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Despite considerable efforts, accurate computations of electron-phonon and carrier transport properties
of low-dimensional materials from first principles have remained elusive. By building on recent advances
in the description of long-range electrostatics, we develop a general approach to the calculation of electron-
phonon couplings in two-dimensional materials. We show that the nonanalytic behavior of the electron-
phonon matrix elements depends on the Wannier gauge, but that a missing Berry connection restores
invariance to quadrupolar order. We showcase these contributions in a MoS2 monolayer, calculating
intrinsic drift and Hall mobilities with precise Wannier interpolations. We also find that the contributions of
dynamical quadrupoles to the scattering potential are essential, and that their neglect leads to errors of 23%
and 76% in the room-temperature electron and hole Hall mobilities, respectively.
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Charge transport in two-dimensional (2D) materials lies
at the heart of many technological applications ranging from
transistors [1] to solar cells [2,3] to emitters [4] and photo-
detectors [5]. It is therefore desirable to understand the
different scattering mechanisms that govern carriers’ trans-
port. In the case of high-quality samples with low doping
concentrations, electron-phonon scattering is the dominant
mechanism limiting carrier mobilities [6]. Given the current
challengeswith the experimental probingof electron-phonon
interactions in 2D, theoretical studies based on ab initio
simulations are crucial for future progress.
Recent advances in first-principles calculations of mobil-

ities [6] havemade it possible to study accurately andwithout
empirical parameters electronic transport in semiconductors.
At the core of such calculations are the electron-phonon
matrix elements gmnνðk;qÞ, that describe the scattering
amplitudes from an initial electron Bloch state nk to a final
statemkþ qvia the emission or absorption of a phononwith
frequencyωqν. One of the major challenges lies in achieving
numerically converged results, which require sampling of
gmnνðk;qÞ on ultradense momentum grids [7]. To make the
problem tractable, an accurate way forward consists of
explicitly computing the electron-phonon matrix element

on coarse grids via state-of-the-art density-functional per-
turbation theory (DFPT) [8,9] methods, followed by Fourier
interpolation to these ultradense grids [10–13].
However, this approach requires further care when

dealing with the long-range electrostatic fields that arise
near the Brillouin zone center in semiconductors and
insulators. The leading Fröhlich interaction [14], together
with higher-order multipolar contributions [13,15–18],
make the electron-phonon interactions nonanalytic in
the long-wavelength limit, which precludes straightfor-
ward application of Fourier interpolations [19,20]. The
strategy to tackle such problem rests on a formal analysis
of the nonanalytic properties of the scattering potential
[13,15] and is now well established in the context of 3D
crystals [21]. By contrast, the long-range electrostatic
problem in 2D materials has not been thoroughly inves-
tigated. A major advance in this direction came with a
formulation of the long-range interactions that accounts
for the effect of the in-plane dipoles [22,23] and relies on
out-of-plane Coulomb truncations [24]. Nonetheless, the
treatment of such interactions has been based on dielectric
analogs, which correctly capture the leading Fröhlich-
like term, but miss higher multipoles, that are instead fully
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included in the DFPT framework [23]. Efforts in this
direction have been reported recently [25,26], but a
fundamental understanding of higher-order multipolar
couplings in 2D is still missing.
Treating the higher-order electrostatics accurately is

enough for methods that are based on the interpolation of
the scattering potential Vqν [15]. Their main drawback lies
in that a massive amount of plane-wave components
and electronic eigenstates need to be computed, stored,
and processed on a dense grid of k points spanning the
Brillouin zone. To avoid this, methods where the gmnνðk;qÞ
rather than Vqν are interpolated are often preferred. The key
issue is that the electron-phonon matrix elements are not
smooth in q, as they depend on the random gauge of the
electronic orbitals. Modern Wannier-function techniques
[27] become key then to ensuring optimal smoothness across
the Brillouin zone and enable efficient interpolations.
However, the choice of Wannier functions is nonunique
and this can lead to an undesirable arbitrariness in the
quality of the interpolation, which depends on the specific
conventions used in the numerical implementation in an
uncontrolled way. Earlier work has dealt almost exclu-
sively with the leading-order Fröhlich Hamiltonian where
this issue does not apply [19,20]. Yet, given the qualitative
importance of higher-order corrections [15–18], under-
standing the role of the Wannier gauge is mandatory to
ensure consistency of the method.
Here, we find that the Wannier gauge affects the long-

