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Magnetic frustrations and dimensionality play an important role in determining the nature of the
magnetic long-range order and how it melts at temperatures above the ordering transition TN . In this Letter,
we use large-scale Monte Carlo simulations to study these phenomena in a class of frustrated Ising spin
models in two spatial dimensions. We find that the melting of the magnetic long-range order into an
isotropic gaslike paramagnet proceeds via an intermediate stage where the classical spins remain
anisotropically correlated. This correlated paramagnet exists in a temperature range TN < T < T�, whose
width increases as magnetic frustrations grow. This intermediate phase is typically characterized by short-
range correlations; however, the two-dimensional nature of the model allows for an additional exotic
feature—formation of an incommensurate liquidlike phase with algebraically decaying spin correlations.
The two-stage melting of magnetic order is generic and pertinent to many frustrated quasi-2D magnets with
large (essentially classical) spins.
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The formation of long-range magnetic order (LRO) upon
cooling from a disordered paramagnetic (PM) phase is
akin to a gas-to-solid transition. The “solid” phase is
characterized by a spontaneously broken symmetry with
long-range order in the spin-spin correlations. Studies of
geometric frustrations and their effect on this transition
have a long history—it is well established that frustrations
suppress the Néel transition temperature TN relative the
Curie-Weiss temperature, which is often quantified by the
Ramirez frustration ratio η ¼ TCW=TN [1]. In some highly
frustrated lattices, such as the corner-sharing tetrahedra
in pyroclore magnets [2] or corner-sharing triangles in
kagomé compounds [3,4], TN is suppressed to zero, with
the formation of a (classical [5] or quantum [6]) spin liquid
and associated order-by-disorder lifting of the extensive
ground state degeneracy [7]. However, highly frustrated
geometries are not the only way to suppress LRO. Instead,
one may consider seemingly simple bipartite lattices, such
as the square or cubic lattice systems with competing spin
interactions between the nearest and farther neighbors (a
paradigmatic J1 − J2 model on a square lattice is one such
example [8]). Apart from suppressing the Néel temperature,
do such interaction-induced frustrations affect the process
of “melting” of the LRO when the ground state is not
extensively degenerate? Furthermore, what is the role of the
dimensionality of the magnetic system—which can be
controlled in principle by tuning the degree of anisotropy
of the exchange interactions along the different crystal
directions—on the strength of thermal fluctuations?
In this Letter, we perform Monte Carlo simulations to

study a classical magnet with anisotropic interactions to

elucidate the effect of both the anisotropy and magnetic
frustrations on the process by which the magnetically
ordered “solid” melts. Our key finding is that this melting
proceeds via an intermediate stage in a range of temper-
atures above the Néel ordering temperature TN , where the
correlations between the spins remain significant and re-
tain the “knowledge” of the anisotropy present in the
Hamiltonian. This intermediate correlated paramagnet
(CPM) eventually undergoes a crossover into a more
conventional paramagnet at a temperature T� > TN , above
which the correlation length is of the order of the lattice
constant, and the anisotropy is lost. We find that the
dynamic temperature range of this CPM, ΔT ¼ T� − TN ,
grows with increasing frustrations, and that the CPM
occupies a significant portion of the phase diagram even
as TN is suppressed to zero by frustrations. These classical
results are relevant to many experimental systems (both
itinerant and insulating magnets) with large magnetic
moments that can be treated as classical, where the
evidence of the crossover scale T� and the anisotropic
CPM has accumulated, for instance in Eu-based helimag-
nets [9–12], some heavy fermion compounds with helical
order [13–15], in layered ferromagnets [16], and at a field-
tuned quantum critical point in CeCoIn5 [17–19].
Model.—The three-dimensional (3D) anisotropic next-

nearest neighbor Ising (ANNNI) model, with ferromagnetic
interactions in the plane and competing interactions along
the c axis of hexagonal crystal, was first proposed by Elliot
[20] to explain complex helicoidal orders and their temper-
ature evolution in the rare-earth magnets. As we show in
this Letter, this uniaxial frustration plays a pivotal role in
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how this anisotropic magnet “melts.” We consider as our
starting point the 2D ANNNI model [Fig. 1(a)]:

