- o its)* /T |y_y- — oo. This divergent spe-
cific heat might be observed in the associated anomalous
heat transport that is beyond the scope of our paper.
Discussion.—We can compare the sliding ferroelectricity
with 2D magnetism. In contrast to usual magnets, the zero-
point fluctuations explicitly reduces the sliding ferroelectric
order and Curie temperature, because in magnetic systems
quantum spins rather than classical magnetic dipoles order
and a nonvanishing magnon gap is already a sufficient
condition for a phase transition [36]. Otherwise, at low
temperatures Eq. (15) resembles the magnetization of 2D
ferromagnets as limited by magnon excitations [37]. Here the
polarization decreases with temperature due to “ferrons,”
i.e., phonon excitations that carry electric dipoles [31,38,39].

We find an explicit expression for the reduction of the
classical ground state polarization Za, by zero point as well
as thermal fluctuations. At sufficiently low temperatures
(P(T)) =~ Zay[1 —3/(2a3)f (a3, T)], hence the electric
dipole carried by a single sliding phonon with wave vector
q is dpq = =3nZ/(payQ,). We can rewrite Eq. (15)
as (P(T)) = (P(0)) — [ d*q/(27)*6pyng.

Equation (19) is similar to that of the 2D magnets after
replacing the exchange interaction by /u(1+ 2u)a3 or
kT, [40,41]. We now understand the stability of sliding
ferroelectricity in terms of the high intralayer stiffness
that governs the energy scale needed to destroy its order
kgTy (~0.1-1 eV), which is much larger than the 2D
magnetic exchange interaction (<10 meV). The estimates
of the critical temperatures in Table I 7, =660 K
(T, =158 x 10* K) for WTe, (h-BN) bilayers agree
qualitatively with experiments that report 7.~ 350 K
for WTe, [4] and a nearly temperature-independent polari-
zation of the BN bilayer in a wide temperature range up to
room temperature [6]. The overestimate of T',. for the WTe,
bilayer could be caused by our disregard of the out-of-
plane flexural motion of the bilayers, which facilitates
thermal hopping over the potential barrier and suppresses
the critical temperature. The parameter values extracted
from first-principle calculations may be affected by
uncertainty as well [42].

The present minimal model of sliding phase transitions
can be extended and improved by numerical modeling.
Here we consider only unidirectional lateral sliding, which
is analogous to a one-component polarization approxima-
tion in the Landau-Ginzburg-Devonshire theory [43]. We
may refine this model by including the coupling with other
degrees of freedom, e.g., flexural and transverse in-plane
displacements. The continuum mechanics is not accurate
when the temperatures exceed the Debye temperature and
should be checked by lattice dynamics calculations.
Disorder can give rise to position-dependent switching
fields and stick-slip domain formation. The structural
stability of twisted states that generate Moiré patterns in
van der Waals bilayers can be addressed by an appropriate
generalization for transitions that involve small twist
angles [44—46].

Conclusion.—We model the thermodynamics of 2D
sliding ferroelectrics driven by an external field in a
continuum mean-field approximation. We explain the high
Curie temperatures of recently discovered ferroelectrics in
spite of ultralow switching fields. We predict a critical
specific heat and a scaling law between the cohesive
electric field and temperature. The combination of small
switching fields and high 7. endows the 2D sliding
ferroelectrics with unique functionalities for potential
applications in highly integrated nanoelectronics.

We acknowledge support by JSPS KAKENHI Grants
No. 19H00645 and No. 22H04965.

176801-5



PHYSICAL REVIEW LETTERS 130, 176801 (2023)

[1] L. Li and M. Wu, Binary compound bilayer and multilayer
with vertical polarizations: Two-dimensional ferroelectrics,
multiferroics, and nanogenerators, ACS Nano 11, 6382
(2017).

[2] Q. Yang, M. Wu, and J. Li, Origin of two-dimensional
vertical ferroelectricity in WTe, bilayer and multilayer,
J. Phys. Chem. Lett. 9, 7160 (2018).

[3] X. Liu, Y. Yang, T. Hu, G. Zhao, C. Chen, and W. Ren,
Vertical ferroelectric switching by in-plane sliding of two-
dimensional bilayer WTe,, Nanoscale 11, 18575 (2019).

[4] Z. Fei, W. Zhao, T. A. Palomaki, B. Sun, M. K. Miller, Z.
Zhao, J. Yan, X. Xu, and D.H. Cobden, Ferroelectric
switching of a two-dimensional metal, Nature (London)
560, 336 (2018).

