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Following the removal of axial confinement the momentum distribution of a Tonks-Girardeau gas
approaches that of a system of noninteracting spinless fermions in the initial harmonic trap. This
phenomenon, called dynamical fermionization, has been experimentally confirmed in the case of the
Lieb-Liniger model and theoretically predicted in the case of multicomponent systems at zero temperature.
We prove analytically that for all spinor gases with strong repulsive contact interactions at finite
temperature the momentum distribution after release from the trap asymptotically approaches that of a
system of spinless fermions at the same temperature but with a renormalized chemical potential which
depends on the number of components of the spinor system. In the case of the Gaudin-Yang model
we check numerically our analytical predictions using the results obtained from a nonequilibrium
generalization of Lenard’s formula describing the time evolution of the field-field correlators.
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Introduction.—In the last decade considerable effort has
been devoted to understanding the nonequilibrium dynam-
ics of one-dimensional (1D) integrable and near-integrable
many-body systems after the realization that such systems
do not thermalize [1-4]. This flurry of activity resulted in
the introduction of powerful techniques like the quench
action [5,6] and generalized hydrodynamics [7,8], and in
the investigation of various nonequilibrium scenarios in
both single component [9-33] and multicomponent sys-
tems [34-44].

At zero temperature the momentum distribution of 1D
strongly interacting bosons released from a harmonic trap
will asymptotically approach the momentum distribution of
a similar number of spinless fermions in the initial trap.
This phenomenon, dubbed dynamical fermionization (DF)
was theoretically predicted in Refs. [45,46] (see also
Refs. [47-52]) and experimentally confirmed recently
using ultracold atomic gases [53]. DF was also theoretically
predicted to occur in multicomponent systems, bosonic,
fermionic [54], or mixtures [55] using the factorization of
the wave functions in charge and spin components in the
strongly interacting regime [56-64]. At finite temperature
results in the literature regarding DF are almost nonexistent
with the only example that we are aware of being the
numerical confirmation in the case of single component
bosons reported in Ref. [51]. Generalizing the method of
Ref. [46] for finite temperature it can be shown in the
Supplemental Material [65] that for a system of trapped
impenetrable bosons described by the grandcanonical
ensemble at temperature 7' and chemical potential y that
DF is present and the asymptotical momentum distribution
is the same as the one for a system of spinless fermions at
the same temperature and chemical potential. The situation
in the case of multicomponent systems is, obviously, more
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complicated. Naively, one would expect that if DF occurs in
a multicomponent system at finite temperature then the
asymptotic momentum distribution would be expressed as
a sum of momentum distributions of free fermions with
different chemical potentials. Contrary to this expectation
in this Letter we show that for a spinor system at finite
temperature the asymptotic momentum distribution after
release from the trap approaches that of a system of spinless
fermions at the same temperature but with a renormalized
chemical potential, denoted by y/, which depends on the
number of components of the system (or magnetic field in
the case of unbalanced systems) but not on the statistics of
the particles. More precisely, for any harmonically trapped
multicomponent gas, bosonic or fermionic, with strong
repulsive contact interactions we will show that after
release from the trap (0) the initial density profile of the
spinor gas is the same as the density profile of spinless
noninteracting fermions described by T and x4/ (this is in
general called fermionization); (1) the asymptotic momen-
tum distribution has the same shape as the initial density
profile; and (2) the asymptotic momentum distribution is
the same as the one for spinless noninteracting fermions
characterized by T and x’ which represents the dynamical
fermionization of the gas. In the case of the Gaudin-Yang
model we present results also for each component (spin-up
and spin-down) and numerically check our analytical
predictions by deriving an extremely efficient determinant
representation for the correlators which can be understood
as the nonequilibrium multicomponent generalization of
Lenard’s formula [66].

