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Under the presence of strong electromagnetic fields and radiation reaction, plasmas develop anisotropic
momentum distributions, characterized by a population inversion. This is a general property of collisionless
plasmas when the radiation reaction force is taken into account. We study the case of a plasma in a strong
magnetic field and demonstrate the development of ring momentum distributions. The timescales for ring
formation are derived for this configuration. The analytical results for the ring properties and the timescales
for ring formation are confirmed with particle-in-cell simulations. The resulting momentum distributions
are kinetically unstable and are known to lead to coherent radiation emission in astrophysical plasmas and
laboratory setups.
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In the presence of strong fields, relativistic charged
particles can radiate photons with energy comparable to
the rest mass of the electron mec2 or even comparable to the
kinetic energy of the particle ðγ − 1Þmec2, where γ is the
Lorentz factor of the charged particle, me is the electron
mass. In these scenarios, radiation reaction, i.e., the momen-
tum recoil due to the radiation emission, must be taken
into account and it modifies the dynamics of relativistic
charged particles [1]. The conditions for radiation reaction
to be important are present around compact objects [2–4],
in experiments with intense lasers [5–9], magnetic field
amplification laboratory scenarios [10,11], and fusion plas-
mas [12,13]. The interplay between radiation reaction and
global plasma dynamics has only very recently started to be
addressed [14–17].
The radiation reaction force or radiation friction force

(for a review, see Ref. [1]) does not conserve the momen-
tum-space volume, unlike conservative forces like the
Lorentz force. The impact of radiation reaction on the
collective dynamics of plasmas was hinted in recent works
on runaway electrons in fusion plasmas that have shown
that radiation reaction and collisional effect induce
“bumps” along the runaway electron tail [12,13]. In this
Letter, we show that this behavior is more general and that
anisotropic momentum distributions can be produced in
other regions of the momentum distribution due to the
properties of the radiation reaction force.
The radiation power due to synchrotron radiation is

∝ γ4ðp × aÞ2, where p is the momentum of the particle
and a is the acceleration [18,19]; this already shows that
different regions of momentum space cool at different rates
due to radiation reaction, i.e., differential cooling. In this
Letter, we show how this differential cooling in momentum

space will result in anisotropic regions in phase space, with
bunching in momentum space. This effect is a general
feature of radiation reaction cooling and its importance
depends on the specific details of the field configuration.
In this Letter, we thoroughly analyze the simplest scenario
(a plasma in a constant strong magnetic field), which
captures the key features of this process. This effect is
analytically demonstrated by including the radiation reac-
tion force into the Vlasov equation [12,13,20–22]; analyti-
cal results for the evolution of the distribution function, and
the relevant timescales for the resulting momentum dis-
tribution are derived for this configuration. We show that
the resulting momentum distributions always develop an
inverted Landau population, i.e., a region of the momentum
distribution fðp; tÞ that fulfills ∂f=∂p⊥ > 0, where p⊥
refers to the momentum direction perpendicular to the
magnetic field. Particle-in-cell (PIC) simulations confirm
the theoretical results for a broad range of initial conditions
and in both the classical χ ≪ 1 and in the quantum regimes
χ > 1. [χ is the Lorentz- and Gauge-invariant parameter

χ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνpνÞ2

q
=m3

e [6,23]; e is the electron charge;

Fμν the electromagnetic tensor; and pν the 4-momentum
of the particle. For a constant background magnetic
field, χ reduces to χ ¼ p⊥jB0j=ðmeBScÞ, where BSc ¼
m2

ec2=ðeℏÞ ≃ 4.41 × 109 T is the Schwinger critical field].
The resulting momentum distributions with inverted

Landau populations are known to be kinetically unstable
and responsible for providing the free energy for kinetic
plasma instabilities and coherent radiation mechanisms
such as the electron cyclotron maser instability [24–28].
Thus, radiation reaction naturally leads to the conditions
required for the seeding of instabilities and coherent
radiation driven by inverted Landau populations and we
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explore how these results are relevant for astrophysical and
laboratory plasmas [29–33].
We will first consider the classical regime of radiation

reaction [34–38]. For γ ≫ 1, the dominant contribution is
the leading order in γ and we can approximate the standard
Landau-Lifshitz formula for radiation reaction as [35,39]

Frad ¼ −
2

3

eαγp
BScmec2

��
Eþ p

γme
×B

�
2

−
�

p
γmec

· E

�
2
�
;

