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The existence of incompatible observables is a cornerstone of quantum mechanics and a valuable
resource in quantum technologies. Here we introduce a measure of incompatibility, called the mutual
eigenspace disturbance (MED), which quantifies the amount of disturbance induced by the measurement
of a sharp observable on the eigenspaces of another. The MED provides a metric on the space of von
Neumann measurements, and can be efficiently estimated by letting the measurement processes act in an
indefinite order, using a setup known as the quantum switch, which also allows one to quantify the
noncommutativity of arbitrary quantum processes. Thanks to these features, the MED can be used in
quantum machine learning tasks. We demonstrate this application by providing an unsupervised algorithm
that clusters unknown von Neumann measurements. Our algorithm is robust to noise and can be used to
identify groups of observers that share approximately the same measurement context.
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Introduction.—One of the most striking features of
quantummechanics is the existence of incompatible observ-
ables. Incompatible observables are at the heart of Bohr’s
notion of complementarity [1] and of Heisenberg’s uncer-
tainty principle [2], and have nontrivial relations with Bell
nonlocality [3,4] and other forms of nonclassicality [5–9]. In
addition to their foundational relevance, they play center
stage in quantum information technologies [4,10,11], where
quantum incompatibility serves as a resource [12–14], in a
similar way as quantum entanglement and coherence.
Several measures of incompatibility have been proposed

in the past years, including robustness to noise (defined as
the minimum amount of noise that has to be added to a set
of incompatible observables in order to make them com-
patible) [15,16], sensitivity to eavesdropping (defined as
the minimum amount of disturbance that an arbitrary
entanglement-breaking channel would induce on a quan-
tum system prepared in an unknown eigenstate of the given
observables) [17], and disturbance on the measurement
statistics (defined as the maximum distance between the
probability distribution of observable A on a given input

state and the probability distribution of A after a measure-
ment of observable B has been performed on the same input
state, with the maximum evaluated over all possible input
states) [18]. Since all these measures are defined in terms
of optimization problems, they are often hard to compute
analytically, and numerical evaluation becomes unfeasible
for systems of high dimension. In addition, there is
generally no direct way to estimate these measures from
experimental data: in most cases, the best known way to
infer the incompatibility of two unknown observables is to
perform a full tomography, which is unfeasible for quantum
systems consisting of many particles.
In this Letter, we introduce a measure of incompatibility

for sharp observables [19], called the mutual eigenspace
disturbance (MED). The MED quantifies the noncommu-
tativity of the spectral resolutions associated with the two
observables, and can be naturally extended to a larger class
of noncommutativity measures for unsharp measurements
and general quantum processes. It has a simple closed-form
analytical expression and, unlike other incompatibility
measures, it constitutes a metric on the space of von
Neumann measurements, a property that makes it suitable
for machine learning applications. The MED and its
generalizations to measures of noncommutativity can be
directly estimated using the quantum switch [20,21], an
operation that combines quantum processes in a coherently
controlled order. Estimation of the MED via the quantum
switch can be realized with existing technology [22–29]
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and its sample complexity is independent of the dimension
of the system, meaning that the number of experiments
needed to estimate the MED remains small even for
multiparticle systems.
The experimental accessibility of the MED and its metric

properties make it suitable for applications in quantum
machine learning. To illustrate the idea, we provide a
quantum algorithm that clusters noisy von Neumann mea-
surements based on their mutual compatibility. This algo-
rithm can be used to identify clusters of observers who share
approximately the same measurement context [30–33], and
thereby could share the same notion of an emergent classical
reality [34–38]. Notably, the observers could be localized in
distant laboratories, and the algorithm does not require
access to their measurement outcomes, but only to the
average evolution associated to their measurement devices.
MED.—For sharp observables, compatibility is equivalent