The Gaudin-Yang model.—It is instructive to look first at
the two-component case which provides the general tem-
plate for the proof of DF in spinor gases but also has the
advantage of allowing one to investigate the contribution of

© 2023 American Physical Society


https://orcid.org/0000-0002-0465-8796
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.163201&domain=pdf&date_stamp=2023-04-21
https://doi.org/10.1103/PhysRevLett.130.163201
https://doi.org/10.1103/PhysRevLett.130.163201
https://doi.org/10.1103/PhysRevLett.130.163201
https://doi.org/10.1103/PhysRevLett.130.163201

PHYSICAL REVIEW LETTERS 130, 163201 (2023)

each component (and not only the sum like in the general
case) both analytically and numerically. The Gaudin-Yang
model [67,68] describes one-dimensional fermions or
bosons with contact interactions and is the natural two-
component generalization of the Lieb-Liniger model [69].
In the presence of a time-dependent harmonic potential
V(x,t) = mw?(t)x*/2 the Hamiltonian reads as

2
H = / dxzf‘—(axwam g (W)
m

+ [V(x, 1) — p](PTY) + B(PT6.¥), (1)

where W = (y/(1), W' = (¥} (x), W] (x)), . is the third
Pauli matrix, u is the chemical potential, B the magnetic
field and : : denotes normal ordering. ¥4 | (x) are fer-
mionic or bosonic fields which satisfy the commutation
relations ¥, (x)‘I‘/T,(y) - e‘P}, (V)¥o(x) = 8,p6(x —y) with
& = 1 in the bosonic case and ¢ = —1 in the fermionic case.
In this Letter we will investigate the nonequilibrium
dynamics in the Tonks-Girardeau (TG) regime character-
ized by g = oo. In the TG regime, also known as the
impenetrable regime, the system is integrable even in
the presence of the external potential, and at t = 0 the
eigenstates of a system of N particles of which M have

spin-down are [x = (xy,...,xy), dx = [[¥, dx;]:
Ounlid) = [ Y A
Apyeees ay={}.1}
Wi () - - Wi, (x1)[0). (2)

Here the summation is over the C; sets of a’s of which M
are spin-down and N — M are spin-up, and |0) is the Fock
vacuum satisfying ¥, (x)[0) = (0|%(x) = 0 for all x and
a. The eigenstates [Eq. (2)] are identified by two sets of
unequal numbers j= (j,...,jx) and A= (4, ..., 4y)
which correspond to the charge and spin degrees of
freedom. The normalized wave functions are

e | 2 (o) i )

apoy .
AN.M (x[7,4) = M2
NINMP2 | et

< 0(P) |t (1) ©

with the determinant expressed in terms of Hermite
functions of frequency wy = w(t <0), ie., ¢;(x) =
(2771712 (mey/ah) V4 e=mo P H L (\/(mewy/R)x)  with
H (x) the Hermite polynomials. In Eq. (3) the sum is over
the permutations of N elements, and 0(Px) = 0(xp, < --- <
xp,) = [1}5, 0(xp, — xp,_,) with 6(x) the Heaviside func-
tion. The #y ,, functions describing the spin sector are the
wave functions of the XX spin chain with periodic boundary

conditions 77y 3™ (4) = [T~ sign(n; — ny)dety, (e™™),
where A = (1;,...,4y) with eV = (=1)"*! and n =
(ny,...,ny) is a set of integers, n, € {1, ..., N}, describing
the positions of the spin-down particles in the ordered set
{x1,...,xy}. The wave functions [Eq. (3)] represent the
natural generalization of the Bethe ansatz wave functions for
the Gaudin-Yang model [57] in the presence of an external
confining potential. They solve the many-body Schrédinger
equation, have the appropriate symmetries when exchanging
two particles of the same type, satisfy the hard-core condition
(the wave functions vanish when two coordinates are equal),
and form a complete system. We stress again that the wave
functions [Eq. (3)] and all the results derived below are valid
only in the TG regime (g = o). The eigenstates [Eq. (2)] are
normalized (D@ (', A")|@n a1 (. 4)) = SnnOnrmSyjOas
highly degenerate (their energies do not depend on A),
and satisfy H|®y(j,4)) = Exay(J. 4)| Py (j,A)) with
Eny(j,A) =N, [hwo(j;+1/2) —pu+ B] —2BM. It should
be noted that the energy spectrum is independent of statistics.

