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Using discrete element method simulations, we show that the settling of frictional cohesive grains under
ramped-pressure compression exhibits strong history dependence and slow dynamics that are not present
for grains that lack either cohesion or friction. Systems prepared by beginning with a dilute state and then
ramping the pressure to a small positive value Pfinal over a time τramp settle at packing fractions given by
an inverse-logarithmic rate law, ϕsettledðτrampÞ ¼ ϕsettledð∞Þ þ A=½1þ B lnð1þ τramp=τslowÞ�. This law is
analogous to the one obtained from classical tapping experiments on noncohesive grains, but crucially
different in that τslow is set by the slow dynamics of structural void stabilization rather than the faster
dynamics of bulk densification. We formulate a kinetic free-void-volume theory that predicts this
ϕsettledðτrampÞ, with ϕsettledð∞Þ ¼ ϕALP and A ¼ ϕsettledð0Þ − ϕALP, where ϕALP ≡ :135 is the “adhesive
loose packing” fraction found by Liu et al. [Equation of state for random sphere packings with arbitrary
adhesion and friction, Soft Matter 13, 421 (2017)].
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The structure of granular solids is famously preparation-
protocol dependent. For example, mechanical excitation
by periodic tapping makes samples’ packing fractions ϕ
increase logarithmically slowly [1,2]:

ϕðtÞ ¼ ϕð∞Þ − A
1þ B lnð1þ t=τslowÞ

: ð1Þ

Here t is the time elapsed since the beginning of the tapping
experiment, ϕð∞Þ is the packing fraction achieved after a
(hypothetical) infinite-duration experiment, and the param-
eters A, B, and τslow depend on the sample-preparation and
tapping protocols in addition to the intergrain interactions
[1,2]. This density increase is directly analogous to, but
typically far greater in extent than, the density increase
experienced by aging thermal glasses [3]; both arise from the
slow, activated dynamics of systems traversing the rugged
energy landscapes that are a common feature of thermal
glasses and granular materials [4,5]. Since cohesive inter-
actions greatly slow the dynamics of viscous liquids [6], and
frictional interactions greatly slow the dynamics of granular
solids [7,8], one might expect that their combination will
produce a synergistic additional slowdown in the dynamics
of granular compaction, and indeed it does. In fact, the
combination of cohesive interactions, rolling, sliding, and
twisting friction can arrest compaction entirely—at least on
human timescales—by promoting the formation of large
“structural” voids that can remain mechanically stable even
when a small positive external pressure is applied [9–14] to
an initially marginally jammed packing.
As a consequence, unlike their frictionless or purely

repulsive counterparts, frictional cohesive granular solids
can be prepared with a very wide range of densities.

For example, the Hausner ratio H ¼ ρtapped=ρsettled [15],
where ρsettled is the density obtained by pouring grains
into a container and ρtapped is the density obtained in the
long-time limit of a tapping experiment, is a commonly
employed measure of powder flowability. H is also a
measure of the range of jamming densities ϕJ obtainable
via different preparation protocols, i.e., different protocols
will produce ϕmin ≤ ϕJ ≤ ϕmax ≡Hϕmin. H has long been
known to increase with decreasing grain size, approaching
4 for micron-size grains, because smaller grains are more
cohesive than their larger counterparts [16,17]. More
recently it has been explicitly shown that H values for
fixed-size grains increase rapidly with both cohesion and
friction [11,18], and recent simulations that established an
equation of state for random sphere packings [19,20]
suggest that spherical grains’ H → Hmax ≃ 3.8 in the limit
of strong cohesion and friction.
Using H as a measure of powder flowability is often