[5] P. Sharma, F. Xiang, D. Shao, D. Zhang, E. Y. Tsymbal,
A.R. Hamilton, and J. Seidel, A room-temperature ferro-
electric semimetal, Sci. Adv. 5, eaax5080 (2019).

[6] K. Yasuda, X. Wang, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Stacking-engineered ferroelectricity in bi-
layer boron nitride, Science 372, 1458 (2021).

[7] M. V. Stern, Y. Waschitz, W. Cao, 1. Nevo, K. Watanabe, T.
Taniguchi, E. Sela, M. Urbakh, O. Hod, and M. B. Shalom,
Interfacial ferroelectricity by van der Waals sliding, Science
372, 1462 (2021).

[8] M. Wu and Ju Li, Sliding ferroelectricity in 2D van der
Waals materials: Related physics and future opportunities,
Proc. Natl. Acad. Sci. U.S.A. 118, 2115703118 (2021).

[9] X. Wang, K. Yasuda, Y. Zhang, S. Liu, K. Watanabe, T.
Taniguchi, J. Hone, L. Fu, and Pablo Jarillo-Herrero,
Interfacial ferroelectricity in thombohedral-stacked bilayer
transition metal dichalcogenides, Nat. Nanotechnol. 17, 367
(2022).

[10] J.-U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim,
C.-H. Park, J.-G. Park, and H. Cheong, Ising-type magnetic
ordering in atomically thin FePS, Nano Lett. 16, 7433
(2016).

[11] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M. A.
McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-
Herrero, and X. Xu, Layer-dependent ferromagnetism in
a van der Waals crystal down to the monolayer limit, Nature
(London) 546, 270 (2017).

[12] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao,
C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia,
and X. Zhang, Discovery of intrinsic ferromagnetism in
two-dimensional van der Waals crystals, Nature (London)
546, 265 (2017).

[13] Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J.
Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H.
Cobden, J. H. Chu, X. Xu, Z. Fei, B. Huang, P. Malinowski,
W. Wang, T. Song, and J. Sanchez, Two-dimensional
itinerant ferromagnetism in atomically thin Fe;GeTe,,
Nat. Mater. 17, 778 (2018).

[14] M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil,
R. Das, T. Eggers, H.R. Gutierrez, M.-H. Phan, and M.
Batzill, Strong room-temperature ferromagnetism in VSe,
monolayers on van der Waals substrates, Nat. Nanotechnol.
13, 289 (2018).

[15] D.J. O’Hara, T. Zhu, A.H. Trout, A.S. Ahmed, Y.K.
Luo, C.H. Lee, M.R. Brenner, S. Rajan, J. A. Gupta,

D. W. McComb, and R. K. Kawakami, Room Temperature
Intrinsic Ferromagnetism in Epitaxial Manganese Selenide
Films in the Monolayer Limit, Nano Lett. 18, 3125 (2018).

[16] Y. Deng, Y. Yu, Y. Song, J. Zhang, N.Z. Wang, Z. Sun, Y.
Yi, Y.Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y.
Zhang, Gate-tunable room-temperature ferromagnetism in
two-dimensional Fe;GeTe,, Nature (London) 563, 94
(2018).

[17] C. Huang, J. Feng, F. Wu, D. Ahmed, B. Huang, H. Xiang,
K. Deng, and E. Kan, Toward intrinsic room-temperature
ferromagnetism in two-dimensional semiconductors, J. Am.
Chem. Soc. 140, 11519 (2018).

[18] W. Li, X. Qian, and J. Li, Phase transitions in 2D materials,
Nat. Rev. Mater. 6, 829 (2021).

[19] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Iso-
tropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[20] P.C. Hohenberg, Existence of long- range order in one and
two dimensions, Phys. Rev. 158, 383 (1967).

[21] H. Suzuura and T. Ando, Phonons and electron-phonon
scattering in carbon nanotubes, Phys. Rev. B 65, 235412
(2002).

[22] P.L. de Andres, F. Guinea, and M. I. Katsnelson, Bending
modes, anharmonic effects, and thermal expansion coeffi-
cient in single-layer and multilayer graphene, Phys. Rev. B
86, 144103 (2012).

[23] R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J.
Hone, and C. Dean, Twistable electronics with dynamically
rotatable heterostructures, Science 361, 690 (2018).

[24] M. E. Lines, Correlated-effective-field theory: A statistical
approach for grossly anharmonic lattice vibrations, Phys.
Rev. B 9, 950 (1974).

