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The quantum simulation of dynamical gauge field theories offers the opportunity to study complex high-
energy physics with controllable low-energy devices. For quantum computation, bosonic codes promise
robust error correction that exploits multiparticle redundancy in bosons. Here, we demonstrate how bosonic
codes can be used to simulate dynamical gauge fields. We encode both matter and dynamical gauge fields
in a network of resonators that are coupled via three-wave mixing. The mapping to a Z2 dynamical lattice
gauge theory is established when the gauge resonators operate as Schrödinger cat states. We explore the
optimal conditions under which the system preserves the required gauge symmetries. Our findings promote
realizing high-energy models using bosonic codes.
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Dynamical gauge field theories (DGFTs), commonly
appearing in high-energy physics, are extremely challeng-
ing to simulate or solve using classical methods. A
prototypical example is quantum electrodynamics, a theory
that features “matter” degrees of freedom interacting in
the presence of “light” gauge fields. The two constituents
experience complex combined dynamics, e.g., via the
change in the electric field caused by the redistribution
of charges. The gauge fields in electrodynamics are
Abelian, i.e., their quantum operators commute. In this
“simple” DGFT, we have a continuous U(1) degree of
freedom with evolution in an infinite-dimensional Hilbert
space. In other realms, even more complex DGFTs appear,
e.g., in quantum chromodynamics, where they describe
quark-gluon interactions in heavy-ion collisions, or the
deep core of neutron stars [1,2].
In recent years, quantum simulators have become a

reality, leading to the emulation of numerous effects, such
as topological phases of matter [3–7], collective pheno-
mena [8–10], cascade effects [11,12], and many more. Such
technologies also offer the means to controllably realize
DGFTs [13–16]. The simulation relies on mapping DGFTs
to simplified lattice gauge theories [17] (LGTs). This map
involves confining the matter degrees of freedom to move
only between nodes of a lattice, while the gauge fields are
associated with the links between the nodes [17,18].
Further simplifications involve using low-dimensional
“quantum links” that replace infinite-dimensional gauge
fields, while preserving the symmetries of the original
model [13,37,38]. In addition, minimal Z2-symmetric
LGTs appeared and have sparked interest in spin [17],
fermionic [39], and bosonic models [40], as well as the toric
code for quantum error correction [41].
The quantum simulation of DGFTs, however, is very

challenging. Most proposals thus far harness “static” gauge

fields, which act on the matter without reacting, and strive
to make them dynamic [42–45]. The static fields are an
established instrument for breaking spatiotemporal sym-
metries used to induce nontrivial topological phenomena in
lattice systems [46–51]. Rendering gauge fields dynamic,
LGT simulators are being developed in various quantum
simulation technologies [13,15,52–66]. While the ultimate
aim is to tackle more complex schemes, the current focus of
the community is on implementing minimal LGT models
with Z2 or U(1) symmetries. Yet, despite the variety of
proposals, the constraints that LGTs must fulfill impede a
clear experimental realization, limiting most proposals to
the control of a single or few links.
Recently, bosonic error correction codes have spurred

much interest as a possible route for robust and scalable
quantum computing [67–71]. These codes exploit the
infinite-dimensional Hilbert space of a harmonic oscillator
for redundant information encoding, thus significantly
reducing hardware requirements (see the Supplemental
Material [18]). Remarkably, the realization of the so-called
cat qubit, the workhorse of bosonic codes [72], has been
recently proposed and demonstrated in nonlinear micro-
wave cavities [73–76]. A wide variety of platforms could
potentially allow for bosonic cat codes, including cavity
QED [77], trapped ions [78], bulk acoustic-wave resona-
tors [79], nanomechanical [80], and optomechanical [81]
systems. The prospects for error correction make bosonic
code platforms an interesting candidate also for quantum
simulation (see the Supplemental Material [18]).
In this Letter, we demonstrate how a Z2 LGT can be

realized using a bosonic code setup. Specifically, we
consider a coupled resonator network whose nodes embody
both matter and gauge fields. The gauge resonators are
nonlinear and driven into “Schrödinger cat” states that
encode the dynamical gauge fields. Three-wave mixing
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between the network resonators engenders a gauge-invariant
light-matter coupling. We explore the bounds for the ideal
operation of our scheme and show that it requires the cat
states to have a finite coherent amplitude and the three-wave
mixing to be moderate. In this regime, we obtain similar
functionality and scaling strategies as contemporarily used
in standard-qubit-based LGTs [14,16]. Concurrently, we
benefit from the substantial advantage of bosonic codes
compared with qubit-based approaches, e.g., their reduced
hardware overhead due to efficient quantum-error correc-
tion. Furthermore, a compact simulator assembled using our
scheme can be realized with various platforms, including
photons, phonons, magnons, and polaritons.
We consider a 1D chain of coupled resonators; see

