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We study the physics of a mobile impurity confined in a two-dimensional lattice, moving within a Bose-
Hubbard bath at zero temperature. Exploiting the quantum Gutzwiller formalism, we develop a beyond-
Fröhlich model of the bath-impurity interaction to describe the properties of the polaronic quasiparticle
formed by the dressing of the impurity by quantum fluctuations of the bath. We find a stable and
well-defined polaron throughout the entire phase diagram of the bath, except for the very low tunneling
limit of the hard-core superfluid. The polaron properties are highly sensitive to the different universality
classes of the quantum phase transition between the superfluid and Mott insulating phases, providing an
unambiguous probe of correlations and collective modes in a quantum critical many-body environment.
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Introduction.—Polarons, quasiparticles formed by a
mobile impurity dressed by a cloud of excitations of the
bath in which they are immersed, are ubiquitous in physics.
Important examples include quantum materials [1], super-
fluid helium [2], nuclear matter [3], and ultracold atomic
gases [4]. Crucially, an ultracold atomic bath is clean, and
its equation of state and the bath-impurity coupling are
highly controllable [5,6], enabling recent pioneering mea-
surements of polaronic quasiparticle properties [7–11].
Moreover, ultracold atoms have provided new platforms
for quantum simulation [12,13], in particular using optical
lattices to realize Hubbard models [14,15], prominent in
the study of strongly correlated materials. In these lattice
many-body systems, particularly in quantum critical
regimes of the bath, understanding the role played by
polarons and quantum fluctuations in determining exotic
properties such as high-temperature superconductivity is of
fundamental importance [16–31].
Studies of impurities in quantum critical baths, beyond

addressing the fundamental polaron properties, yield valu-
able insights also into the role of impurities as probes
of nontrivial quantum and thermal correlations in their
environment. In continuous systems, this may include
the discontinuity of the energy of a polaron across the
Berezinskii-Kosterlitz-Thouless transition [32] and the
disappearance of the Bose polaron across the transition
for Bose-Einstein condensation [33].
Bose polarons in lattices were first considered for a

continuous Bose-Einstein condensed bath [34,35]. A quali-
tatively new feature arises in a Bose-Hubbard (BH)
environment, namely that the bath undergoes a superfluid
(SF) to Mott insulator (MI) phase transition at strong
interactions and integer filling. This transition, and its
distinct universality classes [36–38] [see Fig. 1(a)],

drastically change the quantum correlations and excitations
of the environment and should therefore significantly affect
the properties of the Bose lattice polaron. So far, the BH
bath has been addressed only in the deep MI or SF regimes
where mean-field theory applies [39–41]. The effects of
quantum criticality are still largely unexplored, having been
examined so far only theoretically for fixed impurities [37].

(a) (b)

FIG. 1. (a) Mean-field Gutzwiller phase diagram of a Bose-
Hubbard bath on a d-dimensional lattice around the hn̂i ¼ 1 MI
lobe showing constant hn̂i (blue, black, green) and μ=U (red,
blue) lines. The SF to MI transition can be crossed at the tip at
constant integer density (Oð2Þ) transition or on the edges via the
commensurate-incommensurate (CI) transition. For increasing
interaction strength U, noninteger filling lines connect deep and
hard-core (HC) regimes of the superfluid. (b) A mobile impurity
with hopping J and coupling U12 to a BH bath is dressed by a
cloud of excitations, producing a Bose lattice polaron.
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In this Letter, we study the fundamental properties of
Bose lattice polarons throughout the entire phase diagram
of a BH bath. Thanks to the recent development of the
Quantum Gutzwiller (QGW) method [37,42–44], the
effects of quantum fluctuations in a BH system on a mobile
impurity can now be systematically included. In particular,
we develop a powerful procedure for expanding bath-
impurity interactions in terms of elementary excitations.
We show that in the quantum critical and insulating regimes
this expansion must include terms beyond the celebrated
Fröhlich model for polarons in crystals [45]. The many-
band structure of the elementary excitations and nonlinear
effects are shown to be crucial in capturing the effect of the
universality classes of the SF to MI transition on the Bose
lattice polaron. Across the SF to MI transition, we find
nonmonotonic and nonanalytic polaron properties. In the
strongly interacting SF regime, divergences occur since the
mobile impurity becomes orthogonal to its bare state due to
a very large density response of the bath.
Method.—We consider a mobile impurity coupled to a