ð1Þ

where α is the fine-structure constant, and E and B are
arbitrary electric and magnetic fields, respectively.
Equation (1) shows there is a nonlinear dependence of
the momentum radiation rate on the momentum of the
particle and its acceleration, i.e., the differential cooling.
We note the implications of the differential cooling have
not been examined in the context of deformations and
bunching in momentum space [40–42]. As we are examin-
ing the case of plasmas in a constant magnetic field,
the terms proportional to E in Eq. (1) are discarded,
and we can take advantage of the cylindrical symmetry
imposed by the constant magnetic field. The momentum p
is decomposed into the parallel pk and the perpendicular
p⊥ components with respect to B, such that ðp ×BÞ2 ¼
p2⊥B2. We normalize the magnetic field B as B0 ¼ B=BSc, t
to the inverse of the cyclotron frequency ω−1

ce ¼ me=ðeB0Þ,
the momentum to mec, such that γ2 ¼ 1þ p2. Thus, χ and
Frad are given by χ ¼ p⊥B0, and Frad ¼ − 2

3
αB0p2⊥p=γ,

respectively.
Generalized kinetic equations for nonconservative

forces, in particular for radiation reaction, have been known
since the 1960s [20,43,44]. We resort to the nonmanifestly
covariant form of the Vlasov equation including radiation
reaction [12,13,20–22]

∂f
∂t

þ p
m
· ∇rf þ ∇p · ½ðFrad þ FLÞf� ¼ 0; ð2Þ

where fðp; r; tÞ is the distribution function, and FL is
Lorentz force. ∇rf and ∇p · ðpfÞ are the spatial gradient of
f and momentum divergence of pf, respectively. The
inclusion of the radiation reaction force as the operator ∇p ·
ðFradfÞ guarantees the conservation of the number of
particles [45]. Since FL is conservative, but Frad is
dissipative, then ∇p · Frad ≠ ∇p · FL ¼ 0. For a spatially
homogeneous plasma, we can neglect the term proportional
to ∇rf. Moreover, as we are assuming cylindrical sym-
metry, the effect of the Lorentz force due to a strong
magnetic field on the distribution is ∇p · ðFLfÞ ¼ 0, even
when FL ≠ 0. Thus, Eq. (2) is simplified to

∂f
∂t

þ Frad · ∇pf þ f∇p · Frad ¼ 0: ð3Þ

In cylindrical coordinates, the operators are ∇pf ¼
∂f=∂pkp̂k þ ∂f=∂p⊥p̂⊥ and ∇p · F ¼ ð1=p⊥Þ∂ðp⊥F⊥Þ=
∂p⊥ þ ∂Fk=∂pk, yielding

3

2αB0

∂f
∂t

¼ η
p2⊥
γ
f þ p3⊥

γ

∂f
∂p⊥

þ p2⊥pk
γ

∂f
∂pk

; ð4Þ

where η ¼ 5 − ðp2⊥ þ p2
kÞ=γ2 (η ranges between η ¼ 5, in

the nonrelativistic limit γ ≃ 1, and η ¼ 4 in the relativistic
limit γ ≫ 1). From now on, we will assume the relativistic
limit. We also note that ∇p · Frad ∝ p2⊥=γ indicates that
compression of momentum space volume leads to bunch-
ing along the p⊥ dimension. In Eq. (4) two terms contribute
to the evolution of the momentum distribution in the p⊥
direction and are responsible for the cooling. The second
term, ðp3⊥=γÞ∂f=∂p⊥, is associated with the contraction of
the momentum distribution domain, as can be seen from
the momentum trajectory of a single particle dp⊥=dt ¼
−2αB0p3⊥=ð3γÞ < 0. On the other hand, the first term
ηp2⊥f=γ always provides a positive contribution to ∂f=∂t
and assures particle number conservation.
We examine regions of momentum space where p⊥ ∼ γ,

i.e., p⊥ ≫ pk and γ ≫ 1. Then a solution for Eq. (4) can be
obtained by the method of characteristics:

fðp⊥; pk; tÞ ¼
f0
�

p⊥
1−τp⊥ ;