criticized on the grounds that both ρtapped and ρsettled
are preparation-protocol dependent [21]; in general,
reproducible values of H are obtained only when highly
specific standardized procedures are followed [22]. The
interplay of cohesion and friction in determining the
history dependence of both “static” macroscopic quan-
tities like ρsettled and microscopic (grain-level) structure
in these powders remains poorly understood and the
subject of active study [23–25]. In particular, while the
logarithmically slow densification of noncohesive and
frictionless cohesive granular materials has been semi-
quantitatively explained by kinetic free-volume theories
[26–29], microscopic-physics-based theories that accu-
rately predict the preparation-protocol-dependent ϕðtÞ
[including ϕð0Þ≡ ϕsettled] for frictional cohesive powders
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have yet to be developed, and doing so is very challenging
owing to additional complications associated with the
abovementioned mechanically stable structural voids.
Developing such theories could prove useful for applica-
tions ranging from avalanche prevention [30] to pharma-
ceuticals [31] to additive manufacturing [32].
In this Letter, we use discrete element method (DEM)

simulations to examine how the structure of marginally
jammed systems of grains with varying degrees of friction
and cohesion depends on the compression protocol used to
prepare them. We compare results for model systems with
four types of intergrain interactions: (1) no friction or
cohesion, (2) all three types of friction (sliding, rolling, and
twisting) but no cohesion, (3) cohesion but no friction, and
(4) both cohesion and friction. The settled packing fractions
of systems prepared by beginning with a dilute state and then
linearly ramping the pressure to a fixed, small valuePtarg over
a time τramp decrease as cohesion and friction are increased,
ranging from the canonical random-close-packed value
(ϕRCP ¼ 0.646 [33,34]) for model 1 to as low as 0.35 for
model 4. While these ϕsettled are almost independent of τramp

for models 1–3, they decrease substantially with increasing
τramp for model 4, reaching their asymptotic low-rate limit
at a τramp that is many orders of magnitude larger than the
corresponding values for models 1–3.
This behavior is the opposite of the usual glass-jamming

paradigm [4,35], in which thermal glasses and granular
materials end up with higher densities when they are more
slowly cooled or compressed. We find that the rate-
dependence of model 4’s ϕsettled is described by

ϕsettledðτrampÞ ¼ ϕsettledð∞Þ þ A
1þ B ln ð1þ τramp=τslowÞ

;

ð2Þ

and argue that the difference leading to the crucial change in
sign (from− toþ) is thatwhile the τslow inEq. (1) is set by the
slow dynamics of densification [1,2], the τslow in Eq. (2) is set
by the even slower dynamics of structural void stabilization.
Then we formulate a kinetic free-void-volume theory
(similar in spirit to but different in several crucial details
from those of Refs. [26–29]) that predicts this behavior,
with ϕsettledð∞Þ ¼ ϕALP and A ¼ ϕsettledð0Þ − ϕALP, where
ϕALP ≡ :135 is the “adhesive loose packing” fraction found
by Liu et al. [19,20].
Our simulations aim to implement realistic viscoelastic,

cohesive, and frictional interactions in away that is computa-
tionally cheap enough to allow us to simulate large systems
over long timescales. Therefore we choose to employ the
Hertzian variant of thewidely used Rognon potential [36,37]
for the conservative pair interactions. A standard radial
damping force [38] is added to capture viscous dissipation.
Sliding friction is implemented using thewidely used linear-
history model [39], while rolling and twisting friction are

implementedusing the samemethods asSantos et al. [40,41].
Since we wish to consider the limit of strong friction in
this study, we set the sliding, rolling, and twisting friction
coefficients to 0.5. All interactions are described in detail in
the Supplemental Material [42]; all quantities discussed
below are expressed in dimensionless units.
DEM simulations are performed using LAMMPS [48].

Following Ref. [40], we begin by placing N ¼ 105 grains
randomly within a periodic cubic simulation cell of volume
V init ¼ 39Nπ=ð125ϕinitÞ [where ϕinit ¼ :05 is the initial
packing fraction], and then minimizing the systems’ energy
(at constant volume) to obtain athermal ϕ ¼ :05 states.
Settled states are prepared using a procedure that mimics
pouring a powder into a container in such a way that its
terminal falling velocity is vterm ∼ V1=3