wavelength behavior of the gmnνðk;qÞ in a nontrivial way,
and that contrary to widespread assumptions, the long-range
matrix elements are not gauge-covariant. Nonanalyticities
due to the k dispersion of the Wannier gauge appear at the
same order as the quadrupolar contributions to the scattering
potential, and are therefore essential to incorporate in any
beyond-Fröhlich Wannier-based approach. Importantly, we
show that these terms acquire the form of a Berry connection
(the position operator represented on a Wannier basis), and
demonstrate its importance at leading order in q. We focus
here on drift and Hall carrier mobilities, and take monolayer
MoS2 as a paradigmatic case study; such choice is motivated
by its technological relevance, and the availability of sub-
stantial theoretical and experimental data for this system.
Results for five additional representative 2D crystals and a
3D material are reported in our accompanying paper [28],
where we identify a nontrivial temperature evolution of
the Hall hole mobility in InSe. In particular, we show that
mobilities are strongly affected by long-range effects
beyond Fröhlich, and that a correct treatment leads to a
room-temperature electron mobility 25% smaller than
previous reports [25]. This highlights the importance of
including this correct quadrupolar coupling in the descrip-
tion of electron-phonon interactions in semiconducting
low-dimensional materials.
To dealwith higher order terms,wedecompose gmnνðk;qÞ

into short- (S) and long-range (L) contributions, where the

long-range part can be formally expressed in terms of a
scattering potential VL

qκα, referring to the displacement of
atom κ in the Cartesian direction α, as:

gLmnνðk;qÞ ¼
�

ℏ
2ωνðqÞ

�1
2
X
κα

eκανðqÞffiffiffiffiffiffiffi
Mκ

p
X
sp

×UmskþqhuWskþqjVL
qκαjuWpkiU†

pnk: ð1Þ

Here, we have changed representation to the maximally
localized Wannier gauge [27] to guarantee a smooth
behavior in q of the cell-periodic part of the Bloch
eigenstates junki ¼

P
p U

�
npkjuWpki, where eκαν are the

dynamical matrix eigenstates corresponding to a phonon
mode ν of momentum q.
The mirror-even part of the long-range scattering poten-

tial in a quasi-2D crystal can be written [28] as

VL
qκαðrÞ ¼

e
S
2πfðqÞ

q

�
iq ·Zk

καðqÞ
ϵkðqÞ ϕ̃k

qðrÞ
�
e−iq·τκ ; ð2Þ

where S is the unit-cell area, τκ stands for the position of
atom κ within the cell, and q ¼ jqj. We neglect the mirror-
odd contribution to VL

qκαðrÞ since it does not contribute to
the mobility of the system considered here [28]. The range
separation function fðqÞ ¼ 1 − tanhðqL=2Þ is a low-pass
Fourier filter that ensures the macroscopic character of the
potential, where the parameter L defines the length scale
[29]. Note that the choice of L is, to a large extent, arbitrary
and can be tuned to maximize the numerical efficiency of
the interpolation [30]. Equation (2) can be intuitively
interpreted as the bare long-range Coulomb kernel in
2D, ν2DðqÞ ¼ 2πfðqÞ=q, multiplied by a screened surface

polarization charge and by a form factor ϕ̃k
qðrÞ. The latter

reflects the fact that the electrostatic potentials produced by
a modulated plane of charge are nonuniform along the out-
of-plane direction [29]; note that the form factor depends
on r and not only on the out-of-plane distance z due to local
fields [see Eq. (3) below]. In turn, the screened charge is
written as the divergence of the polarization field associated
with the displacement of atom κ along the in-plane

Cartesian direction α, Zk
καðqÞ, divided by the macroscopic

in-plane dielectric function ϵkðqÞ ¼ 1þ ν2DðqÞαkðqÞ,
where αkðqÞ is the macroscopic in-plane polarizability

[31]. In the long-wavelength limit, Zk
καðqÞ can be conven-

iently expressed in a multipole expansion as Zk
καðqÞ≡

Zκαβ − i
P

γðqγ=2ÞðQκαβγ − δβγQκαzzÞ þOðq2Þ. Zκαβ are
the dynamical Born effective charge tensors [8,9], and
Qκαβγ the dynamical quadrupole tensors [32,33].
The explicit expression in Eq. (2) for the scattering

potential allows one to construct the corresponding matrix
element in Eq. (1), which can be subtracted from the
ab initio results, making these short-ranged and analytic in
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q, and amenable to accurate Fourier-Wannier interpola-
tions. Then adding the nonanalytic expressions back allows
one to obtain the electron-phonon matrix elements over
arbitrarily dense grids [19,20]. Importantly, in order to
recover the correct q → 0 expansion of Eq. (1), one also
needs the expansion to first order of the matrix elements of
the form factors,