to commutativity [39]. LetA andB be two sharp observables
on ad-dimensional quantumsystem, and letP ¼ ðPiÞkAi¼1 and
Q ¼ ðQjÞkBj¼1 be the projectors on the eigenspaces of A and
B, respectively. We now introduce a measure of noncom-
mutativity between P and Q. Imagine that the system is
initially in an eigenstate of A, say jαii, picked uniformly at
random from the ith eigenspace, with i distributed according
to the probability distribution pi ≔ dA;i=d, where dA;i is the
eigenspace’s dimension. Then, the system undergoes the
canonical (Lüders) measurement process associated with
the observable B: with probability pBðjÞ ¼ hαijQjjαii the
measurement yields outcome j, leaving the system in the
postmeasurement state Qjjαii=kQjjαiik. On average over
all outcomes, the density matrix of the system isP

j pBðjÞQjjαiihαijQj=kQjjαiik2 ¼ BðjαiihαijÞ, where B
is the dephasing channel defined by the relation BðρÞ ≔P

j QjρQj for arbitrary density matrices ρ. Finally, a
measurement of the observable A is performed. The prob-
ability to find the outcome i, associated with the original
subspace, is Tr½PiBðjαiihαijÞ�. On average, the probability
that the system is still found in the original eigenspace is

ProbðA;BÞ ≔
X
i

pi

Z
πiðdαiÞTr½PiBðjαiihαijÞ�; ð1Þ

where πiðdαiÞ is the uniform probability distribution over
the pure states in the ith subspace. Explicit calculation yields
the expression

ProbðA;BÞ ≔ 1

d

X
ij

Tr½PiQjPiQj�; ð2Þ

which is related to an extension of the Kirkwood-Dirac
quasiprobability distribution [40,41].
Note that the role of the projectors P andQ is completely

symmetric. Operationally, this symmetry implies to the
relation

ProbðA;BÞ ¼ ProbðB;AÞ; ð3Þ

where ProbðB;AÞ is the average probability that a ran-
domly chosen state jβji from the jth eigenspace of B,
drawn with probability qj ≔ dB;j=d (where dB;j is the
eigenspace’s dimension), is still found in the same eigen-
space after the action of the dephasing chan-
nel AðρÞ ≔ P

i PiρPi.
Note also that the probabilities in Eq. (3) depend only on

the dephasing channels A and B. Accordingly, we will
denote by DðA;BÞ ≔ 1 − ProbðA;BÞ≡ 1 − ProbðB;AÞ
the average probability of eigenstate disturbance. We then
define the MED of the two observables A and B as

MEDðA;BÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðA;BÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

d

X
i;j

Tr½PiQjPiQj�
s

:

ð4Þ

The MED exhibits several appealing properties for a
measure of incompatibility: (1) it is symmetric and non-
negative, namely, MEDðA;BÞ ¼ MEDðB;AÞ ≥ 0 for
every pair of dephasing channels A and B, (2) it is faithful,
namely, MEDðA;BÞ > 0 if and only if A and B are
incompatible, (3) it is decreasing under coarse graining,
(4) it is a a metric on von Neumann measurements,
corresponding to observables with a nondegenerate spec-
trum. (5) it is robust to noise: it remains faithful even if
one of the channels A and B is replaced by the evolution
resulting from a noisy measurement of the corresponding
observable, (6) it is maximal for maximally complementary
observables [42], that is, observables such that their eigen-
states form mutually unbiased bases [43,44]. In general,
one has the bound MEDðA;BÞ ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1=minfkA; kBg
p

,
and the maximum value MEDðA;BÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1=d
p

and is
attained if and only ifA andB aremaximally complementary.
The proof of the above properties is provided in the
Supplemental Material [45]. There, we also extend the
MED to a broader class of incompatibility measures, given
by the expression