H ¼
X

i

½J0σiσiþx̂ þ Jz1σiσiþẑ þ Jz2σiσiþ2ẑ�: ð1Þ

The variables σi ∈ f−1; 1g are classical Ising spins, with
ferromagnetic coupling along the x direction J0 < 0,
and competing antiferromagnetic interactions along z:
0 < Jz2 < Jz1. The reason for our considering a 2D version
of the model is both because of its simplicity, and because it
evades the entropy-induced multitude of incommensurate
phases (“devil’s staircase”) experimentally found in CeSb
[21] and specific to the 3D ANNNI model at finite
temperatures [22–29].
First, we consider anisotropy in the absence of frus-

tration, in this case with Jz2 ¼ 0. The Weiss molecular field
approach [30] predicts an ordered phase of ferromagnetic
chains that are stacked antiferromagnetically in the z
direction, occurring below a mean-field critical temperature
given by kBTMF ¼ 2ðjJ0j þ jJz1jÞ [Fig. 1(b), dashed line].
The thermal fluctuations alter this behavior considerably, as
famously shown by Onsager [31], resulting notably in the
much lower transition temperature TN than predicted by
Weiss molecular-field theory, namely given by the follow-
ing equation [with βc ¼ ðkBTNÞ−1]:

sinhð2βcjJ0jÞ sinhð2βcjJz1jÞ ¼ 1: ð2Þ

The resulting critical temperature is shown in Fig. 1(b)
(solid black line) as a function of the anisotropy Jz1=J0.
Notably, as a result of thermal fluctuations, TN → 0 in the
one-dimensional (1D) limit of Jz1 → 0. This effect bears a
striking resemblance to the suppression of TN in the
quantum Heisenberg model in two dimensions, which is
itself a consequence of the Mermin-Wagner theorem [32].
The existence and proximity of a lower critical dimension
in both the quantum and classical cases is important for the
emergence of the anisotropic CPM phase.

Geometric frustrations and anisotropic CPM.—With the
addition of geometric frustration in the form of an anti-
ferromagnetic coupling between second-neighbor layers
0 < Jz2 < Jz1=2, the mean-field energy scale kBTMF ¼
2ðjJ0j þ Jz1 − Jz2Þ is lowered slightly, whereas the true
transition temperature is further suppressed by frustrations
as shown in Fig. 1(b) (red and blue lines).
The results for the frustrated 2D ANNNI model were

computed using classical Monte Carlo simulation with
conventional Metropolis updates, as well as cluster updates,
and parallel tempering [33]. By analyzing the spin-spin
correlation functions in our Monte Carlo simulations,

CðrÞ≡ hσð0ÞσðrÞi ∼ fðrÞ cosðqzÞ; ð3Þ

we extract the correlation lengths ξx and ξz from the spatial
decay of fðrÞ ∼ r−1=2 exp½−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2 þ z2

p
=ξz�, where c ¼

ξx=ξz > 1 due to anisotropy. Here the factor r−1=2 arises in
accordance with the canonical Ornstein-Zernike form for
correlations in two dimensions [44]. The data presented
below are the results of fits to the functional form, Eq. (3),
on finite systems with Lx ¼ Lz ¼ 64. Because the corre-
lations in the CPM phase are much shorter than the finite
system size ðξx ≪ Lx; ξz ≪ LzÞ, finite-size effects will
only modify quantitative features such as the precise value
of TN , leaving our primary results unchanged. Data for
additional system sizes L ∈ f32; 48; 56; 64; 96; 128g as
well as the extended aspect ratio Lz ¼ 2Lx are presented
in the Supplemental Material [33].
As expected, we find that the correlation lengths diverge

below TN but are finite and anisotropic above the transition
as shown in Fig. 2(b). This resembles the situation in a
classical liquid, which has a short-range order (SRO) but no
long-range order. However unlike in a classical liquid,
spin correlations retain the “memory” of the anisotropy
Jz1=J0 < 1, with the resulting correlation length being
much shorter in the z direction ξz ≪ ξx as shown in
Fig. 2(b). One can picture this anisotropic CPM as
consisting of oblong droplets of size ξx and ξz in the
lateral and vertical direction, respectively, with the spins
correlated within the droplet but not between them [see
the insets in Fig. 2(a) for Monte Carlo snapshots]. As the
temperature increases, these oblong droplets shrink until
eventually their large axis (ξx) becomes comparable to the
lattice spacing—at that temperature, which we denote by
T�, a crossover into a conventional paramagnet occurs, with
very short-ranged correlations in both directions. While
magnetic frustrations suppress TN , the dynamic temper-
ature range TN < T < T� where the anisotropic CPM
exists grows with increased frustrations, as shown by the
color scale in Fig. 2(c). This range becomes especially
pronounced when frustration is largest near Jz2=Jz1 ¼ 1=2.
Floating “liquid” phase.—The evolution of a CPM into

a paramagnet at T� is a crossover rather than a true phase
transition in the regime Jz2=Jz1 < 1=2 where the spin

(a) (b)