two-dimensional (d ¼ 2) bosonic bath, both confined to a
uniform square lattice. The impurity and the surrounding
cloud of excited bath modes produce the polaronic quasi-
particle illustrated in Fig. 1(b). The properties of the polaron
are determined by the self-energy Σðk;ωÞ ¼ Gð0Þðk;ωÞ−1−
Gðk;ωÞ−1, where Gð0Þðk;ωÞ½Gðk;ωÞ� is the bare (interact-
ing) impurity Green’s function. We calculate the polaron
energy dispersion by ignoring the imaginary part of the self-
energy. The full polaron energy Ek ¼ εk þ ReΣðk; EkÞ,
where εk is the energy dispersion of a free impurity, can
be expanded at low momentum as

Ek ¼ E0 þ
k2

2M�
þOðk4Þ; ð1Þ

whereE0 is the bath-induced shift of the polaron energy,M�
is the polaron effective mass, and we have set ℏ ¼ 1. The
coherence and stability of the polaron are given by the
momentum-dependent quasiparticle residue and decay rate

Z−1
k ¼ 1 −

∂ReΣðk;ωÞ
∂ω

����
ω¼Ek

; Γk ¼ −2ZkImΣðk; EkÞ;

ð2Þ

respectively. The quasiparticle residue measures the overlap
between the polaron and free impurity states, quantifying the
renormalized spectral weight of the polaronic pole in the
interacting Green’s function [46]. The polaron is a well-
defined quasiparticle provided that Γk ≪ Ek and Zk is
nonzero.
In our treatment, we assume weak impurity-bath on-site

couplings U12, such that the impurity and bath energy
scales are well-separated. In this regime, the back action of
the impurity on the zero-temperature bath ground state can

be neglected and the bath remains stable in the presence of
the impurity.
Model.—The microscopic model is Ĥ¼ ĤBþĤIþĤIB,

where

ĤB ¼ −J
X

hr;si
ðâ†r âs þ H:c:Þ þU

2

X

r

â†r â
†
r ârâr − μ

X

r

n̂r;

ĤI ¼
X

k

εkâ
†
I;kâI;k; ĤIB ¼ U12

X

r

n̂rn̂I;r; ð3Þ

are the Hamiltonians describing the bath, the impurity, and
the bath-impurity coupling, respectively. The lattice is
composed by I sites with lattice spacing set to unity
without loss of generality [47]. The bosonic operators â†r
and âr create and destroy, respectively, a bath particle at
lattice site r and are related to the local density operator as
n̂r ¼ â†r âr. Here, εk ¼ 4J

P
2
i¼1 sin

2ðki=2Þ is the energy
dispersion of a free impurity on a uniform lattice, â†I;k (âI;k)

and n̂I;r ¼ â†I;râI;r are respectively the creation (destruction)
and local density operators of the impurity, while U (μ) is
the on-site interaction strength (chemical potential) of the
bath. For simplicity, we assume that the bath and impurity
hopping parameters J between neighboring sites hr; si are
equal, setting their “bare” effective masses M−1 ¼ 2J.
The ground state of the BH bath can be approximated

by the Gutzwiller wave function jΨGi ¼⊗r
P

n c
0
njn; ri

[48–50], yielding the phase diagram in Fig. 1(a).
Fluctuations on top of this mean-field state can be
characterized using the QGW method [42–44]. Within
this approach, the quantized fluctuations correspond to the
elementary many-body excitations of the system δĉnðrÞ ¼
I−1=2

P
αk e

ik·rðuα;k;nb̂α;k þ vα;k;nb̂
†
α;−kÞ. Keeping terms up

to quadratic order in the fluctuations, we diagonalize the
bath Hamiltonian ĤB ≈

P
α;k ωα;kb̂

†
α;kb̂α;k in analogy with

the number conserving Bogoliubov theory of weakly
interacting gases [51,52]. Here, b̂α;kðb̂†α;kÞ represents the
annihilation (creation) of a single collective mode in the
αth branch with momentum k and energy ωα;k. The QGW
method improves upon the Bogoliubov description, which
is valid only in the weakly interacting SF regime
[34,35,39,41]. It has been proven to provide a robust
treatment of both local and nonlocal quantum correlation
in BH models, even in critical regimes where quantum
fluctuations are strong [43,44].
We recall briefly that the excitation spectrum of the BH