MEDρðA;BÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Re

X
i;j

Tr½ρPiQjPiQj�
s

; ð5Þ

where ρ is a density matrix. The original MED, defined
above, corresponds to the case where ρ is the maximally
mixed state I=d. Notably, the generalized MED (5) is also a
metric onvonNeumannmeasurements whenever the density
matrix ρ is nonsingular, including, e.g., the case where ρ is a
thermal state.
Experimental setup.—We now provide an experimental

setup that can be used to estimate the MED of two
observables and, more generally, the amount of noncom-
mutativity between two arbitrary quantum processes.
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The setup is based on the quantum switch [20,21], an
operation that combines two unknown processes in a
coherent superposition of two alternative orders. Previously,
the quantum switch was shown to be able to distinguish
between pairs of quantum channels with commuting or
anticommuting Kraus operators [57,58], a task that can be
practically achieved with photonic systems [22,59]. We now
show that the quantum switch can be used to quantify the
amount of noncommutativity of quantummeasurements and,
more generally, of arbitrary quantum processes.
Suppose that an experimenter is given access to two

black boxes, acting on a d-dimensional quantum system.
The two black boxes implement two quantum processes C
and D with Kraus representations CðρÞ ¼ P

i CiρC
†
i and

DðρÞ ¼ P
j DjρD

†
j , respectively. The goal of the experi-

menter is to estimate the noncommutativity of the Kraus
operators ðCiÞi and ðDjÞj. To this purpose, one can
combine the two boxes in the quantum switch [20,21],
generating a new quantum process SC;D with Kraus
operators

Sij ¼ CiDj ⊗ j0ih0j þDjCi ⊗ j1ih1j; ð6Þ

where fj0i; j1ig are basis states of a control qubit. The
action of the channel SC;D on a generic product state
ρ ⊗ ω is

SC;Dðρ ⊗ ωÞ ¼ 1

4

X
ij

ðfCi;DjgρfCi;Djg† ⊗ ω

þ fCi;Djgρ½Ci;Dj�† ⊗ ωZ

þ ½Ci;Dj�ρfCi;Djg† ⊗ Zω

þ ½Ci;Dj�ρ½Ci;Dj�† ⊗ ZωZÞ; ð7Þ

where ½Ci;Dj� ≔ CiDj −DjCi denotes the commutator,
fCi;Djg ≔ CiDj þDjCi denotes the anticommutator,
and Z ≔ j0ih0j − j1ih1j.
To estimate the noncommutativity of C and D, the

experimenter can initialize the control qubit in the max-
imally coherent state ω ¼ jþihþj, apply the quantum
channel SðC;DÞ, and measure the control system in the
Fourier basis fjþi; j−ig, with j�i ≔ ðj0i � j1iÞ= ffiffiffi

2
p

.
Using Eq. (7), one can see that the probability of the
outcome “−” is

p− ¼ 1

4

X
ij

Trðρj½Ci;Dj�j2Þ; ð8Þ

where jOj2 ≔ O†O denotes the modulus square of an
arbitrary operator O.
We define the noncommutativity of two generic quantum

processes C and D relative to the state ρ as

NCOMρðC;DÞ≔
ffiffiffiffiffiffiffiffi
2p−

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijTrðρj½Ci;Dj�j2Þ

2

s
ð9Þ

(in the special case C ¼ D and ρ ¼ I=d, a related definition
was used in [60] to quantify the degree of noncommuta-
tivity of the Kraus operators of a given channel). It is
evident from the definition that NCOMρðC;DÞ is sym-
metric and non-negative. When the matrix ρ is invertible,
NCOMρðC;DÞ is a faithful measure of noncommutativity,
i.e., NCOMρðC;DÞ ¼ 0 if and only if every Kraus operator
C commutes with every Kraus operator of D. For
composite systems, it is possible to show that the non-
commutativity between a maximally entangled measure-
ment and product measurement is at least

