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The Moore-Read state, one of the leading candidates for describing the fractional quantum Hall effect
at filling factor ν ¼ 5=2, is a paradigmatic p-wave superconductor with non-Abelian topological order.
Among its many exotic properties, the state hosts two collective modes: a bosonic density wave and a
neutral fermion mode that arises from an unpaired electron in the condensate. It has recently been proposed
that the descriptions of the two modes can be unified by postulating supersymmetry (SUSY) that relates
them in the long-wavelength limit. Here we extend the SUSY description to construct wave functions of the
two modes on closed surfaces, such as the sphere and torus, and we test the resulting states in large-scale
numerical simulations. We demonstrate the equivalence in the long-wavelength limit between SUSY wave
functions and previous descriptions of collective modes based on the Girvin-MacDonald-Platzman ansatz,
Jack polynomials, and bipartite composite fermions. Leveraging the first-quantized form of the SUSY
wave functions, we study their energies using the Monte Carlo method and show that realistic ν ¼ 5=2
systems are close to the putative SUSY point, where the two collective modes become degenerate in energy.
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Introduction.—Exotic topological properties of fractional
quantumHall (FQH) fluids, such as quantizedHall resistance
[1], and excitationswith fractional charge [2,3] and fractional
statistics [4–8], have been the subject of major research
efforts over the past decades.More recently, FQH states have
come into renewed focus due to their unique geometric
properties such as the Hall viscosity [9–12] and the Girvin-
MacDonald-Platzman (GMP) magnetoroton mode [13,14].
The latter is a low-lying collective mode of any gapped FQH
fluid and corresponds to a bosonic excitation that can be
viewed as a density wave, analogous to the roton in super-
fluid 4He [15]. The GMP mode has been observed in several
experiments using inelastic light scattering and surface
acoustic waves [16–18].
However, certain FQH states, such as the one observed at

filling fraction ν ¼ 5=2 [19], can possess an additional
collective mode, suggested by the numerical simulations
[20–22] [see Fig. 1(a) for a schematic illustration]. The
additional collective mode in the ν ¼ 5=2 state is naturally
accounted for by the Moore-Read (MR) wave function [23]

and its particle-hole conjugate the anti-Pfaffian state [24,25],
two of the leading candidates for understanding the incom-
pressible state at half filling of the second Landau level (LL).
The MR state represents a p-wave superconductor [26,27]

FIG. 1. (a) Sketch of the energy spectrum of a gapped ν ¼ 5=2
FQH state with two neutral collective modes, the magnetoroton
and neutral fermion. In the long-wavelength limit kl → 0, the
two modes carry angular momenta L ¼ 2 and L ¼ 3=2, respec-
tively, and their degeneracy would give rise to an emergent
SUSY. (b) Both modes can be compactly described by intro-
ducing, for each particle’s coordinate zi, its SUSY partner with a
Grassmann coordinate θi [33]. (c) When the total number of
particles is even, the Moore-Read state is recovered by integrating
out θ variables (depicted by shading) fromΨsL the Laughlin wave
function at ν ¼ 1=2 in the superplane [34]. Similarly, the wave
functions for the GMP and NF modes are obtained by acting with
the projected density operator ρ̄k;κ, which generates a density
wave in superspace.
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of composite fermions, i.e., the bound states of electrons and
vortices [28]. Hence, via analogy with Bardeen-Cooper-
Schrieffer (BCS) superconductors [29], the MR state
possesses a fermionic collective excitation—the “neutral
fermion” (NF)—which is the analog of the Bogoliubov–
de Gennes quasiparticle [27,30]. The applications of theMR
state in topological quantum computation [31] rest critically
on the gap of the NF mode, as the latter can be excited in the
process of “fusion” of two elementary excitations of the MR
state that simulate the action of quantum gates [32].
In the long-wavelength limit, corresponding to momenta

k ≪ l−1, where l is the magnetic length, there is a sharp
distinction between the bosonic GMP and fermionic NF
modes: the former carries integral angular momentum
L ¼ 2 on the sphere [35,36], while the latter carries half
odd-integral L ¼ 3=2 [21,37,38]. While the GMP mode
has a simple description in terms of acting the lowest LL
(LLL) projected density operator on the ground state [13],
the microscopic description of the NF mode has re-
quired far more elaborate constructions [37–41] that are
not amenable to numerical studies in large systems.
Recently, Ref. [33] proposed a unified description of the
GMP and NF modes in the MR state based on the two
modes being supersymmetry (SUSY) partners; see Figs. 1(b)
and 1(c) (see also Ref. [42] for the consequences of SUSY
for the edge physics of the MR state). While this provides
an elegant description of both modes via generalization
of the GMP ansatz to superspace, the resulting description
has not been tested in numerics.Moreover, it remains unclear
if the physical ν ¼ 5=2 system satisfies the assumption of
an emergent SUSY.
In this Letter, we extend the construction of Ref. [33] to