init =τramp, but removes
complications associated with pouring experiments’ aniso-
tropic “external” forces (i.e., gravity and the container
walls). We ramp the applied hydrostatic pressure linearly
from 0 to Ptarg ¼ 10−3 over a time τramp and afterwards hold
it constant for least another 105 time units [42]. Since
Ptarg ¼ 10−3 is large enough for the employed Nose-
Hoover barostat to be effective yet small enough to
minimize plastic consolidation [12,13], we define all
systems’ ϕsettled as their ϕðτramp þ 105Þ. This definition
closely corresponds to the ϕsettled that could be measured
after the termination of a pouring experiment.
Figure 1 shows the τramp-dependent responses for all four

models. As expected, results for repulsive frictionless
spheres (model 1) show negligible preparation-protocol
dependence. All systems settle at ϕ ≃ 0.646; this density is
consistent with random close packing [33,34]. The ϕðtÞ
curves nearly collapse when replotted vs t=τramp, at least
for t=τramp > 1 [panel (b)]. For smaller t=τramp, ϕ increases
with increasing τramp owing to well-understood kinetic
effects associated with the hard sphere glass transition
[49]. Comparable preparation-protocol independence of the
final jammed states and collapse of the ϕðtÞ curves occurs
for systems with friction but no cohesion (model 2) or
cohesion but no friction (model 3), but at lower ϕsettled.
Model 2 systems have ϕsettled ≃ 0.60, which is consistent
with the results of Santos et al. [40] for our employed value
of Ptarg. Model-3 systems have ϕsettled ≃ 0.52, which is
consistent with adhesive close packing [19,20] in the
presence of the finite-range attractive intergrain interactions
(which favor finite particle overlap) employed in this study.
These models do not show any evidence of compaction
dynamics that are significantly slower than those of model
1. Indeed their ϕðtÞ actually converge slightly faster,
perhaps because their ϕsettled are lower and hence their
nearly-settled states have more free volume.
Results for systems with both cohesion and friction

(model 4) are radically different. Their ϕðt=τrampÞ increase
(decrease)monotonicallywith increasing τramp for t=τramp ≪
1 (t=τramp ≳ 1), and are still increasing logarithmically
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slowly at t ¼ 10τramp in a manner reminiscent of tapping
experiments [1,2], but show no evidence of convergence
towards history-independent values. As shown in panel (c),
our results can be well fit by Eq. (2). We assumed
ϕsettledð∞Þ ¼ ϕALP since this is the packing fraction expected
in the limit of large system size and slow compression for
systems with very strong cohesion and friction [20]. A ≃
0.300 is a fitting parameter capturing the range of ϕ
obtainable as pressure ramping varies from infinitely fast
to infinitely slow. B ≃ 0.098 is a fitting parameter capturing
the relative importance of the logarithmic term [29]. Finally,

τslow ≃ 2.2 × 104 is a timescale capturing model 4’s inher-
ently slow dynamics. In general, these parameters will each
depend on the strength of intergrain cohesion and friction as
well as other factors such as the grains’ coefficients of
restitution; our comparison of results for model 4 to those for
models 1–3 shows thatA,B, and τslow all approach zero in the
limit of weak intergrain cohesion and/or friction.
Clearly Eq. (2) is directly analogous to Eq. (1), but with a

crucial difference. Longer tapping duration produces higher
densities, whereas slower pressure ramping produces lower
densities. The latter behavior is the opposite of the usual
glass-jamming paradigm [4,35], in which thermal glasses
and granular materials end up with higher densities when
they are more slowly cooled or compressed. The − sign
between the two terms in Eq. (1) is associated with the slow
dynamics of densification in tapped systems [1]; compa-
rable dynamics control densification of aging thermal
glasses [3]. In contrast, as we will show below, the þ
sign between the two terms in Eq. (2) is associated with a
slow dynamics of void stabilization.
We monitored void growth and coalescence by dividing

the DEM simulation cells into NcðtÞ ¼ nxðtÞ × nyðtÞ ×
nzðtÞ cubic subcells of side lengths ∼a, where a is the
diameter of the small grains in the standard 50∶50 1∶1.4
bidisperse mixtures [50] employed in this study. Each
subcell is classified as a “void subcell” if it intersects no
(i.e., contains no portion of any) grains; at least one small
grain can be placed in any such subcell without contacting
any other grains. The void fraction is defined as
fvðtÞ ¼ NvcðtÞ=NcðtÞ, where NvcðtÞ is the total number
of void subcells. We divide these NvcðtÞ void subcells into
NdvðtÞ distinct (topologically disconnected) voids using
connected-components analysis [52], and define structural
voids as distinct voids of volume ≥ 10a3.
Results for all systems are shown in Fig. 2. For models