pk
1−τp⊥

�
ð1 − τp⊥Þ4

; ð5Þ

where τ ¼ 2
3
αB0t. Equation (5) fully determines the tem-

poral evolution for any given initial distribution f0, and
demonstrates several conclusions regarding the general
evolution of momentum distributions undergoing synchro-
tron cooling. First, the solution domain decreases with
time, with an upper bound at p�⊥ ¼ τ−1 (such that p⊥τ < 1).
Therefore, the distribution function is compressed within
p⊥ ≤ p�⊥, where p�⊥ describes the trajectory of a particle
that p⊥ðτ ¼ 0Þ ¼ ∞.
From Eq. (5) we can conjecture that a Landau population

inversion, characterized by ∂f=∂p⊥ > 0, develops in a
finite time for a wide variety of initial momentum distri-
butions (see Supplemental Material [46]). This can be
shown by rearranging ∂f=∂p⊥ > 0 and considering pk ¼ 0

4ϵf0ðp0⊥; 0Þ > −p0⊥
∂f0
∂p0⊥

ðp0⊥; 0Þ; ð6Þ

where p0⊥ ¼ p⊥=ð1 − p⊥τÞ and we have used the fact that
0 < p⊥ < p�⊥ to write p⊥ ¼ ϵp�⊥ ¼ ϵ=τ, with 0 ≤ ϵ < 1.
For an initially stable distribution f0 all terms in Eq. (6) are
positive because f0 > 0 and ∂f0=∂p⊥ ≤ 0, everywhere.
Equation (6) illustrates a very simple condition for the
development of unstable distributions. From this inequality,
one can obtain the range of p⊥ where the unstable region is
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developed. Moreover, furthering our conjecture, we have
checked that a wide variety of momentum distributions
fulfill Eq. (6), including Maxwellian, Maxwell-Jüttner,
constant negative slope distributions, power laws up to
the power of 4, etc. For all of these distributions or
combinations a population inversion, i.e., a ring momentum
distribution, will be formed.
In order to determine the relevant timescales for the ring

formation and the population inversion process, an iso-
tropic Maxwellian distribution function is considered; more
general distribution functions, such as a Maxwell-Jüttner
distribution function or Maxwellian beam distribution, will
be studied numerically. The initial Maxwellian distribution
function, with thermal momentum spread pth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mekBT

p
,

where kB is the Boltzmann constant and T is the temper-
ature of the plasma, is defined as f0Mðp⊥;pkÞ¼
e−ðp

2⊥þp2
kÞ=ð2p2

thÞ=½p3
thð2πÞ1=2�. The resulting ring radius pRðtÞ

in momentum space, is defined as j∂p⊥f⊥ðp⊥;tÞjp⊥¼pRðtÞ¼0,

where we have defined f⊥ as the integrated distribution
along pk viz. f⊥ðp⊥; tÞ ¼

R
∞
−∞ fðp⊥; pk; tÞdpk. Using

Eq. (5) to determine the temporal evolution of f0 M, pR
evolves as

pRðtÞ ¼
1þ 6p2

thτ
2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12p2

thτ
2

p
6p2

thτ
3

: ð7Þ

For early times, τ ¼ 2αB0t=3 ≪ 1, the ring radius (in
momentum space) grows linearly pRðtÞ ∼ 2p2

thαB0t. At later
times, τ ≫ 1, the radiation reaction cooling constricts the
ring, reducing its radius as pRðtÞ ∼ 3=ð2αB0tÞ, increasing
f⊥ðpRÞ, and in turn, increasing ∂p⊥f⊥ within p⊥ < pR. The
ring formation time tR is naturally defined as the transition
point between these two regimes, i.e., the time at which the
ring stops growing and begins to decrease in momentum
radius, defined as j∂tpRðtÞjt¼tR ¼ 0, and given by

tR ¼ 3

4αB0pth
¼ 3

4αχth
; ð8Þ

where we have defined χth (in normalized units)
as χth ¼ B0pth. The ring formation time decreases as
radiation reaction becomes more important (higher χth),
and the timescale for the ring formation tR½ns� ≃
7.5B−2

0 ½50 MG�p−1
th ½10mec� is compatible with astrophysi-

cal and laboratory conditions.
These results can be generalized to particle beams since

our calculations have considered the proper reference
frame of the plasma, where the fluid momentum p̄ ¼ 0.
For a beam propagating parallel to the magnetic field with
Lorentz factor γb all the previous results can be rescaled by
the appropriate Lorentz transformations, tR ¼ 3γb=4αχth; in
these conditions, an inverse Landau population is generated
and evolves into a ring-beam distribution, i.e., a beam with a
pitch angle anisotropy.