bath differs significantly from the continuous case and
presents a multibranch structure. The two energetically
lowest excitations in the SF regime consist of the gapless
Goldstone and gapped amplitude (Higgs) modes, which in
the MI phase become gapped particle and hole excitations
[52,60–63]. At the tip of the MI lobe, both Goldstone and
Higgs modes are gapless, and the bath filling is integer and
equal on both sides of anOð2Þ transition (c.f. Ref. [60]). On
the lobe boundary away from the tip, the Goldstone mode
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becomes quadratic whereas the Higgs mode remains
gapped. Consequently, the system behaves as an effective
free Bose gas of quasiparticles despite being strongly
interacting [60]. Away from the tip, the density undergoes
an abrupt change and for this reason is often referred
to as the commensurate-incommensurate (CI) transition.
Crucially, the QGW model is able to essentially capture
both universality classes of the SF to MI quantum phase
transition as shown in Refs. [43,52].
We take into account the multibranch spectrum of bath

excitations forming the polaron cloud by expanding ĤIB in
powers of the b̂α;k and b̂†α;k [52], and find

ĤIB ≈U12

X

r

n̂I;r½n0 þ δ1n̂ðrÞ þ δ2n̂ðrÞ þ…�: ð4Þ

The first term in the above expansion is the mean-field
energy shift U12n0, where n0 ¼

P
n njc0nj2 is the mean-

field bath density, while the second term reads

δ1n̂ðrÞ ¼
1
ffiffi
I

p
X

α

X

k

Nα;kðb̂α;keik·r þ b̂†α;ke
−ik·rÞ; ð5Þ

with Nα;k ¼
P

n nc
0
nðuα;k;n þ vα;k;nÞ. Already at this level,

thanks to the inclusion of the multibranch excitations, the
resultant Fröhlich model [45,46] is more general than
the usual Bogoliubov expansion on top of a SF state
[39,64,65], accurate only in the weakly interacting deep SF
regime [52]. However, since two-particle processes play a
crucial role in the MI and quantum critical regimes [37], it
is necessary to include also the nonlinear term

δ2n̂ðrÞ ¼
1

I

X

α;β

X

k;p

½Wαk;βpðb̂†α;kb̂†β;pe−iðkþpÞ·r þ H:c:Þ

þUαk;βpb̂
†
α;kb̂β;pe

iðp−kÞ·r þ Vαk;βpb̂α;kb̂
†
β;pe

iðk−pÞ·r�;
ð6Þ

which leads to a beyond-Fröhlichmodel of the bath-impurity
interaction. At zero temperature, which is the case under
consideration in this Letter, only the two-particle terms
Wαk;βp ¼

P
nðn − n0Þuα;k;nvβ;p;n contribute [52].

Self-energy.—We calculate the self-energy diagrammati-
cally via the Dyson series, including all relevant zero-
temperature diagrams to second order in U12 shown in
Fig. 2. This level of approximation amounts to the replace-
ment Ek → εk in evaluating Eqs. (1) and (2). Within the
QGW approach, we find

Σðk;ωÞ ¼ U12hn̂i þ
U2

12

I

X

α

X

q

jNα;qj2
ω − ωα;q − εk−q þ i0þ

þU2
12

2I2
X

α;β

X

q;q0

jWαq;βq0 þWβq0;αqj2
ω − ωα;q − ωβ;q0 − εk−q−q0 þ i0þ

;

ð7Þ

with the one-particle vertex Nα;k [Fig. 2(a)], two-particle
directWαk;βk0 , and exchangeWβk0;αk vertices [Fig. 2(b)], and
the Hartree shift U12hn̂i where hn̂i ¼ n0 þ hδ2n̂i is the
quantum-corrected bath density.
Importantly, both one- and two-particle processes con-

tribute at order ðU12=UÞ2 in Eq. (7). This allows for a
nontrivial description of the Bose lattice polaron in a MI
bath, where the only available excitations are particle-hole
pairs and also accounts for competing one- and two-particle
processes in the SF phase, as discussed below.
In the remainder of this Letter, the properties of the Bose