FIG. 1. Suppression of TN with the addition of frustrating
interactions. (a) Diagram of interactions in the 2DANNNI model.
(b) Comparison of TN from Weiss molecular field theory (dashed
line), the Onsager solution (Jz2 ¼ 0, solid black line), and the 2D
ANNNI model with Jz2 ¼ 0.2Jz1 (red line) and Jz2 ¼ 0.4Jz1
(blue line).
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correlations remain commensurate with the lattice [q ¼
Q1 ¼ π in Eq. (3)]. Upon further increase of Jz2, the
correlations in the high-temperature paramagnet become
incommensurate, with the value of π=2 < q < π shown by
color in Fig. 3(a). Surprisingly, in this regime the correlated
paramagnet acquires a very different character, with spin
correlations that decay algebraically while oscillating with
an incommensurate wave vector q ¼ π=2þ Δq:

CfloatðrÞ ∼
1

rη
cosðqzÞ; ð4Þ

shown by the green triangles in Fig. 3(b). It is historically
called a “floating” phase, to do with the appearance of a
similar phenomenon in the physics of an incommensurate
adsorbent on top of a crystalline substrate [46–48]. The
physical picture is that above TN , the domain walls
proliferate along the z direction, destroying the true
long-range order and resulting in the incommensurability
of the floating phase. The appearance of such a phase in the
2D ANNNI model was originally indicated by mean-field
and noninteracting approximations [27,49].
Our analysis shows that the floating phase is separated

from the ordered commensurate phase with Q2 ¼ ð0; π=2Þ
[sometimes called the double-column antiferromagnet
(DCAF)] by a true phase transition at TN , at which the
degree of incommensurability of the floating phase vani-
shes as a power law: q −Q2 ¼ Δq ∼ ðT − TNÞβ [see
Figs. 3(c) and 3(d)]. This transition, first investigated by
Pokrovskii and Talapov [50], is expected to have β ¼ 1=2
in 2D, which is verified by the data collapse of Δq ∼ ðtÞ0.5
for different values of Jz2 as shown in Fig. 3(d),
where t≡ ½T − TNðJz2Þ�=TNðJz2Þ.
At the upper boundary Tfl [dashed line in Fig. 3(a)], the

floating phase is separated from the disordered paramagnet
[with exponentially decaying correlations, shown by yellow
circles in Fig. 3(b)] by a Berezinskii–Kosterlitz–Thouless
(BKT) transition [27,51–56]. Algebraic correlations are

typically seen only at a critical point, whereas here they
are a signature of a phase of matter in the extended
temperature range TN < T < Tfl, with the exponent 0 <
η < 1=4 varying smoothly as a function of temperature. We
determine Tfl as the position where the correlation function

(a) (b) (c)

FIG. 2. Schematic diagram (a) demonstrating the concept of anisotropic melting in a 2D Ising system with spatially anisotropic
interactions, 0 < Jz1 < jJ0j. Insets in (a) are bitmap images of microstates from a Monte Carlo simulation. (b) The correlation lengths ξx
and ξz, fit from the Onsager solution [31,45] for Jz1 ¼ 0.1jJ0j, with ξx growing below T� while ξz remains negligible. (c) Contour plot of
ξx in the 2D ANNNI model for Jz1 ¼ jJ0j. The T� scale, defined here as the temperature below which ξx grows larger than three lattice
sites, is most suppressed when approaching the frustration point Jz2=Jz1 ¼ 0.5.

(a) (b)

(c) (d)

FIG. 3. False color plot (a) indicating the evolu-
tion of q. By definition, the Fourier-space correlations C̃ðqÞ≡P

i e
−iq·rihσð0ÞσðriÞi are peaked at a wave vector q ¼ ð0; qÞ.

Insets in panel (a) illustrate the low-temperature ordered phases.
The star on the vertical axis indicates TN for the nearest-neighbor
Ising model [31,57]. (b) Monte Carlo data and analytical fits to the
spin correlation function. The vertical dotted line indicates the
magnetic period in the DCAF phase. (c) Evolution of q at fixed
temperatures as a function of Jz2=Jz1. The insets (c) depict the
single- and double-peak structure of the Fourier-space correlations
in the CAF and DCAF phases, respectively. (d) Data collapse of
Δq ¼ At0.5 (where A is a proportionality constant depending on
Jz2), indicating a second-order phase transition into the DCAF
phase at critical temperature TN with critical exponent β ¼ 0.5.
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fits match the BKT critical exponent η ¼ 0.25 (see the
Supplemental Material [33] for fit data and discussion of
finite-size effects). Earlier studies showed that the floating
phase boundaryTfl may coincidewithTN [51,52]. However,
in agreement with more recent studies using complimentary
methods [54–56], our results indicate a finite range of
algebraic correlations with 0 < η < 0.25 smoothly varying
for multiple system sizes [33].
Lifshitz transition.—As the above analysis and Fig. 3(a)