Quench protocol.—We are interested in investigating the
dynamics of the real space and momentum densities at
finite temperature after release from the trap. Our quench
protocol is the following. Initially the system is prepared in
a grandcanonical thermal state with the density matrix

ST

N=0M=0 {j} {4}
X | @y (7, 4)) (P (F: 4) 5

prBT = (4. B,T)

(4)

Evaid) T 2 (1, B.T), Z(1.B.T)=
Tr[e~"'/%s7] is the partition function of the Gaudin-Yang
model and H! is the Hamiltonian (1) at =0
[mw(t <0) = wy]. At t > 0 we remove the axial confine-
ment, and the system evolves with H’ which is the
Hamiltonian (1) with w(¢ > 0) = 0. Our main objects of
study are the field-field correlators defined as (6 = {1, | }):

P& ) =

with W) (&, 1) = ™ W] (&)e=™". From the correlators
one can obtain the real space densities pi®7 (& 1) =
P, 5 t) and the momentum  distributions
Wl (p.t) = [P @RGP (&, &) 1)dE dEy/2n. Be-

cause g‘; L&, & =g BT, &z 1) it is sufficient to

consider only one of the correlators.

Time-evolution of the correlators.—The important obser-
vation which allows for the analytical investigation of the
dynamics is that the spin component of the wave functions
remains frozen during the time evolution due to the strong
interactions between the particles [54,55]. The charge
component of the wave functions [Eq. (3)] is expressed
in terms of harmonic oscillator functions whose dynamics in

where p{;’,'_lM (u,B,T)=e

TriptBTWE(E, )9, (5. 1)), (5)
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the case of time-dependent frequency is known [70,71] and
is implemented by the scaling transformation ¢;(x,1) =
(1/v/b)h;{(x/b). 0] exp ['(mxz/Zh)(b/b) iE;z(1)] with
E; =hw(j+1/2) and (1) = [{d7/b*(¢'). In the pre-
vious relations b(z) is a solutlon of the Ermakov-Pinney
equation b = —w(t)?b + w}/b> with boundary conditions
b(0) =1, b(0) = 0. Therefore, we can investigate the
dynamics computing the correlators at t+ =0 and then
applying the scaling transformation. At ¢ = 0 the correlators
in the initial thermal state described by the density matrix
[Eq. (4)] can be written as

o N
BT'§17'§2 :ZZZZ JA Glj\/ltldo‘éhéZ)’ (6)

=1M=0 {j} {A}

with Gf\'//,lM,g(fl, &) = (Pyy(J. 4)|Wo (&) YH(E) | Py a
(j,A)). The G functions are the normalized mean values
of bilocal operators in arbitrary states described by j and A.
Introducing a new parametrization [55,65,72] which makes
the decoupling of the degree of freedom explicit then, for
& <&, the G functions can be expressed as sums of
products of spin and charge functions (for their explicit
expressions see the Supplemental Material [65])

NMa(flﬂfz) = NMZ Z So(dy, dy)
di=1dy=d,
x I(dy, dy; &1, 6), (7)
with ¢y = (N —=M)!(M —1)! and ¢y = (N -M —1)!M!.