huWskþqjϕ̃k
qjuWpki ≈ δsp þ iq · ½huWskjVEk juWpki þAW

spk�; ð3Þ
where we have exploited that the Wannier gauge is smooth
everywhere in the Brillouin zone. The expansion in Eq. (3)
therefore involves two terms beyond Ref. [19]. The first
one involves the matrix elements of the self-consistent
potential (“local fields”) in response to a uniform electric
field E that is oriented parallel to the layer plane. A similar
contribution has already been identified in the 3D case
[13,15] and found to be small; we find that the impact of
local fields is negligible also in 2D materials, with an effect
below 0.1% on the mobility.
The second contribution consists of a novel and pre-

viously unreported term arising from the Berry connection
AW

spk. This term is crucial as it ensures the smoothness of
the short-range electron-phonon matrix elements in the
Wannier gauge; see Fig. 1(b). Additionally, this term
restores covariance to lowest order in q under Wannier
gauge transformations. This is shown in Fig. 1(d) by
considering a different Wannier gauge obtained by dis-
placing all Wannier centers by a lattice vector R, which
introduces a phase factor to the Wannier rotation matrix
Uspke−ik·R, shown as a line with filled symbols. Once the
Berry connection term is applied, the results match exactly
the gauge transformed ones in the q → 0 limit; without it,
there is a significant amplification of the zone-center
discontinuity and a different long-wavelength limit.
Additional details about the gauge-covariance are provided
in the Supplemental Information [34].
With these capabilities we are now in a position to obtain

the low-field phonon-limited carrier mobility in the pres-
ence of a vanishing magnetic field B by solving the
Boltzmann transport equation [6,18,35]. From this solution
we can also compute the Hall factor rαβðB̂Þ as the ratio
between mobilities with and without magnetic field [36–
38]. We perform our calculations using the EPW [10,39],
WANNIER90 [40], and QUANTUM ESPRESSO [41] packages,
including spin-orbit coupling (SOC) and using fully con-
verged computational parameters [42]. In addition, we use
the long-wave driver of ABINIT [46,47] to compute the
quadrupoles [33] in absence of SOC. The linearly indepen-
dent quadrupoles obtained are Qκyyy ¼ 5.533 e · bohr for
Mo, and Qκyyy ¼ 0.391, Qκyyz ¼ −0.174, Qκzxx ¼ 7.858,
and Qκzzz ¼ 0.230 e · bohr for one of the two S atoms.
In MoS2, there are three sets of mirror-even branches that

contribute crucially to the mobilities: the zone-center
infrared and Raman active E0 mode associated with an
in-plane out-of-phase movement of the Mo and S atoms,

which splits into LO2 and TO2 branches at finite momen-
tum; the Raman active A0

1 mode associated with the out-of-
plane motion of the sulfur atoms while the molybdenum
atoms remain fixed (ZO1 branch); and the zone-center E0

acoustic mode that splits into the LA and TA branches at
finite momentum. In Fig. 2 we show the Wannier-inter-
polated deformation potentials [20,48] for all the phonon
branches, and compare these with direct DFPT calculations
(black circles). The mirror-odd ZA, LO1, TO1, and ZO2

modes are inactive. We show in Fig. 2 that the addition of
dynamical quadrupoles is essential to recover the correct
ZO1 deformation potential. In Ref. [28], we also show how
the dipole approximation yields deformation potentials
with quantitatively and qualitatively incorrect long-wave-
length dispersions for different phonon branches for each
type of 2D material considered. In all these cases, the

FIG. 1. Real part of the electron-phonon matrix element g as a
function of phonon momentum q of MoS2 monolayer for the first
Wannier function (w1) describing the maximum of the valence
band at the k ¼ Γ point and for the displacement of the Mo atom
in the direction of the M point. (a) Direct DFPT results in the
smooth Wannier gauge where the Wannier centers are located in
the primitive cell as well as the short range component (b) with
and without the new gauge restoring term A. Note that at q ¼ 0,
the DFPT calculations give access only to the short-range part
and differ from the q → 0 limit. Only with the new A term is the
short-range part continuous and analytic in the long-wavelength
limit. (c),(d) Same results as (a),(b) but where the Wannier centers
are located two lattice vectors away in the M direction. The lines
with filled symbols are obtained by multiplying the data in (a) and
(b) with the gauge transformation associated with the R ¼
½0; 2; 0� translation. The direct calculation with the A term gives
results that fulfill gauge covariance close to the zone center, in
contrastwith the resultwithout theA term.The local fields response
to an electric field VE is included but has a negligible effect.