[25] A.M. Glass and M. E. Lines, Low-temperature behavior of
spontaneous polarization in LiNbO; and LiTaOs;, Phys.
Rev. B 13, 180 (1976).

[26] K. A. Miiller and H. Burkard, SrTiO5: An intrinsic quantum
paraelectric below 4 K, Phys. Rev. B 19, 3593 (1979).

[27] S.E. Rowley, L.J. Spalek, R. P. Smith, M. P. M. Dean, M.
Itoh, J. F. Scott, G. G. Lonzarich, and S. S. Saxena, Ferro-
electric quantum criticality, Nat. Phys. 10, 367 (2014).

[28] Tobias Esswein and Nicola A. Spaldin, Ferroelectric,
quantum paraelectric or paraelectric? Calculating the evo-
lution from BaTiO; to SrTiO; to KTaO; using a single-
particle quantum-mechanical description of the ion, Phys.
Rev. Res. 4, 033020 (2021).

[29] B. Sachs, T.O. Wehling, M.I. Katsnelson, and A.lL
Lichtenstein, Adhesion and electronic structure of graphene
on hexagonal boron nitride substrates, Phys. Rev. B 84,
195414 (2011).

[30] E. Torun, H. Sahin, S. Cahangirov, A. Rubio, and F. M.
Peeters, Anisotropic electronic, mechanical, and optical
properties of monolayer WTe,, J. Appl. Phys. 119,
074307 (2016).

[31] P. Tang, R. Iguchi, K. Uchida, and G.E.W. Bauer,
Excitations of the ferroelectric order, Phys. Rev. B 106,
L081105 (2007).

[32] Y. Liu Song Liu, Baichang Li, Won Jong Yoo, and James
Hone, Identifying the transition order in an artificial
ferroelectric van der Waals heterostructure, Nano Lett.
22, 1265 (2022).

176801-6


https://doi.org/10.1021/acsnano.7b02756
https://doi.org/10.1021/acsnano.7b02756
https://doi.org/10.1021/acs.jpclett.8b03654
https://doi.org/10.1039/C9NR05404A
https://doi.org/10.1038/s41586-018-0336-3
https://doi.org/10.1038/s41586-018-0336-3
https://doi.org/10.1126/sciadv.aax5080
https://doi.org/10.1126/science.abd3230
https://doi.org/10.1126/science.abe8177
https://doi.org/10.1126/science.abe8177
https://doi.org/10.1073/pnas.2115703118
https://doi.org/10.1038/s41565-021-01059-z
https://doi.org/10.1038/s41565-021-01059-z
https://doi.org/10.1021/acs.nanolett.6b03052
https://doi.org/10.1021/acs.nanolett.6b03052
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/s41563-018-0149-7
https://doi.org/10.1038/s41565-018-0063-9
https://doi.org/10.1038/s41565-018-0063-9
https://doi.org/10.1021/acs.nanolett.8b00683
https://doi.org/10.1038/s41586-018-0626-9
https://doi.org/10.1038/s41586-018-0626-9
https://doi.org/10.1021/jacs.8b07879
https://doi.org/10.1021/jacs.8b07879
https://doi.org/10.1038/s41578-021-00304-0
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRev.158.383
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1103/PhysRevB.65.235412
https://doi.org/10.1103/PhysRevB.86.144103
https://doi.org/10.1103/PhysRevB.86.144103
https://doi.org/10.1126/science.aat6981
https://doi.org/10.1103/PhysRevB.9.950
https://doi.org/10.1103/PhysRevB.9.950
https://doi.org/10.1103/PhysRevB.13.180
https://doi.org/10.1103/PhysRevB.13.180
https://doi.org/10.1103/PhysRevB.19.3593
https://doi.org/10.1038/nphys2924
https://doi.org/10.1103/PhysRevResearch.4.033020
https://doi.org/10.1103/PhysRevResearch.4.033020
https://doi.org/10.1103/PhysRevB.84.195414
https://doi.org/10.1103/PhysRevB.84.195414
https://doi.org/10.1063/1.4942162
https://doi.org/10.1063/1.4942162
https://doi.org/10.1103/PhysRevB.106.L081105
https://doi.org/10.1103/PhysRevB.106.L081105
https://doi.org/10.1021/acs.nanolett.1c04467
https://doi.org/10.1021/acs.nanolett.1c04467

PHYSICAL REVIEW LETTERS 130, 176801 (2023)

[33] S. Ducharme, V. M. Fridkin, A. V. Bune, S.P. Palto, L. M.
Blinov, N. N. Petukhova, and S. G. Yudin, Intrinsic Ferro-
electric Coercive Field, Phys. Rev. Lett. 84, 175 (2000).