The time evolution of the correlators is obtained by
plugging the scaling transformation of the Hermite func-
tions in the expression for G{\’,’?M_g(fl ,&,) in terms of wave
functions (see the Supplemental Material [65]). We find

(lo = / 1/ (may))

2.2
[h'fl 52

bagy 2/3 . (8)

. 1 . £ & -
JA L A S1 62,
GN_M,o-(éhé:Z’t) - bGN’M’G<b s b ,O)e

and  introducing  the  notation G4, (p.1) =

[eiri-2 /hvallM(,(gl’gz; 1)dé,déy/2n we have

iy b .
Chaolpot) =5, [ Gl ol 30)

iy [ﬁ_m]
xe ™% " lggds.  (9)
The dynamics of the real space density and momentum
distribution is derived using (8) and (9) in Eq. (6).
Analytical derivation of dynamical fermionization.—As
a preliminary step we will compute the partition function
of the Gaudin-Yang (GY) model which appears in the

definition of the state probabilities p{\}"lM (u, B, T) describ-
ing the density matrix [Eq. (4)]. We should point out that
the thermodynamics of trapped impenetrable particles
with contact interactions is independent of statistics
(the energy spectrum is identical and double occupancies
are excluded). In the case of homogeneous systems a
proof can be found in Ref. [57]. Using the identity
S0 i }e(ZBM/kBT) = (14 ePB/KTHN  we  obtain
Z(u,B,T)= ZN 0y [2cosh(B/kgT)|N e~ Exi)/ksT wyith
En(j) = YN, [Awo(j; + 1/2) — u] which shows that the
partition function of the harmonically trapped GY model
in the TG regime is the same as the one of trapped spinless
free fermions Zpg(u/,T) at the same temperature but
with renormalized chemical potential (this is the gener-
alization of the homogeneous result first obtained by
Takahashi in Ref. [73]),

W = u+ kgTIn[2 cosh(B/kgT)]. (10)

Letusinvestigate the densities at = 0. From the definition
[Eq. (6)] we have p5™" (&) = 3% X0 2op sy X
PN MGg\/AMa(é §) with G{\}?M,a(g’ &) = 22;1 S,(d,d)

1(d,d;E8)/(c,NM). Tt can be shown in the
Supplemental ~ Material [65] that S| (d.d)=
(N—M)!MINM-1, Si(d.d) = (N —M —1)IMIN"!
(N — M) and that SN I(d, d;&,&) = G, pp (£, ) where

G, pr(& &) is the density of free fermions (in the state j) at

position £. Using these results we obtain

eB/ksT

pﬁBT(i) 2 cosh(B/kg T)p}';FT(g) (1)

P& = 7 (@), and (8 + (0 = o (9)
proving that the initial densmes are proportional to the
densities of trapped spinless free fermions at the same
temperature and chemical potential given by Eq. (10) (prop-
erty O from the introduction).

Now we can investigate the dynamics. In the case of free
expansion the solution of the Ermakov-Pinney equation is
b(t) = (1 + @}t*)"/? and in the large time limit we have
lim,_, b (1) = wot and lim,_, b(¢) = w,. The momentum
distribution is

NS R, (12)

N=LM=0GY W

and we need limt_,oof}{;‘,’.lMﬁ(p,t). Using the method of
stationary phase (Chap. 6 of Ref. [74] or Chap. 2.9 of
Ref. [75]) in Eq. (9) with the points of stationary phase being

& = pwol3 /(bh) for both integrals we find GNM{,(p t) ~

(@013/5) G (ol /1), (pol3/bh): 0] We  have
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GNar (6. = MGl (& O/N  and  GJy4(6.8) =
(N — M)GY, (&, &)/N. Performing similar computations
like in the case of the initial densities we obtain

BT eB/ksT w1 Ply
f————— — 1
i, (p’ )I_N_X,OZCOSh(B/kB )p (h)’ ( 3)

and n’%‘B’T ~BT(p. t) which shows that the asymp-

(p.1) = ”¢
totic momentum distributions have the same shape as the
initial densities (property 1). Finally, using the identity
el (p) = Bpfd (pl2/h) (see Appendix E of Ref. [55])

we obtain

eB/ksT

ﬂ T
t—2 cosh(B/kgT ) F (). (14)

B.T
w7 (p.t) ~

;tBT( ;tBT(

and n p.t)+n

dynamical fermionization at ﬁmte temperature (property 2).