PHYSICAL REVIEW LETTERS 130, 166301 (2023)

166301-3



inclusion of the quadrupolar fields recovers the correct
dispersions.
Finally, we show in Fig. 3 the intrinsic Hall electron and

hole mobilities that are obtained considering only dipoles,
or dipoles and quadrupoles, on dense 500 × 500 k and q
momentum grids. The latter yield room temperature Hall
mobilities of 143 cm2=Vs and 113 cm2=Vs for electrons
and holes, respectively. Importantly, the most noticeable
result is the impact that the inclusion of the quadrupoles in
the interpolation entails on the final results: the room-
temperature Hall mobility is reduced by 23% for electrons
and by 76% for holes, when compared to the dipoles-only
case. In Table III of our accompanying manuscript,
Ref. [28], we compare the effects of including quadrupole
corrections in the dynamical matrix or electron-phonon
matrix elements for the computed mobilities, and we find
that including it only in the electron-phonon matrix
elements has the largest impact. Finally, we find that
omitting the Berry connection term has a small effect on
the Hall mobility of MoS2 and yields 142 cm2=Vs and
117 cm2=Vs for electrons and holes, respectively. In other
2D materials, such as BN or InSe studied in our accom-
panying paper [28], the Berry connection plays a crucial
role and is therefore required. This is true also for 3D bulk
materials, with a spectacular impact in the case of SrO [28].
The comparison with the intrinsic drift mobilities of

132 cm2=Vs and 73 cm2=Vs (not shown in the figure)
reveals that the holes are more strongly affected by the
presence of a magnetic field. Besides, in Fig. 3(c) we show

how the hole Hall factor strongly increases with temper-
ature, doubling from 100 to 500 K, while the electron Hall
factor is almost unaffected. In the inset of Fig. 3(b) we
show that 87% of the electron mobility of this MoS2
monolayer is limited by acoustic scattering, while 52%
of the hole mobility is due to optical scattering. Since
quadrupoles mostly affect the ZO1 optical mode, this
clarifies why the hole mobility is affected more than the
electron mobility.

FIG. 2. Deformation potential of MoS2 monolayer at the
conduction band at k ¼ K calculated with DFPT in the correct
electrostatic open-boundary conditions [23] (black dots) com-
pared with Fourier interpolation where the long-range part of the
electron-phonon matrix elements (G) includes monopole-dipole
(eD) and monopole-quadrupole (eQ) and the dynamical matrix
(D) includes dipole-dipole (DD), dipole-quadrupole (DQ), and
quadrupole-quadrupole (QQ) contributions [34].

FIG. 3. Temperature dependence of the Hall carrier mobility for
(a) electrons and (b) holes in MoS2 as well as (c) the electron and
hole Hall factor. The dashed (solid) lines represent the mobilities
calculated using electron-phonon interactions considering only
the dipole or dipole and quadrupole contributions; the temper-
ature exponent for the mobility is also reported. The gray symbols
refer to experimental data from Refs. [49–52]. The inset in
(b) provides the spectral decomposition of the electron (orange)
and hole (green) scattering rates at 300 K as a function of phonon
energy, and calculated as angular averages for carriers at an
energy 3=2kBT ¼ 39 meV from the band edge.
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For the room-temperature electron mobility, experimen-
tal values range from 23 to 217 cm2=Vs [49–51,53–55],
and typically rely on the use of high-permittivity gate
dielectrics. The goal of such dielectric is to suppress
Coulomb scattering by immersing the MoS2 monolayer
in a high-κ dielectric environment to boost mobility. There
is a large spread in the reported theoretical literature, with
room-temperature electron mobilities in the range 97 to
410 cm2=Vs [25,56–64]. In the case of the hole mobilities
instead, the only previous calculation did not consider
SOC, yielding a room-temperature value of 26 cm2=Vs
[63], underestimating by a factor of 3 the 76 cm2=Vs
experimental value [52], and by a factor of 4 the present
result.
We note that the decrease in hole mobility occurring for

temperatures above 200 K in Fig. 3(c) is due to the Γ valley
being only 52 meV below the valence-band maximum and
therefore becoming thermally populated at higher temper-
atures. In addition to the SOC, and as seen in Fig. 3, the role
of dynamical quadrupoles is crucial and delivers predicted
drift and Hall mobility close to experimental values, with
also the exponent of the power-law temperature decrease in
the electron mobility going from −1.34 to −1.08, closer to
measurements.
In conclusion, we have developed and implemented a

conceptual and numerical framework to accurately deter-
mine electron-phonon couplings in 2D materials on ultra-
dense momentum grids, including full 2D electrostatics,
quadrupoles, and SOC, highlighting how those are critical
for the electron and hole mobilities of 2D materials like
MoS2. Remarkably, we have pointed out a previously
unreported missing Wannier gauge covariance for the
interpolation procedure, and showed how to restore con-
sistency by including a Berry connection term. Given the
major role played by low-dimensional semiconductors in
the postsilicon road map [65], we believe that under-
standing of the physical effects described here will be of
great value in the characterization and engineering of these
promising and challenging materials.
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