formulate fully antisymmetric, LLL-projected wave func-
tions for both the GMP and NF modes adapted to closed
manifolds, i.e. the sphere and torus, that can be evaluated
for large system sizes. We numerically demonstrate the
equivalence of these wave functions in the long-wavelength
limit to alternative descriptions of the modes based on
Jack polynomials [37] and bipartite composite fermions
[36,38,39]. We test the existence of SUSY a posteriori, by
evaluating the energies of the two collective modes in the
long-wavelength limit using the Monte Carlo method.
While the pure Coulomb interaction at ν ¼ 5=2 gives rise
to a weak breaking of SUSY, with the SUSY gap being
about 20% of the excitation gap, tuning the interaction by
slightly enhancing the V1 Haldane pseudopotential [43,44]
leads to the restoration of SUSY. Importantly, the two
modes become degenerate in the long-wavelength limit at
approximately the same value of V1 that maximizes the
ground state overlap with the MR wave function [45].
Our results suggest that the SUSY structure is intrinsically
present in spectral properties of the ν ¼ 5=2 state, allowing
us to probe the conditions for its emergence in large-scale
numerics. Moreover, our work provides a foundation for
developing an effective field theory of paired FQH states

that incorporates SUSY as an emergent symmetry of
infrared physics.
SUSY wave functions on the sphere.—We first construct

the SUSY wave functions in the spherical geometry [43]
(see Supplemental Material [46] for the corresponding
construction on the torus). We assume there are N electrons
confined to the surface of a sphere, with a Dirac monopole
at the center, emanating a radial magnetic flux of strength
2Qhc=e. The radius of the sphere is R ¼ ffiffiffiffi

Q
p

l. The total
angular momentum L and its z component M are good
quantum numbers. The magnitude of the planar wave
vector k is given by k ¼ L=R. In terms of the spinor
coordinates uj, vj of the jth electron [43], the MR wave
function [23] on the sphere is

ΨMR ¼ Pf

�
1

uivj − ujvi

�
Φ2

1; ð1Þ

where PfðAÞ stands for the Pfaffian of a skew-symmetric
matrix A and Φ1 ¼

Q
i<j ðuivj − ujviÞ denotes the

Laughlin-Jastrow factor [44].
A neutral density wave excitation of the MR state,

carrying angular momentum L, is described by the GMP
ansatz [13], ΨGMPðLÞ ¼ PLLLρ̂L;MΨMR. Here ρ̂L;M ¼P

N
i¼1 YL;Mðθi;ϕiÞ is the density operator in the spherical

geometry, expressed in terms of spherical harmonics
YL;M [63], and PLLL is the LLL projection operator.
Since the states with different M are degenerate due to
rotational symmetry on the sphere, we can set M ¼ −L
for simplicity, in which case (up to normalization) we
have YL;−Lðuj; vjÞ ∝ vLj ū

L
j , where the bar denotes complex

conjugation. We see that ΨGMPðLÞ needs to be explicitly
projected to the LLL and this must be done carefully to
maintain the efficiency of its evaluation via Monte Carlo
simulations. Because of this obstacle, previous approaches
[64] could only access the dispersion of the GMP mode via
the static structure factor of the ground state.

FIG. 2. The energy spectrum of the three-body parent Hamil-
tonian of the Moore-Read state on the sphere [30] for N ¼ 14 (a)
and N ¼ 13 electrons (b). Blue dashes are energy levels obtained
by exact diagonalizations (ED), green diamonds are the energies of
collective modes constructed via Jack polynomials [37], while red
stars are the energies of the GMP wave function in (a) and the NF
wave function in (b). At smallL, both collectivemodesmergewith
the continuum of the spectrum. The Jack construction captures the
entire collectivemodes, while the GMPandNFwave functions are
accurate only in the long-wavelength limit.
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Remarkably, we find that the LLL projection of the GMP
mode of the MR state can be performed exactly, with the
resulting wave function given by

ΨGMPðLÞ ¼
XN
m¼1

vLmΦ2
1Pf

�
ŨL

m;i;j

uivj − ujvi

�
; ð2Þ

where ŨL
m;i;j is a function of all the electrons’ coordinates,

defined through a recursion relation (see Supplemental
Material [46]). The derivation of Eq. (2) is inspired by the
Jain-Kamilla method of projecting composite fermion wave
functions [65,66]. However, while the latter method yields
a wave function different from that obtained from direct
projection, we emphasize that the projection in Eq. (2)
results in exactly the samewave function as the one obtained
from direct projection. This form allows us to efficiently
compute properties of GMP states in large systems, without
relying on the static structure factor.
Our exact projection method furthermore allows extend-

ing the NF wave function, formulated as a SUSY partner of
the GMP mode in the infinite plane [33], to the spherical
geometry. The proposed NF wave function from Ref. [33],
after stereographic mapping [67], is given by