illustrate, the wave vector q characterizing the spatial
dependence of the spin correlation function can change
as a function of temperature. More generally, q ¼ ð0; qÞ
also changes as a function of the ratio Jz2=Jz1, as shown in
Fig. 3(c), from the commensurate q ¼ Q1 ¼ ð0; πÞ in the
low-frustrated region [yellow in Fig. 3(a)], to incommen-
surate at higher frustration. This is known as the Lifshitz
transition (a misnomer, as it is a crossover in the thermo-
dynamic sense), characterized by the appearance of the
double-peak structure in the spin-structure factor SðqÞ, as
shown in the inset of Fig. 4. Upon crossing the Lifshitz
transition, shown schematically by a dashed gray line in
Fig. 4, the wave vector changes continuously away from
q ¼ Q1 and at high temperatures q approaches fixed
incommensurate values that depend on Jz2=Jz1. The
Lifshitz line TL can be clearly seen in our Monte Carlo
simulations as the line of color gradient separating the
yellow region from green-blue in Fig. 3(a). At least in the
ANNNI model studied here (and perhaps more generally),
the Lifshitz line merges with the boundary of the LRO1
phase upon approaching the maximally frustrated region
near Jz2 ¼ 0.5. In addition to the Lifshitz transition, the

onset of incommensurate short-range correlations also
manifests itself in the real space in a subtle way, via the
so-called “disorder transition” [58,59], discussed in the
Supplemental Material [33].
Discussion.—The present work indicates that a generic

temperature-frustration phase diagram looks schematically
as depicted in Fig. 4: the two commensurate orders, LRO1
and LRO2, form at the lowest temperatures, characterized
by the different (commensurate) ordering wave vectors q ¼
Q1 and Q2, respectively. The melting of these magnetic
crystals occurs via an intermediate, generically anisotropic
correlated paramagnet, which can be commensurate or
incommensurate depending on the strength of frustration in
the interactions. Note that the CPM regime identified in the
present 2D model corresponds to the “devil’s staircase” part
of the phase diagram in the originally studied 3D version of
the ANNNI model [22–29]. It is reasonable to conclude
that the reduced dimensionality amplifies the role of
thermal fluctuations, thus destroying the staircase’s long-
range order in favor of the short-range CPM.
In addition to the study of the CPM, we have confirmed

the existence of the floating phase by observing, in order of
decreasing temperature, the divergence of the correlation
length at Tfl, an extended temperature range TN < T < Tfl
of algebraic correlations with a continuously varying power
law, followed by the critical scaling of Δq at TN [Fig. 3(d)]
(See Supplemental Material [33] for additional data). The
appearance of this quasi-LRO floating phase in the ANNNI
model can be understood as an attempt of a system to form
an incommensurate long-range order: true LRO with
incommensurate q is forbidden by classical fluctua-
tions in 2D [27]. There are many layered magnets with
Ising anisotropy whose spin correlations can be well
approximated to be 2D-like, and the phenomenon of a
floating phase—first discussed in statistical mechanics of
surface adsorbates [46–48]—ought perhaps to be revisited
experimentally.
While the specific model discussed in this work has Ising

anisotropy, the appearance of the anisotropic correlated
paramagnet above TN and below some crossover scale T�
(shown schematically by a green line in Fig. 4) is more
general. Indeed, it appears ubiquitous in many classical as
well as quantum magnets, at elevated temperatures where
thermal fluctuations dominate. The appearance of such a
CPM phase is often revealed by a slow recovery of the
full magnetic entropy at temperatures notably higher than
the long-range ordering at TN , such as that found in, e.g.,
Eu-based helimagnets [9–11], helimagnetic CeRhIn5, and
related heavy fermion compounds [13–15]. The anisotropy
of this CPM phase can be directly seen in layered
ferromagnets such as CrI3 and CrSiTe3 by various means,
such as neutron scattering [60] and optical polarimetry
[16]. Crucially, we found that the dynamical temperature
rangeΔT ¼ ðT� − TNÞwhere the CPM is realized becomes
broader with increased frustration (toward the middle of the

FIG. 4. Schematic phase diagram of a frustrated magnet with
two competing orders. The insets depict the spin correlation
function C̃ðqÞ, proportional to the static spin structure factor
measured in neutron scattering. The quasi-LRO phase with
algebraic correlations is specific to the 2D ANNNI model but
the other features should apply to generic magnets with frus-
tration and anisotropic interactions.
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horizontal axis in Fig. 4). Indeed, it is in this regime that
frustrations can result in a disordered classical spin liquid
state, of which classical spin ices such as Ho2Ti2O7 and
Dy2Ti2O7 are famous examples [61]. For quantum mag-
nets, which are beyond the scope of the present work, the
interplay of quantum and thermal fluctuations adds to the
complexity of the correlated quantum paramagnet phase,
which deserves future investigations.
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