1–3, fv decreases approximately exponentially with ϕ and
drops to zero (to within our statistical accuracy) by
ϕ ≃ 0.55. Cohesive systems have larger fv than their
noncohesive counterparts for all ϕ, largely because
their constituent grains are more likely to form compact
clusters at lower ϕ [53–55], but the slopes d½lnðfvÞ�=dϕ are
similar for all three models. As compression continues,
−d½lnðfvÞ�=dϕ increases as void filling becomes more
coherent, i.e., as free volume decreases and particles are
increasingly likely to get pushed into empty regions by
their interactions with other particles. Results for NdvðϕÞ
show complementary trends. As compression proceeds,
Ndv initially increases as large voids are split into smaller
ones (recall that a homogeneous system in the low-ϕ limit
would have Ndv ¼ 1), then decreases as these small voids
get filled. For ϕ≳ 0.4, most voids consist of only one or
two subcells, so Ndv roughly tracks fv.
Model 4 systems’ void statistics follow similar trends at

low ϕ. Their fvðϕÞ are slightly higher than their model-3
counterparts, presumably because the compact clusters

FIG. 1. Influence of intergrain interactions and preparation
protocol on powder settling. Panels (a) and (b), respectively, show
ϕðtÞ and ϕðt=τrampÞ for a wide range of τramp. Dot-dashed, dotted,
dashed, and solid curves, respectively, show results for models
1–4. All results for models 1–3 are consistent with many previous
studies, e.g., Refs. [19,20,40,50,51]. Panel (c) shows the settled
densities ϕsettled ¼ ϕð10τrampÞ for frictional cohesive grains
(model 4). Red symbols show simulation data and the blue
curve shows Eq. (2) with ϕsettledð∞Þ ¼ 0.135, A ¼ 0.300,
B ¼ 0.098, and τslow ¼ 2.2 × 104.
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they form are mechanically stabilized by their frictional
interactions and hence are more likely to grow with
increasing ϕ [56]. As compression continues, however,
the behavior of these systems again becomes qualitatively
different from that of models 1–3. Both fvðϕÞ and NdvðϕÞ
begin rising substantially above the common exponential
trends, at packing fractions ϕvso that decrease rapidly with
increasing τramp. Evidently these ϕvsoðτrampÞ correspond to
the onset of structural voids’ mechanical stabilization, with
lower ϕvso leading to larger final fv and Ndv and therefore
also to lower ϕsettled.
Visualizing these voids both illustrates the above argu-

ments and reveals a feature that was not apparent from the
fv and Ndv data alone. Figure 3 shows how increasing τramp

qualitatively alters the final structural-void geometry. For
τramp ¼ 104, only one small structural void (of volume
∼11a3) is present in the settled configuration. In contrast,
the settled configurations for τramp ¼ 105 (τramp ¼ 106)
contain 27 (218) structural voids, with volumes as large
as 48a3 (261a3). Thus larger τramp lead not only to larger fv
and correspondingly lower ϕsettled, but also to dramatic
increases in the number and maximum size of structural
voids, and consequently in the settled states’ spatial
heterogeneity. Note that the final settled states for models
1–3 have no structural voids for the range of τramp

considered here, and their large-scale spatial heterogeneity
[as indicated, e.g., by the low-q limit of the static structure
factor SðqÞ] is τramp-independent.