We can numerically check the analytical predictions
given by Eq. (14) using a determinant representation for the
field correlators which represents the other main result of
this Letter. This representation obtained via summation of
the form factors is the nonequilibrium multicomponent
generalization of Lenards’s formula [66] originally intro-
duced for impenetrable bosons, and it reads as

[g‘i’B’T(gl 5 62; t) = %._B’T(él ) 52; t)]

AT (& &) = det (14 V4 R)

2 t) ~ nFF "(p) which proves the

—det(14yV), (15)

with 7y = —(1+ &?B/T + ¢)sign(&, — &), and  the
elements of the (inﬁnite) matrices V,R are given by

ab—\/ f da(v, )y (v, t)dv and R, =
VI ¢a(€17 )pp(&2,1)  where  f(a) = e BT/

2 cosh(B/T) 4 ellhoola+1/2)=4l/T}] i5 the Fermi function
and ¢, (v, ) are the time-evolved harmonic orbitals. In
addition to representing the starting point for the rigorous
derivation of various analytical properties of the correlators

(for example one can show that g‘I:?’T(fl,fz;t) can be

expressed in terms of Painlevé transcendents) Eq. (15) is
also extremely efficient numerically due to the fact that the
main computational effort is reduced to the calculation of
partial overlaps of the single particle evolved wave func-
tions and, therefore, can be used to investigate different
experimentally relevant quench scenarios like breathing
oscillations [25,26], quantum Newton’s cradle [1,19],
periodic modulation of the frequency [27], etc., which
were not previously accessible in the case of multi-
component systems. Figure 1 presents the dynamics of
n(p,t) derived from Eq. (15) for an unbalanced system
with N = 30 particles and N = 20 after release from the
trap which shows the excellent agreement with the ana-
lytical result [Eq. (14)].

Bosons N=30N, =20 Fermions N=30N, =20

=04t =04t
@ ®)
=2 2
0 e 0
oY t=0.2At t=0.2At
- |© ZN ) /‘“ “’\\
E 1 7 1
0 0
_ @ /‘\t:3" ar ® /‘\’:3" af
g 1 1
~
0 -100 -5 0 5 10 0 -100 -5 0 5 10
rl ph
FIG. 1. Dynamics of the momentum distribution of spin-down

particles after release from the trap in the GY model with N = 30
and N | = 20. The temperature and initial trap frequency are T =
Sand wy =1 (u = = 1.73, At = n/wy). The con-
tinuous line in (a), (c), and (e) [(b), (d), and (f)] represents the
momentum distribution 7| (p, t) for a bosonic (fermionic) system
while the dashed line is the analytical prediction [Eq. (14)].

General case.—In the general case of a system with x
components the second line of the Hamiltonian [Eq. (1)]
becomes  V(x,H)¥"W —Wiu¥ where now W¥'=
(W] (x), ..., PL(x)) with ¥, (x) (6 ={1,...,x}) fermionic
or bosonic fields satisfying the commutation relations
W, ()L (y) — W], (1) ¥o(x) = 8,08(x — y), and p is a
diagonal matrix with (p;,...,u,) on the diagonal
which are the chemical potentials of each component.
The eigenstates of the system are described by «

sets of parameters [76,77] j={j;}¥, and [i] =

A o ) with N2 Ny 22 Ny 2
0 and will be denoted by |®*(j,[])). The number of
particles in the state ¢ is m, = N,_; — N, where we
consider No=N and N,=0 and H|d>"(],[ D) =
E(j. )@ [A])  with  |E,(j.[A]) = S, i+
1/2) = > %, us(Ny,_y —N,). The energies of the eigen-
states do not depend on the spin configuration [A] resulting
in large degeneracies. From now on we will consider the
case of pure Zeeman splitting which is described by p; =
u—B(k—1) and u; | — p; = 2B. The initial grandcanon-
ical thermal state [analog of Eq. (4)] is