Fig. 1(a). The resonators are alternatively positioned with
matter nodes and gauge sites. The latter will act as links
in the following. The chain’s building block is a matter-
field link, [labeled sites in Fig. 1(a)] governed by the
Hamiltonian

H ¼ Hmatter þHfield þHcoup: ð1Þ

The matter nodes’ Hamiltonian reads as

Hmatter ¼
X
i¼1;2

ωia
†
i ai; ð2Þ

with bosonic annihilation operators ai (i ¼ f1; 2g) and
frequency ωi. The link’s gauge site is also a resonator
[cf. Eq. (5) below] with bosonic annihilation operator b,

and frequency ωb. Gauge resonators are operated in the
bosonic code regime. Specifically, we assume that they
operate as Schrödinger cat states, i.e., that their state
is spanned by jC�β i ∼ ðjβi � j − βiÞ, where jβi denotes a
coherent state with amplitude β [82,83]. The � label even-
odd photon number parities, where the parity operator
reads as ΠðnÞ ¼ ð−1Þn with n ¼ b†b. In the following, we
define the projector PC ¼ P

η¼� jCηβ0ihC
η
β0
j to map our

model into the bosonic code limit, where we denote the
restricted “cat” Hilbert space by C with ground- or steady-
state cat amplitudes β ¼ β0.
The resonators b and ai are coupled via nondegenerate

three-wave mixing (3WM) [84–86],

Hcoup ¼ −g3ða†1ba2 þ a†2b
†a1Þ; ð3Þ

with amplitude g3. The 3WM coupling can be realized in
various ways, e.g., Raman scattering [87,88] and opto-
mechanical coupling [89], and shows up as frequency
conversion in nonlinear optical crystals [90,91], Josephson
junctions [92], and polariton condensates [93,94].
Degenerate and nondegenerate 3WM are related by linear
mode coupling [95,96].
The 3WM interaction [Eq. (3)] signifies that an excita-

tion from a matter resonator ai can convert into a pair of
excitations that reach another matter resonator aj, j ≠ i as
well as the intermediate gauge resonator b, or vice versa.
Hereby, “hopping” between matter sites ai is inevitably
“recorded” by an excitation arriving or leaving b, which
imparts a flip in the photon-number parity ΠðnÞ in the
gauge resonator.
Using our model [Eq. (1)], we show that a Z2 LGT can

be realized by restricting the link resonators to evolve in
their respective cat Hilbert spaces [Fig. 1(a)]. Projecting
Eq. (3) onto such a subspace brings the projected
Hamiltonian HC

coup into the form of a Z2 light-matter
coupling [13]:

HC
coup ¼ −

ΩR

2
ða†1La2 þ a†2L

†a1Þ; ð4Þ

where an excitation hopping between matter nodes, with
Rabi frequency ΩR > 0, is mediated by the “link” (gauge
field) operator L ¼ PCbPC (see the Supplemental Material
[18]). Note that PC leaves the matter parts unaffected.
Why does our construction entail a Z2 LGT? In a Z2

LGT, (i) the gauge fields are associated with electric
flux operators E ¼ σz (Pauli matrices fσx;y;zg), whose
values change upon a redistribution of charges with
operators Qi ¼ ð−1Þa†i ai . This implies that the electric
flux is not conserved, e.g., L ∝ σx; (ii) the theory has a Z2

gauge invariance, namely the Hamiltonian maintains
H ¼ ViHV†

i for local unitary transformations Vi ¼ eiπGi ,
generated by operators Gi ¼ Qiσ

z. Note that in an

FIG. 1. (a) Chain consisting of resonators of type a and b
labeled as matter and gauge modes, respectively [cf. Eq. (1)]. The
resonators are coupled via three-wave mixing interactions
[cf. Eq. (3)] (right zoomed box). We show that the system can
simulate a 1þ 1D LGT when the gauge resonators are projected
onto discrete bosonic code subspaces, namely, into cat states jC�β0i
with parity � and amplitude β0 (see text). (b) Sketch of the “link”
site as a Kerr parametric resonator [cf. Eq. (5)] subject to
single- (κ1) and two-photon (κ2) loss. (c) The interplay between
the drive G and the nonlinearity U stabilizes nonclassical states,
e.g., cat states that appear as ground states of the Hamiltonian
[Eq. (5)], with amplitudes β0 that minimize the mean-field
double-well potential hHfieldiMF ¼ −Ujβj4 þ GReðβ2Þ.
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extended theory, the local symmetry generators generalize
to Gi ¼ Qi