lattice polaron are discussed throughout the entire phase
diagram of the BH bath with emphasis on how they are
affected by the SF to MI transition and its different univer-
sality classes. Results are given in units of η≡ ðU12=UÞ2.
Spectral properties.—We analyze first the results for the

spectral properties E0 and M=M� obtained by evaluating
Eq. (1) and shown in Figs. 3(a)–3(d) [52]. Upon crossing
the Oð2Þ phase transition, either via fixed filling or
chemical potential, we see that both E0 and M=M� reach
an absolute minimum on the SF side and increase smoothly
across the transition. As a result of the closing of the Higgs
gap at this critical point [52], the weight of one- and two-
particle processes becomes comparable due to the absorp-
tion and emission of Goldstone-Higgs pairs by the mobile
impurity.
The situation changes drastically when the MI boundary

is crossed instead at the CI transition, as shown in Figs. 3(a)
and 3(c) for fixed chemical potential. As this transition is
crossed for progressively smaller J=U, due to the decreas-
ing sound velocity associated with the Goldstone mode, the
bath becomes softer to perturbations of the density by the
mobile impurity [43,49]. This physics is dominated by one-
particle processes involving the Goldstone mode, as the
Higgs mode remains gapped. This stronger bath-impurity
interplay yields sharper, nonanalytic polaron properties
across the phase boundary [Fig. 3(c) inset], which closely
reflect the discontinuous behavior of the one-body coher-
ence length [43,60].
Moving at constant noninteger filling, the bath remains

always in the SF phase, in spite of becoming strongly

(a) (b)

FIG. 2. Diagrammatic representation of the beyond mean-field
contributions to the interacting impurity Green’s function to
second order in U12 within the zero-temperature QGWapproach.
(a) and (b) depict the one- and two-particle diagrams with QGW
vertex functions Nα;q and Wαq;βq0 , respectively. Full lines re-
present the bare impurity Green’s function Gð0Þ, while dashed

lines correspond to bare Green’s functions Dð0Þ
α of the collective

modes of the BH bath.
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interacting, and enters the hard-core (HC) SF state for
J=U → 0 indicated in Fig. 1(a). In the HC SF regime, the
polaron cloud is again dominated by one-particle processes
involving only the Goldstone mode with a vanishingly
small sound speed and therefore a substantially quadratic,
rather than linear, dispersion. This amounts to a free Bose
gas of strongly renormalized quasiparticles. The infinite
compressibility of the HC SF leads to a dramatic interplay
between density fluctuations of the bath and the impurity as
shown in Figs. 3(b) and 3(d). The results for E0 andM=M�
closely follow the Oð2Þ line up to J=U slightly larger than
the tip of the lobe, after which the bath enters the strongly
interacting SF regime and divergences take over. This gives
rise to an overall nonmonotonic behavior [dotted lines
Figs. 3(b) and 3(d)].
Coherence and stability properties.—The quantum criti-

cal nature of the bath can also strongly influence the
coherence ðZkÞ and stability ðΓkÞ of the polaron, jeopard-
izing its experimental detection. In Figs. 3(e) and 3(f), we
present our numerical results for Zk. Across the Oð2Þ
transition, the polaron remains coherent (Zk > 1 − η) at all
momenta whereas its coherence rapidly deteriorates across
the CI transition at finite momentum. In general, the
coherence of the polaron in the SF regime worsens as
the bath becomes increasingly strongly interacting.

Eventually, the residue even vanishes in the limiting case
of the HC SF regime as shown in Fig. 3(f). Here, the mobile
impurity becomes orthogonal to its bare state, giving rise to
a bosonic instance of Anderson’s orthogonality catastrophe
[66]. Whereas this effect occurs in a free Bose gas in the
continuum, in the BH model it occurs in the strongly
interacting regime of the bath, highlighting the unusual
behavior of the HC SF as an effectively free Bose gas of
quasiparticles. In both cases the infinite compressibility of
the bath generates a macroscopic polaron cloud [67–70].
Additionally, the coherence of the polaron in the HC SF
regime is predicted to spoil over time [37] even for static
impurities, while the mobile impurity is expected to follow
a quantum Brownian motion [71].
To analyze the decay rate Γk, we use Eq. (2) to derive an

analytical expression that is reminiscent of the Landau
criterion for superfluidity [5,52,70],