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=dmin

p
,

dmin being the dimension of the smallest subsystem (see
the Supplemental Material [45]).
In the special case where C and D are two dephasing

channels A and B, explicit calculation yields the relation

NCOMρðA;BÞ ¼ MEDρðA;BÞ: ð10Þ

Hence, the MED of two unknown observables can be
directly estimated from experimental data. Crucially, the
sample complexity of the estimation procedure is indepen-
dent of the dimension of the system: for a fixed error
threshold ϵ and for every state ρ, the estimate of
MEDρðA;BÞ can be guaranteed to have error at most ϵ
with probability at least 1 − δ by repeating the experiment
for n ¼ logð2=δÞ=ð2ϵ2Þ times (see the Supplemental
Material [45]).
The experimental estimation of the MED is feasible with

photonic systems, in particular in the case where the state ρ
is maximally mixed, and its preparation can be achieved by
generation two-photon Bell states. The preparation of the
maximally mixed state is also standard in the DQC1 model
of quantum computing [61] and can be well approximated
in other models of quantum computing with highly mixed
states [62]. In the Supplemental Material [45] we also
discuss the advantages of the quantum switch set up with
respect to other ways to estimating the MED.
Besides providing direct way to the experimental esti-

mation of the MED, the relation with the noncommutativity
also provides an alternative route to its analytical or
numerical evaluation. In the Supplemental Material [45]
we show that the noncommutativity can be equivalently
rewritten as

NCOMρðC;DÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ReTr½DČðI ⊗ ρTÞ�

q
; ð11Þ

where Č and D are two operators associated with the maps
C andD, respectively. When the operators Č,D, and ρ have
a suitable tensor network structure, Eq. (11) provides a way
to efficiently evaluate the noncommutativity, avoiding the
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sums in Eqs. (5) and (9) which may contain an exponentially
large number of terms when the system has exponentially
large dimension. In the Supplemental Material [45] we also
show another equivalent expression that reduces the non-
commutativity to the overlap between two pure states, a task
that can be carried out efficiently in a variety of physically
relevant cases, including, e.g., matrix product [63–65] and
MERA states [66].
Clustering algorithm for quantum observables.—We

now provide a machine learning algorithm for identifying
clusters of observables that are approximately compatible
with one another. The algorithm is unsupervised: the
learner does not need to be trained with labeled examples
of observables belonging to different clusters.
The input of the algorithm is the access tom black boxes,

implementing m unknown dephasing channels A1;…;Am
associated to nondegenerate quantum observables
A1;…; Am. The quantum part of the algorithm is the
estimation of the MED for every pair of observables.
Then, the estimated values of the MED are fed into a
classical clustering algorithm. Here we choose k medoids
clustering with k-means++ style initial seeding [67,68].
Compared to the popular k-means method, k medoids
works better (in terms of convergence) with arbitrary
dissimilarity measures.
To illustrate the algorithm, we generatem ¼ 100 random

qubit observables, of the form Al ¼ bðlÞx X þ bðlÞy Y þ bðlÞz Z,
l ∈ f1;…; mg, where X, Y, Z are the three Pauli matrices
and bl ¼ ðblx; bly; blzÞ ∈ R3 is a unit vector (the Bloch
vector of the lth observable). The vectors are generated
in the following way: for 50 observables, we start from the
Bloch vector (1,0,0) and apply a rotation by a random angle
θ with jθj ≤ 22.5° about a random rotation axis. For the
remaining 50 observables, we start from the Bloch vector
(0,0,1) and apply the same procedure. In this way, the 100
observables are naturally divided into two clusters, as
in Fig. 1.
We performed a numerical experiment on the classical

part of the algorithm, feeding the values of the MED into
the k-medoids algorithm. For improved reliability, we
repeated the experiment for 50 times, finding that in each
repetition all the 100 observables are correctly clustered.
Note that, while we fed the algorithm with the exact values
of the MED, the robustness of the k-medoids [67,68]
algorithm implies that the results are robust to errors in the
estimation of the MED from actual experimental data.
Clustering with noisy observables.—Our clustering