We have performed particle-in-cell (PIC) simulations
with the PIC code OSIRIS [47], including classical [48] and
QED [48,49] radiation reaction to confirm and to explore
the theoretical findings. The full details of the simulation
parameters are included in Supplemental Material [46].
Simulations with different initial distributions show the
formation of the ring at t ¼ 3tR, confirming the theoretical
predictions for an initially isotropic Maxwellian distribu-
tion function f0 M with pth ¼ 50mec [Fig. 1(a)]. Equivalent
behavior is also evident for an initially isotropic Maxwell-
Jüttner distribution f0∝ expð−γ=kBTÞ with kBT ¼ 50mec2

[Fig. 1(b)]. A beam with γB ¼ 500 and a Maxwellian
thermal spread pth ¼ 50mec in the lab frame also evolved
into a ring in the boosted timescale t ¼ 3γbtR ¼ 3γb=4αχth
[Fig. 1(c)]. To demonstrate the ring formation in the weakly
relativistic regime, simulations with pth ∼ 1mec were also
performed (see Supplemental Material [46]).
This evolution is further explored in Fig. 2, focusing

on initially Maxwellian distribution functions. The evolu-
tion of the ring radius, Eq. (7), shows excellent agree-
ment with numerical simulations. Results with classical
and QED radiation reaction are also shown. The average
χ of the distribution function χ̄ defined as χ̄ðtÞ ¼R∞
0 f⊥ðp⊥; tÞp2⊥B0dp⊥ is a useful quantity to assess the
importance QED radiation reaction. χ̄ decreases as the
distribution function cools down (since B0 is constant).
Thus, the maximum χ̄ for this configuration is always
χ̄ðt ¼ 0Þ ¼ ffiffiffiffiffiffiffiffi

π=2
p

χth. In the simulations in Fig. (2), χ̄ðt ¼
0Þ ∼ 10−6 ≪ 1 and, as expected, in this regime the QED
and classical results agree [9]. The discrepancy at early
times in Fig. 2 between theory and simulations is due to the

FIG. 1. Particle-in-cell simulation results demonstrating the
evolution of an initial isotropic Maxwellian distribution [column
(a)], a Maxwell-Jüttner distribution (b), and a beam with bulk
γb ¼ 500 and isotropic Maxwellian spread (c), at t ¼ 3tR. For
reference, the distribution function fðpx; py ¼ 0Þ is shown at
t ¼ 0 and t ¼ 3tR on the top row (1). The second row (row 2)
shows the perpendicular plane of the momentum distribution
[f⊥ðpx; pyÞ, where p2⊥ ¼ p2

x þ p2
y] and the bottom row (3) the

fðp⊥; pkÞ momentum distribution, at t ¼ 3tR.
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range of validity of the theoretical model (pk ≪ p⊥)
outside this range the evolution of the distribution function
f deviates from the prediction of Eq. (5); at later times, due
to the differential cooling, most of f is within the range of
validity of the theoretical model, and a closer match
between theory and simulations is observed.
We have explored the full quantum regime through

simulations with χth ¼ 0.25, 0.5, and 1 by increasing the
magnetic field strength (shown in Supplemental Material
[46]). We explored this regime with both classical and QED
radiation reaction simulations. Both simulations show that
the rings are formed within similar timescales, the main
difference is that the simulations with quantum synchrotron
emission show rings with a larger width than the rings in
the classical simulations (see Supplemental Material).
Another fact to consider is that all distributions that are
initially in the high χ̄ðt ¼ 0Þ regime eventually enter the
classical regime χ̄ ≪ 1. This is expected, as χ̄ ≃ pRB0, and
pR decreases at late times as pR ∝ t−1. The ring formation
in the high χth regime and the transition to the classical
regime will be studied in future work.
We have considered a simplified field configuration,

demonstrating the role of differential cooling of radiation
reaction to generate population inversion. This is a general
property that should be observed for other field configu-
rations. Other scenarios and field configurations where
differential cooling can be relevant are associated with
betatron oscillations in an ion channel [31,50–52] or direct
laser acceleration configurations [53]; a population inver-
sion is also expected in those conditions and this will be
explored in future publications.
We have also performed simulations where the ring

momentum distribution evolved for longer times, to assess
the onset of the electron cyclotron maser instability (ECMI)
by the inverted Landau population, as the ring momentum
distributions are well known to be kinetically unstable
[24–28]. The growth rate for the fastest growing mode of