Q
j∶hi;ji σ

z
i;j, where σzi;j represents the gauge

field on the link hi; ji in question. This is also known as the
Z2 analog of “Gauss law,” i.e., the generator is a conserved
quantity ½H;Gi� ¼ 0 [13]. In our case, when we restrict
the Hamiltonian to the cat space, HC ¼ PCHPC, we
(i) recover a similar electric flux operator by also projec-
ting the parity operation PCΠðnþ 1ÞPC ¼ σz, where the
Pauli matrices now act on the cat states jC�β0i (see the
Supplemental Material [18]). Moreover, in the large cat
amplitude limit, β0 ≫ 1, the gauge fields flip the parity,
i.e., L ≈ β0σ

x, as required. Furthermore, property (ii) then
holds, leading to the invariance HC ¼ ViHCV

†
i . The

Z2 matter-free dynamics is introduced by a term E in
HC

field [61,64], inducing rotations around the z axis ∼σz.
While cat qubits are robust against such phase flips, several
approaches to controllably generate them have been
devised, e.g., in Kerr-cat qubits through pulsed–single
and two-photon–drives within C [97] or involving auxiliary
excitations [98].
Physically, cat states can arise from the competition

between two-photon driving (also known as degenerate
3WM) with Kerr nonlinearity [83] or using two-photon
dissipation [99]. For instance, they manifest as the doubly
degenerate ground states of a Kerr parametric oscillator
(KPO) [75,76,100,101] [Fig. 1(b)]. At a rotating frame at
frequency ωb, the KPO Hamiltonian reads as

Hfield ¼ −Ub†2b2 þ G
2
ðb2 þ b†2Þ; ð5Þ

with two-photon driving amplitude G (originally at fre-
quency ≈2ωb), and Kerr nonlinearity U. The spectrum of
the KPO [Eq. (5)] is gapped relative to the cat states
with splitting approximated by ωGAP ¼ 4Uβ20 [75], where
β0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G=2U

p
[Fig. 1(c)]. The cat eigenfrequencies are

degenerate at Uβ40, such that the projected Hamiltonian
simply reads as HC

field ¼ Uβ4012×2, with a trivial zero-point
frequency shift.
We turn, now, to show that the effective Z2 LGTHCwell

approximates the full dynamics [Eq. (1)]; see Fig. 2. We
assume the gap frequency is much larger than the 3WM,
ωGAP ≫ hHcoupi, and take degenerate matter sites,
ω1 ¼ ω2. Initially, we place a single excitation in a1,
and an even cat in b, i.e., jψðt ¼ 0Þi ¼ j1; Cþβ0 ; 0i. We
time evolve the state using Eq. (1) with the KPO model for
the gauge sites [Eq. (5)]. We observe coherent population
exchange between matter modes, with Rabi frequency
ΩR ≈ 2g3β0, accompanied by cat parity flips. The time
snapshots of the resonators’ Wigner quasiprobabilities
confirm that the Rabi oscillations transition between the
states j1;Cþβ0 ;0i and jψðt¼2π=ΩRÞi¼ j0;C−β0 ;1i [Fig. 2(b)].
We have shown that H implements a Z2 LGT when the

cat amplitude β0 is large and the 3WM is moderate. What
are the limitations of our construction? We first address the

impact of lowering β0, e.g., by weakening the two-photon
drive G=U → 0. Specifically, we repeat the procedure in
Fig. 2, and extract the matrix element in H responsible for
Rabi oscillations; see Fig. 3(a). We observe that, for
sufficiently low β0, a different Rabi oscillation frequency
appears if we start in the odd or the even cat state (see the
Supplemental Material [18]).
This difference marks a discrepancy between the light-

matter interaction rates and a corresponding breakdown
of the Z2 LGT dynamics for low β0. It crucially origi-
nates from cat states shrinking into Fock states, jC�β0i ↦
fj0i; j1ig as β0 → 0 [Fig. 3(b)]. This reduction “restores”
a U(1) gauge symmetry to our model: (i) as β0 → 0, the
Wigner functions for b go from mirror symmetric at
all times to full rotationally symmetric; and (ii) the
projectors in L ¼ PCbPC approximate the gauge fields to
L ∼ jC−