algorithm can also be extended to noisy measurements.
Following [11], the noise is modeled by randomizing the
measurement of each ideal observable with a trivial
measurement, which produces the same outcome statistics
for every possible input state. Mathematically, this means
that the projective measurement PðlÞ, associated to the
lth observable, is replaced by a nonprojective measure-
ment NðlÞ ¼ ð1 − λlÞPðlÞ þ λlTðlÞ, where λl is the noise

probability, and TðlÞ is a trivial measurement, with POVM

operators TðlÞ
i ¼ pðlÞ

i I, for a fixed probability distribution

pðlÞ ¼ ðpðlÞ
i Þ. For the measurement process associated to

the noisy measurement NðlÞ, we take quantum instruments

with Kraus operators of the form NðlÞ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðlÞij P

ðlÞ
i þ bðlÞij I

q
,

where aðlÞij and bðlÞij are arbitrary nonnegative coefficients

subject to the constraints
P

j a
ðlÞ
ij ¼ 1 − λl and

P
j b

ðlÞ
ij ¼

λlp
ðlÞ
i for every i and l. The k-medoids algorithm can then

be applied, using the noncommutativity (9) of the noisy

channels N 1;…;N m defined by N lðρÞ ≔
P

ij N
ðlÞ
ij ρN

ðlÞ†
ij

for l ∈ f1;…; mg.
To test the algorithm, we performed a numerical experi-

ment on 100 randomly generated noisy qubit observables.
For simplicity, we chose isotropic noise [69] and set the
noise randomly following a uniform distribution, picking
each probability pðlÞ

i uniformly at random in the interval

(0,1), subject to the constraint
P

i p
ðlÞ
i ¼ 1, ∀ l. For the

original observables, we generated the Bloch vectors as in
the noiseless case. For the noise, we first defined a
maximum noise level η and then we picked a random
noise probability λl ¼ ηRl where each Rl is chosen inde-
pendently, uniformly at random in the interval [0, 1]. The

coefficients aðlÞij and bðlÞij are then chosen uniformly at
random, subject to the constraints. The experiment has been
performed for η ¼ 0.25, 0.5, and 0.75, and for each setting

FIG. 1. Clustering of 100 qubit observables, using a k-medoids
algorithm based on the values of the MED with k-meansþþ
style initial seeding. The algorithm correctly identifies two
clusters, one centered around the Pauli X observable (Bloch
vectors in yellow), and one centered around the Pauli Z
observable (Bloch vectors in blue).
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the k-medoids algorithm has been run 50 times. The results
of the experiment, plotted on Fig. 2, show that perfect
clustering is still achieved in the presence of noise.
Conclusions and outlook.—In this Letter, we introduced

the MED, an experimentally accessible measure of incom-
patibility for sharp observables. The MED quantifies the
noncommutativity of the projectors associated to a pair of
observables, and can be directly measured without access
to the measurement outcomes, by letting the two meas-
urement processes act in an indefinite order. Thanks to its
properties, the MED can be used in quantum machine
learning tasks, such as clustering unknown observables
based on their degree of compatibility.
An interesting direction of future research is to extend the

results of this Letter to infinite dimensional systems, unsharp
observables, and general quantum channels. For sharp
observables with discrete spectrum, our approach can be
easily extended by taking a limit of finite dimensional
subspaces. For observables with continuous spectrum, how-
ever, the situation is more complex, due to the fact that no
repeatablemeasurement exists [70]. Regarding the extension
to unsharp observables and general channels, one approach is
to focus on the noncommutativity, which can be measured
with the quantum switch. On the other hand, commutativity
is not a necessary condition, and an open question is to
determine whether there exists a measure of incompatibility
that can be measured experimentally like the MED.
Another direction is the extension of the MED from pairs

to arbitrary numbers of observables. One option would be to
generalize our definition, examining the amount of disturb-
ance on the eigenspace of one observable induced by
measurements of the other observables. An appealing feature
is that the resulting quantity could be estimatedbyplacing the
measurements in a superposition of orders, in a similar way
as it was done in our Letter for the case of two observables.
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