[34] V.M. Fridkin and S. Ducharme, General features of the
intrinsic ferroelectric coercive field, Phys. Solid State 43,
1320 (2001).

[35] Y. Liu, James F. Scott, and Brahim Dkhil, Direct and indirect
measurements on electrocaloric effect: Recent developments
and perspectives, Appl. Phys. Rev. 3, 031102 (2016).

[36] We consider here the thermodynamic limit of infinitely
extended systems, which should be distinguished from the
field and temperature dependent dynamics of large but finite
magnetic particles that give rise to the phenomenon of
superparamagnetism, see e.g. https://en.wikipedia.org/wiki/
Superparamagnetism.

[37] P. Bruno, Spin-wave theory of two-dimensional ferromag-
nets in the presence of dipolar interactions and magneto-
crystalline anisotropy, Phys. Rev. B 43, 6015 (1991).

[38] G.E. W. Bauer, R. Iguchi, and K. Uchida, Theory of
Transport in Ferroelectric Capacitors, Phys. Rev. Lett.
126, 187603 (2021).

[39] P. Tang, R. Iguchi, K. Uchida, and G. E. W. Bauer, Thermo-
Electric Polarization Transport in Ferroelectric Ballistic
Point Contacts, Phys. Rev. Lett. 128, 047601 (2022).

[40] J.L. Lado and J Fernindez-Rossier, On the origin of
magnetic anisotropy in two dimensional Crl;, 2D Mater.
4, 035002 (2017).

[41] M. Bander and D.L. Mills, Ferromagnetism of ultrathin
films, Phys. Rev. B 38, 12015(R) (1988).

[42] W. Jiang, C. Liu, X. Ma, X. Yu, S. Hu, X. Li, L. A. Burton,
Y. Liu, Y. Chen, P. Guo, X. Kong, L. Bellaiche, and W. Ren,
Anomalous ferroelectricity and double-negative effects in
bilayer hexagonal boron nitride, Phys. Rev. B 106, 054104
(2022).

[43] P. Chandra and P.B. Littlewood, A landau primer for
ferroelectrics, Phys. Ferroelectr. 105, 69 (2007).

[44] F. Peymanirad, S. Singh, H. Ghorbanfekr-Kalashami, K.
Novoselov, F. Peeters, and M. Neek-Amal, Thermal acti-
vated rotation of graphene flake on graphene, 2D Mater. 4,
025015 (2017).

[45] S. Bagchi, H.T. Johnson, and H.B. Chew, Rotational
stability of twisted bilayer graphene, Phys. Rev. B 101,
054109 (2020).

[46] S. Zhu, E. Annevelink, P. Pochet, and H.T. Johnson,
Selection rules of twistronic angles in two-dimensional
material flakes via dislocation theory, Phys. Rev. B 103,
115427 (2021).

176801-7


https://doi.org/10.1103/PhysRevLett.84.175
https://doi.org/10.1134/1.1386472
https://doi.org/10.1134/1.1386472
https://doi.org/10.1063/1.4958327
https://en.wikipedia.org/wiki/Superparamagnetism
https://en.wikipedia.org/wiki/Superparamagnetism
https://en.wikipedia.org/wiki/Superparamagnetism
https://en.wikipedia.org/wiki/Superparamagnetism
https://doi.org/10.1103/PhysRevB.43.6015
https://doi.org/10.1103/PhysRevLett.126.187603
https://doi.org/10.1103/PhysRevLett.126.187603
https://doi.org/10.1103/PhysRevLett.128.047601
https://doi.org/10.1088/2053-1583/aa75ed
https://doi.org/10.1088/2053-1583/aa75ed
https://doi.org/10.1103/PhysRevB.38.12015
https://doi.org/10.1103/PhysRevB.106.054104
https://doi.org/10.1103/PhysRevB.106.054104
https://doi.org/10.1007/978-3-540-34591-6_3
https://doi.org/10.1088/2053-1583/aa58a4
https://doi.org/10.1088/2053-1583/aa58a4
https://doi.org/10.1103/PhysRevB.101.054109
https://doi.org/10.1103/PhysRevB.101.054109
https://doi.org/10.1103/PhysRevB.103.115427
https://doi.org/10.1103/PhysRevB.103.115427