β ihCþ
β j for β0 ≪ 1, and thus the light-matter cou-

pling becomes invariant under arbitrary U(1) transforma-
tions [eiφiGi with φi ∈ ð0; 2πÞ] (see the Supplemental
Material [18]). Moreover, the shrinking cat subspace
implies that the projected states are no longer degenerate,
and the time dynamics involve a distinct transition

(a)

(b)

FIG. 2. (a) Light-matter population dynamics governed by the
full Hamiltonian H [cf. Eq. (1)] for two matter sites coupled by a
link that is realized by aKPO [cf. Eq. (5)]. The system is initiated in
a state with Fock number 1 in resonator a1, and a positive-parity
Schrödinger cat state in b, denoted j1; Cþβ0 ; 0i. The operator
σz ¼ jCþβ0ihCþβ0 j − jC−β0ihC−β0 j returns the photon number parity
for cat states within C. (b) Marginal Wigner functions for the
three resonators at times t ¼ 0 and t ¼ π=ΩR; the latter corre-
sponds to the vertical dashed line in (a). The axes labels x and p
denote the position and momentum for each resonator. Here
U ¼ 0.03, G¼ 0.12 (β0 ¼ 2, ωGAP ¼ 0.48), and g3 ¼ ωGAP=100.
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between Fock states. Such asymmetry reflects in the
matter-field Rabi frequencies for j1; Cþβ0 ; 0i ↔ j0; C−β0 ; 1i
and j1; C−β0 ; 0i ↔ j0; Cþβ0 ; 1i processes, which become

Ω�
R ¼ 2g3β0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e−2β

2
0Þ=ð1 ∓ e−2β

2
0Þ

q
.

We now address the impact of increasing the 3WM.
The procedure in Fig. 2(a) with hHcoupi ∼ ωGAP and
jψðt ¼ 0Þi ¼ j1; Cþβ0 ; 0i [Fig. 4(a)] reveals the average
electric flux beats with a reduced amplitude maxhσzi<1,
and additional frequencies. This is in stark contrast with
Figs. 2 and 3, where Rabi exchange at a single frequency
Ω�

R dominates the dynamics. The excitation spectrum of H
also reveals an intricate structure [Fig. 4(b)], in which cat
states and excitations hybridize asΩþ

R > ωGAP. We quantify
the overall hybridization of the cat states jC�β0i with the
system’s state jψi using the inverse participation ratio
IPRC ¼ hψ jPCjψi2=hψ jPCjψi [Fig. 4(c)]. The cat states
delocalize over many excited states (low IPRC) as the
3WM grows and β0 decreases. In fact, the mixing be-
comes relevant when β0 < g3=ð2UÞ, i.e., precisely when
Ωþ

R > ωGAP [Fig. 4(d)]. Therefore, the hybridization
between C and C⊥ subspaces is the cause for the multiple
harmonics in Fig. 4(a) (see the Supplemental Material [18]).
Strong 3WM hybridization hampers the performance of

even a single Z2 link. To see the extent of the deviation
from a LGT, we explore how much and long the gauge
symmetry, expressed by Gauss’s laws ½H;Gi� ¼ 0, is
conserved. The evolution must be confined to an eigen-
space of the symmetry generators Gi or, equivalently, the
value of hGii or “static charge” must be conserved. In the
moderate 3WM limit (cf. Figs. 2 and 3) the dynamics are
spanned by states j1; Cþβ0 ; 0i and j0; C−β0 ; 1i, both of which
are eigenvectors of Gi with static charge −1. However, for

large 3WM amplitudes, the dynamics from jψðt ¼ 0Þi
reach eigenexcitations of H with an ill-defined static
charge. Similarly, hybridization causes a breakdown of
Gauss’s laws and produces errors in the simulation of Z2

light-matter dynamics. Specifically, the time-evolved oper-
ator variances ΔGi ¼ hG2

i i − hGii2, which must be zero
with an eigenstate of Gi, oscillate around a nonzero
baseline. The location of this baseline, obtained from
jΔG̃iðω ¼ 0Þj=maxJ;β0 ½jΔG̃iðω ¼ 0Þj� where ΔG̃iðωÞ ¼
FT½ΔGiðtÞ�, gives an estimate of the Z2 simulation error
[Fig. 4(e)]. Our results reveal an ideal operation regime
(errors below 1%) in the large β0 and low g3 region.
Until now, we examined the performance of a single

bosonic code link as a building block for a Z2 LGT. Next,
we connect two such links in a minimal 1þ 1D theory with
two gauge fields linking three matter sites [Fig. 5(a)]. In
Fig. 5(b), we study the dynamics initializing the system
with a single matter excitation at one end of the chain. The
excitation propagates from left to right while flipping the
cat parity of the gauge resonators along its path, even when
it bounces back off the boundary. Gauge invariance is