the ECMI (the first harmonic of the X mode), assuming a
momentum distribution f with small pk spread, can be
determined from the standard electron cyclotronmaser theory
[24], ΓðωÞ ¼ −ðπ=4Þωceðω2

p=ω2Þp2
rej∂p⊥fðp⊥; tÞjp⊥¼pre

,

where p2
re ¼ ðω2

ce=ω2Þ − 1 comes from the maser resonant
condition and ωp is the plasma frequency. Assuming
∂f=∂p⊥∼Δf⊥=Δp⊥∼f⊥ðpR;tÞ=pR, pre∼pR, with pR≫1,
then ω ¼ ωce=pR, and using the analytical results for an
initially Gaussian f0, the growth rate normalized with respect
to tR, at tR, can be estimated as

jΓðtRÞtRj ∼ 0.5
ω2
p

ω2
ce
pth: ð9Þ

For weakly magnetized scenarios, ωp ≫ ωce (and a relativ-
istically hot plasma such that pth ∼Oð1Þ), the instability
develops on time scales comparable (or shorter) to the ring
formationtime. In theopposite(andmoreinteresting)limit, the
ringwillbeformedandstablebeforetheonsetof theinstability.
An important fact to consider is that independently ofωp=ωce

(and even forωp=ωce ≪ 1), the ringwill continue to constrict
(and ∂f=∂p⊥ to increase), to thepointwhere thegrowth rate is
strong enough for the onset of the maser process and the
emission of coherent radiation.
In the limit of small magnetic fields B → 0 according to

Eq. (8) tR → ∞. In this scenario, effects that can inhibit
the ring formation must be included in our analysis. That is
the case of collisional processes (e-e, e-i collisions, pair
annihilation, and Compton scattering [18,54]). The com-
petition with these processes (when tR becomes compa-
rable to their typical time scales) might inhibit the ring
formation and the Landau population inversion. However,
for the range of conditions in the magnetospheres of
compact objects, such as magnetars and pulsars, the ring
formation time [from Eq. (8)] tR ≃OðpsÞ, considering
gigagauss field strengths and relativistic plasmas with
pth ∼ 100mec, is much shorter than all of the other time-
scales; for laboratory experiments with tens of megagauss
B field strengths and relativistic pth ∼ 10mec, the ring
formation occurs in the nanosecond timescale, which hints
that other configurations might be more favorable to
explore this process in the laboratory.
It is generally accepted that coherent emission processes

must be at play around compact objects [29,32]. Among
these processes, the electron cyclotron maser instability
requires a Landau population inversion [24–28]. Moreover,
some of the other proposed coherent emission mechanisms
assume strongly radiation cooled down beams where
p⊥ ≪ mec [33]. We have demonstrated that in scenarios
with strong radiation reaction cooling, transverse momen-
tum distributions with inverted Landau populations are
pervasive. These distributions are unstable and can drive
coherent emission via kinetic plasma instabilities. Our
analytical model shows excellent agreement with numerical

FIG. 2. Temporal evolution of the ring radius pR for different
initial conditions, showing the agreement between the theoretical
predictions [line Eq. (7)] and simulations (∘ classical and ×QED)
for different initial Gaussian distributions with momentum
spreads 200, 100, and 50mec (black, red, and green).
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simulations, demonstrating the relevance of this process in
the classical and in the QED regimes of radiation reaction.
We conjecture that our findings are also valid for other field
configurations, namely in laboratory conditions, e.g., the
focusing field of ion channels in laboratory conditions with
betatron oscillations [31,50,52], also opening the way to the
laboratory exploration of Landau population inversion via
radiation reaction cooling.

We would like to acknowledge enlightening conversa-
tions with Professor R. Bingham, Professor A. R. Bell,
Professor M. Lyutikov, Mr. R. Torres, Dr. T. Grismayer, and
Dr. T. Silva. This work was supported by FCT (Portugal)—
Foundation for Science and Technology under the Project
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2021; and the European Research Council (ERC)—
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Note added.—Recently, we became aware of work by
Zhdankin, Kunz, and Uzdensky [55] also demonstrating
that a collisionless, synchrotron-cooling plasma develops
pressure anisotropy. Those authors focused on high-energy
astrophysical systems in which the plasma beta is large
enough for this pressure anisotropy to be unstable to the fire
hose instability.
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