ΨNFðLÞ ¼ PLLL

�X
m

ð−1Þm 1

um
ePfm

�
1

uivj − ujvi

�

YL;−Lðum; vmÞΦ2
1

�
; ð3Þ

where ePfm denotes the Pfaffian of the same matrix as in
Eq. (1) but with mth electron unpaired, i.e., i; j ≠ m,
assuming N is odd.
The wave function in Eq. (3) is clearly not analytic due to

1=um factor. To fix this issue, we replace 1=um → ūm in
Eq. (3), which preserves the total magnetic flux and the
shift [68], resulting in a wave function that is an eigenstate
of total angular momentum L2. Following a similar
procedure to the GMP mode, we obtain the NF wave
function projected to the LLL:

ΨNFðLÞ ¼
X
m

ð−1ÞmvLmΦ2
1
ePfm

�
1

uivj − ujvi

�
PmðLþ 1Þ;

ð4Þ

wherePm is defined through a recursion relation inRef. [46].
Testing SUSY wave functions.—To assess the accuracy

of the constructed SUSY-based wave functions, in Fig. 2
we compare their energies with the exact spectrum of the
three-body parent Hamiltonian of the MR state [30], as well
as against the modes obtained from Jack polynomials [37].
The three-body energies of the GMP and NF wave
functions are evaluated in Fock space. The GMP wave
function can be directly obtained in Fock space by applying

the LLL-projected density operator ρ̂L;M on the MR state.
To obtain the NF wave function in Fock space, we use the
method of Refs. [36,69] which involves evaluating all the
relevant L2 eigenstates and expanding Eq. (4) in that basis.
First, we note that both the L ¼ 1 GMP and L ¼ 1=2 NF

wave functions vanish with machine precision accuracy,
consistent with previous findings [36–39]. Second, the
long-wavelength part of the dispersion shows excellent
agreement between the GMP (NF) states and the Jack
polynomial states from Ref. [37]. In fact, by numerically
evaluating the overlap between the Jack states and the
SUSY states above, we find the Jack states are identical to
the GMP states in Eq. (2) at L ¼ 2, 3 for even N ≤ 14,
while the Jack states and NF states in Eq. (4) are identical at
L ¼ 3=2; 5=2 for odd N ≤ 13. Furthermore, all these states
appear to be identical to bipartite composite fermion states
from Refs. [36,38], as they give the same overlap with
eigenstates of the MR three-body interaction and the
Coulomb interaction at ν ¼ 5=2 (up to the second digit
quoted in Ref. [36]). At higher values of L, we expect all
schemes to produce distinct states. For example, the over-
lap between the Jack and SUSY-based states decreases at
higher values of L [46], and the GMP and NF wave
functions no longer capture the exact dispersion at finite
momenta kl≳ 1 (i.e., L≳ N). In the following, we focus
on the long-wavelength part of the dispersion, where all the
constructions result in the same state, as shown above,
allowing us to put variational bounds on the conditions for
SUSY to emerge.
Emergence of SUSY in realistic systems.—The SUSY

construction assumes that the GMP and NF modes have the
same energy in the long-wavelength limit. Using the wave
functions constructed above, we can probe the SUSY
degeneracy in the limit kl → 0 by evaluating the energies
via the Monte Carlo method on large spheres with R ≫ l
[46]. The dispersions of the GMP and NF modes are shown
in Figs. 3(a)–3(c) for the Coulomb interaction projected to
the second LL. Furthermore, we explore the neighborhood
of the Coulomb interaction by adding a small amount of
δV1 pseudopotential [43], which captures some of the
modifications to the interaction potential due to the finite
width of the sample and LL mixing.
Figure 3(a) shows that the energy of the GMP mode for

the second LL Coulomb interaction is higher than that of
the NF mode. However, the GMP dispersion is fairly flat
while the energy of the NF mode increases as k decreases.
This allows for the possibility of these two modes to meet at
k ¼ 0. To check this, we performed a finite-size extrapo-
lation of the energies of L ¼ 2GMP and L ¼ 3=2NF states
as a function of 1=N in Fig. 3(d). The GMP energy is
slightly higher than the NF energy in the thermodynamic
limit, by 0.005ð2Þe2=ϵl, which is about 20% of the ν ¼ 5=2
excitation gap [70].
The addition of a small amount of δV1 ≈ 0.03 signifi-