The first theories that successfully explained the
logarithmically slow increase of ϕðtÞ during tapping
experiments [Eq. (1)] did so by noting that free volume
decreases exponentially, and therefore the characteristic
time between relaxation events that lead to further
densification increases exponentially, with increasing ϕ
[26–28]. In the same spirit, we postulate that the kinetic
effects of increasing the void volume fraction ϕv ≡ 1 − ϕ
towards 1 − ϕALP in a settling frictional cohesive powder
are comparable to the effects of increasing ϕ towards ϕRCP
in a tapped frictionless noncohesive powder. In other
words, we assume that the “free void volume” vanishes for
ϕ < ϕALP because ϕ cannot be reduced any further
without destabilizing the powder, and therefore the char-
acteristic time for assembly processes that will produce
settled packings with ϕ ¼ ϕALP is astronomical, but that
this time decreases exponentially with increasing ϕ.
Assuming that τ−1slow is the “attempt rate” for processes

that form a mechanically stable settled sample, replacing
the tapping-experiment duration t [Eq. (1)] with the
pouring-experiment duration τramp, and adapting the pro-
cedure used in Section 2.1 of Ref. [29] to the above-
mentioned assumptions about free void volume leads to the
prediction

exp

�
ϕsettledð0Þ − ϕALP

ϕsettledðτrampÞ − ϕALP

�
¼ expð1Þ

�
1þ τramp

τslow

�
B
; ð3Þ

where ϕsettledð0Þ is the packing fraction obtained in the fast-
pouring limit where minimal aggregation and compact-
cluster stabilization occurs prior to settling [56], and B is a
free parameter. Rearranging Eq. (3) leads to the rate law

ϕsettledðτrampÞ ¼ ϕALP þ
ϕsettledð0Þ − ϕALP

1þ B ln ð1þ τramp=τslowÞ
: ð4Þ

FIG. 2. Void fraction fv [panel (a)] and number of topologically
distinct voids Ndv [panel (b)]. Insets highlight the void stabiliza-
tion that occurs for model 4. All colors and line types are the same
as in Fig. 1.

FIG. 3. Structural voids in model 4’s final settled states. The
upper left, lower left, and right images, respectively, show results
for τramp ¼ 104, 105, and 106; different colors indicate topologi-
cally distinct voids.
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As illustrated in Fig. 1(c), Eq. (4) accurately describes
model 4’s ϕsettledðτrampÞ. Notably, it predicts that frictional
cohesive powders have ultraslow settling kinetics in the
sense that their ϕsettled continues decreasing steadily with
increasing τramp even with τramp is very large [57].
Comparably slow kinetics can be predicted by “parking
lot” models of granular compaction [27,58], but such
models have not yet been adapted to capture the conse-
quences of structural void stabilization.
Equation (4) should also predict the settling kinetics of

real powders in the limit of strong intergrain cohesion and
friction, e.g., Geldart group C [59] powders with average
grain size ≲10 μm, when the pouring height is small or
the settling takes place in a gas-fluidized bed. A direct
experimental test of its validity could potentially be
performed by starting with a well-fluidized deagglomerated
micropowder [17,60], and then comparing the ϕsettled
obtained after imposing a variety of gas-flow histories
vgðtÞ ¼ vgð0Þ½1 − t=τramp�, where vgð0Þ is above the critical
fluidization velocity vc [61] and the set of τramp employed
spans at least ∼3 orders of magnitude. To the best of our
knowledge, no comparable studies focusing on micro-
powders’ settling kinetics have been performed yet, owing
either to the difficulty of conducting such experiments or to
the historical reliance of powder researchers on standard-
ized procedures such as those described in Ref. [22].
Performing such experiments and better understanding
the ultraslow kinetics of frictional cohesive powder settling
could ultimately help develop more robust processing
strategies for micropowders; developing such strategies
is a major current challenge in the pharmaceutical and
additive-manufacturing industries [31,32].
Future work will aim to identify the micromechanisms

giving rise to the ultraslow kinetics discussed above (i.e., to
identify the dynamical processes that control τslow) and to
investigate the extent to which the ideas discussed in this
Letter can be applied to understanding the history depend-
ence of other commonly employed measures of powder
flowability such as the angle of repose [62,63].
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