Γk ≈ θðk − kcÞ
4U2

12κ

3π

ffiffiffiffiffiffiffi
2kc

p
ðk − kcÞ3=2; ð8Þ

where κ is the bath compressibility [49], and θ is the
Heaviside step function. This result applies at small
impurity momentum in the thermodynamic limit of the
SF regime where the one-particle spontaneous emission of
a phonon mode dominates. Energy conservation for this
process sets a critical value for the impurity momentum
kc ¼ Mcs, where cs is the sound velocity associated with
the Goldstone mode. A similar result has been obtained
within the Bogoliubov approach for a mobile impurity in a
continuous Bose bath [70,72].
The behavior of both κ and cs in the quantum critical

regimes of the BH bath differs significantly from the
continuous case. Namely, as the SF to MI transition is
crossed for progressively smaller J=U, the bath becomes
increasingly compressible while the sound speed tends to
vanish. This yields nontrivial critical momentum kc and
decay rate Γk as shown in Fig. 4. We find that in general the
polaron is long-lived in the incompressible MI phase. The

FIG. 3. (a),(c),(e) Polaron properties for fixed μ=U across the
Oð2Þ (blue) and CI (red) transitions, with the nonanalytical
nature of the latter shown in the inset of panel (c). (b),(d),(f)
Polaron properties at (black) integer and (green, blue) noninteger
filling of the bath hn̂i. Dots indicate the quantum critical points
shown in Fig. 1.

(b)(a)

FIG. 4. Behavior of the polaron decay rate [see Eq. (8)] for
(a) fixed μ=U across the Oð2Þ (blue) and CI (red) transitions;
(b) fixed hn̂i at integer filling (black) across the Oð2Þ transition
and noninteger fillings (blue, green). Dots indicate quantum
critical points, with the Landau-critical values of the impurity
momentum kc shown in the insets.
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decay rate reaches instead a maximum when approaching
the Oð2Þ and CI transitions, with the behavior of kc
depending strongly on the universality class [Fig. 4 insets].
In the HC SF, the bath is highly compressible; however the
critical momentum kc remains finite, resulting in a diver-
gence of the decay rate Γk. This mirrors the divergence
of E0 in Fig. 3(b) and the orthogonality catastrophe in
Fig. 3(f), indicating that (i) the polaron is no longer a well-
defined quasiparticle, and (ii) the potential for macroscopic
deformation of the bath by the impurity cannot be
neglected. Consequently the assumptions underlying our
Letter are violated. A complete treatment of these subtle
effects requires a self-consistent calculation, which is
possible within the two-component Gutzwiller approach
[73–75] recently developed in Ref. [44]. This analysis is,
however, beyond the scope of this Letter.
Conclusion.—By blending diagrammatic techniques

with the recently developed quantum Gutzwiller method,
we have studied the fundamental quasiparticle properties of
the Bose lattice polaron, i.e., of an impurity embedded in a
BH bath, and highlighted the role of the bath SF to MI
transition and its different universality classes. In the MI
and Oð2Þ critical regimes, we have shown that processes
beyond the celebrated Fröhlich model for polarons must be
taken into account. These processes involve the creation
and annihilation of pairs of elementary excitations belong-
ing to the multibranch spectrum of the BH bath. We find
nonmonotonic polaron properties across the SF to MI phase
transition, namely a maximum of the effective mass and a
minimum of the residue close to the lobe tips. A stronger
and sharper renormalization of the polaron properties is
found when crossing the transition at noninteger fillings,
due to the large compressibility of the strongly correlated
superfluid in the low-tunneling regime. For the same
reason, the polaron properties show a diverging behavior
for fixed noninteger filling and increasing bath interaction
strengths, approaching the hard-core superfluid regime.
Consequently, studies of this regime, which is ill-defined
within our approach, should account for the modification of
the bath in the presence of the impurity.
Our analysis, which has been carried out to second order

in the bath-impurity interaction, shows that the polaron
persists as a well-defined quasiparticle in most regimes of
the BH bath. Stronger bath-impurity interactions can be
accounted for using ladder approximations (c.f. [76]);
however, we expect that the behaviors found in this
Letter will not change qualitatively.
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