cantly alters the shape of the modes: it makes the GMP
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mode flatter and the NF mode rise faster at small k; see
Fig. 3(b). This completely suppresses the gap between
the GMP mode and NF mode in the kl → 0 limit, as
shown in Fig. 3(e). Note that around the same value
δV1 ≈ 0.03, the overlap of the exact ground state with
the MR state is maximized [45,71]. Thus, we conclude
that adding a small amount of V1 pseudopotential—
approximately 10% of its value in the second LL—
enhances the overlap with the MR state while at the same
time gives rise to the SUSY degeneracy. Finally, upon an
even further increase in δV1, shown in Figs. 3(c)–3(f), the
gap becomes negative, corresponding to the GMP mode

being lower in energy than the NF mode. This suggests
there is a finite range of δV1 where SUSY degeneracy can
be observed.
A more systematic analysis of the effect of δV1 is

presented in Fig. 4, which shows the extrapolated gaps
of the L ¼ 2GMP and the L ¼ 3=2NF states, as a function
of δV1. The gaps vary linearly with δV1, and the slope of
the NF gap is larger than that of the GMP gap. This
indicates that the NF mode is more sensitive to the
hard-core interaction than the GMP mode. We show the
difference between the GMP and NF gaps in the long-
wavelength limit in the inset of Fig 4. As a result of the
linearity of the GMP and NF energies, their difference is
also linear. By varying δV1, the difference can be tuned to
zero and this happens near δV1 ≈ 0.03. Increasing δV1

beyond this value breaks the SUSY degeneracy. However,
in the limit of large δV1, we no longer expect our wave
functions to provide a good description of the underlying
physics, because the effective interaction becomes increas-
ingly LLL-like, which ultimately induces a transition to the
gapless composite fermion Fermi liquid [45,72].
Conclusions.—In this Letter, we have constructed the

wave functions for the neutral collective modes of the
MR state in the spherical and torus geometries based on
the SUSY description. We have shown that, in the long-
wavelength limit, these wave functions encompass the
previous independent constructions, with the advantage of
allowing numerical calculations in large systems. The
variational energies of these wave functions suggest that
the ν ¼ 5=2 FQH state is close to the SUSY point and can
be driven to it by adding δV1. We have confirmed that
similar conclusions apply to other modifications of the
interaction, e.g., via longer-range pseudopotentials or by

FIG. 3. Dispersion of the GMP and NF modes (a)–(c) and the finite-size scaling of the energies of L ¼ 2 and L ¼ 3=2 states (d)–(f).
The data are for 20 ≤ N ≤ 44 electrons for the Coulomb interaction projected to the second LL, with added pseudopotential
δV1 [(a),(d) pure Coulomb interaction (δV1 ¼ 0); (b),(e) δV1 ¼ 0.03; (c),(f) δV1 ¼ 0.06]. The energies are quoted relative to the ground
state energy, i.e.,ΔE ¼ E − E0, in units of e2=ϵl. Here E0 is the energy of the MR state at the same electron number for the GMP mode,
while for the NF mode E0 is the average value of the MR state energy for N þ 1 and N − 1 electrons.

FIG. 4. The extrapolated gaps of the L ¼ 2 GMP mode and
L ¼ 3=2 NF mode in N → ∞ limit, for different values of δV1

pseudopotential added to the second LL Coulomb interaction.
The inset shows the difference between the gaps. The error only
includes the regression error from finite-size extrapolations while
ignoring the small statistical error of the Monte Carlo method.
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increasing the width of the sample, and they also hold for
the MR state of bosons at ν ¼ 1 [46].
The LL-projected Coulomb interaction is particle-hole

symmetric; hence, our conclusions apply to both the MR
and anti-Pfaffian states. One obvious question is the effect
of particle-hole symmetry-breaking interactions on SUSY,
such as the three-body interaction that distinguishes the
MR and anti-Pfaffian states. Unfortunately, this question
is challenging to address via the method presented here,
due to a lack of efficient ways of evaluating three-body
interactions in real space. A natural source of three-body
interactions is LL mixing, which we have neglected
above. It would be interesting to explore its effect on
the collective modes in order to obtain a closer compari-
son with experiments.
On the theory side, our demonstration of SUSY at the

microscopic level calls for a development of an effective
field theory [73–75] that incorporates SUSY and treats the
two collective modes on the same footing. Beyond the two
collective modes discussed here, it would be interesting to
understand if SUSY leaves an imprint on the rest of the
spectrum of the ν ¼ 5=2 state, e.g., its dynamical response
functions. For example, the weak breaking of SUSY is
expected to give rise to a gapless Goldstino mode in the
bulk [76], which could be probed in numerics. Other paired
states such as Haldane-Rezayi [77,78], the Halperin 331
state [79], theZn superconductor of composite bosons [80],
and the “permanent state” [23,81] are all expected to carry a
neutral excitation in addition to the GMP mode; hence, it
would be interesting to understand if SUSY could emerge
in them. Finally, on the experimental front, it would be
important to develop protocols for detecting the NF mode,
which is invisible to conventional optical probes [82].
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