(a)

(b)

FIG. 3. (a) Matrix elements h1; C�β0 ; 0jHCj0; C∓β0 ; 1i ¼ Ω�
R=2 of

the projected Hamiltonian between opposite-parity cat states. The
analytical expression for the splitting δω is superimposed to the
numerically exact result h1; C�β0 ; 0jHj0; C∓β0 ; 1i (gray dots). Values
of β0 in (a) are shown as dashed lines. (b) Wigner distribution of
the gauge mode b, initiated in j1; Cþβ0 ; 0i, after a full Rabi swap
(t ¼ π=ΩR) with decreasing amplitude β0 ¼ 2, 1, 0.18 along the
columns. In these simulations, we choose ΩR ≪ ωGAP to prevent
excitation outside C, and take U ¼ 0.03.

(a)

(b)

(d) (e)

(c)

FIG. 4. (a) Evolution of hσzi for increasing 3WM. Dashed lines
depict the limit where dynamics remains confined in the cat space
C. (b) Eigenspectrum of the full Hamiltonian H for a single link
a1 − b − a2. The colorscale marks the value of the projection
over the cat subspace. Here and onwards, we assumed the
resonance condition ωi ¼ ωGAP. (c) Inverse participation ratio
for cat states in the full spectrum, where IPRC ¼ 1 indicates full
localization in C. (d) 2D map of IPRC as a function of β0 and g3.
(e) Normalized zero frequency component of ΔGiðtÞ, marking a
baseline deviation from Gauss’ law. In these panels, U ¼ 0.03.
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preserved during the evolution, as indicated by the low
values of the central site relative error jhGchain

2 ðtÞi −
hGchain

2 ð0Þij=hGchain
2 ðtÞi in Fig. 5(c), where Gchain

2 ¼
σz1;2Q2σ

z
2;3. Note that the system’s dynamics is intrinsically

tied to electric field terms ∼σzi;iþ1 and the on site repulsion

on the matter sites ∼ða†i aiÞ2, which we neglected here. The
latter interaction terms could play a crucial role in initial
state preparation, an area for future research to explore.
In the analysis of Fig. 5, we rely on truncation to the

lowest M eigenstates of Hfield instead of employing a
Fock basis for b, which would require much larger
truncated Hilbert spaces to properly describe cat states
and their dynamics (see the Supplemental Material [18]).
Since the model conserves the number of matter excita-
tions, this reduces the dimension of the computational
Hilbert space, H, for N singly excited matter sites
and N − 1 gauge resonators to dimðHÞ ¼ NMN−1, or

dimðHÞ ¼
�
NþNexc−1

Nexc

�
MN−1 for Nexc matter excitations.

This method provides an accurate description of the
dynamics of a chain of links. Note, however, that the
exponential growth of dimðHÞ still implies that a proper
description of larger systems requires the assistance of
quantum simulation devices.
Our proposal motivates the realization of LGT quantum

simulation using bosonic code networks. In light of
contemporary results in the field [76], the realization of
the basic building block of the model is within experi-
mental reach. Note, however, that with superconducting
devices, future work will need to address the interplay
between the out-of-equilibrium drives and dissipation
for a more realistic description. Nevertheless, with the

abundance of new bosonic code platforms available, the
Hamiltonian description presented here is sufficiently
broad to inspire LGT emulation in other systems. The
natural redundancy in bosonic Hilbert spaces and the
spectral isolation of cats guarantee the robustness of our
proposal and open the door to studying improvements of
the simulations using error-correction schemes [76,97].
Exploring systems with higher dimensionality would
require additional Hamiltonian interactions (see the
Supplemental Material [18]). Furthermore, the error cor-
rection capabilities of bosonic codes set the foundation to
scalable 1þ 1D LGTs [102] and more involved sym-
metries, such as SU(2) LGTs [103–105] by incorporating
additional bosonic codes.
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