}
x pE ¥ (u, B.T) @ (j, [A]))(@*(j. [A])

El
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where now pi’m (u,B,T) = e BUW/T ) Z (4, B, T),
with Z,(u, B, T) = Tr[e"/%T] the partition function of
the system with k¥ components at t = 0. Like in the two-
component case (see the Supplemental Material [65]) it can
be shown that Z (u,B,T) = Zgg(u, T) but now the
renormalized chemical potential is (in the homogeneous
case this result was first obtained by Schlottmann in
Ref. [77])

=y + kpT In[sinh(kB/kpT)/ sinh(B/kgT)].  (16)

The calculations in the general case are very similar
with the ones for the GY model. We now have « field
T(gl ) ‘52’ t) = Trwll?B’TlPI'(gl ) [)TU(§27 [)]’

B
correlators ¢,

(6 ={l,...,k}) and the same number of densities
BT (e 1) = BT (£, & 1) and momentum distributions
n“®T(p.1). Similar to the GY case the wave function

has a product form with the charge component given
by a Slater determinant of Hermite functions and the
spin component given by an arbitrary function of an
appropriate spin chain [58,59]. This means that the

mean values of bilocal operators G{;’m (61,6) =
(D<(j. [A])| 5 (&1) s (£2)|9%(j. [A])) appearing in the gen-
eralization of Eq. (6) also have a product representation
generalizing Eq. (7) and given by (explicit expressions for
the components can be found in Refs. [54,65,78,79])

&) = SN 1 S,(dy,dy)I(dy. dos &, &). Unfor-
tunately we do not know the value of S,(d, d) [a reasonable

conjecture would be S,(d,d)=m,/N] only that
K _1Ss(d,d) =1 [54]. Using this relation we obtain
for the real space densities at =0 Y %_ pi®7(£) =

Pl (£) with .. defined in Eq. (16). In the large ¢ limit
performing the stationary phase analysis like in the GY
case we obtain that the total asymptotic momentum dis-
tribution has the same shape as the real space density

profile P (pot ) ~ lzp’,‘:,: (pl3/n) and using

g (p) = l%ﬂ*éFT( I5/h) we find

T
Zn"” po1), ~ e (p), (17)

which is the dynamical fermionization of the strongly
interacting k component gas.

Finite interaction case.—In the case of large, but finite,
repulsion, we expect that most of the features presented
above to remain valid [54]. In this case, to first order in g,
the wave functions still have a product form [78] with the
charge degrees of freedom characterized by a Slater
determinant and the spin part described by a spin chain
[antiferromagnetic  (ferromagnetic) in the fermionic
(bosonic) case] with position dependent coefficients C;.
Fortunately, the time evolution of these coefficients during

expansion is given by C;(r) = b73(¢)C;(0) [80] which
means that spin dynamics of the system remains frozen
like in the impenetrable case, and the same considerations
apply. For arbitrary repulsion it is also sensible to assume
that the system will dynamically fermionize after expansion
and that the initial quasimomenta of the trapped gas will be
mapped to real momenta of the expanded cloud similar to
the case of single component bosons [10,12,50]. This is due
to the fact that at long time after release the dimensionless
parameter y(x) = c¢/n(x) (c = mg/h?), which character-
izes the strength of the interaction, will become very large
[the density n(x) decreases] and, therefore, the dynamics
will be described by the TG Hamiltonian [(1) with g = oo].
We expect that these considerations can be made rigorous
using the Yudson representation for integrable systems [81]
generalizing the proof for the Lieb-Liniger model derived
in Ref. [12].

Conclusions.—We have proved that DF occurs in all
bosonic and fermionic impenetrable 1D spinor gases at
finite temperature. At long times after release from the trap
the asymptotic momentum distribution approaches that of a
system of spinless noninteracting fermions at the same
temperature and a renormalized chemical potential which
depends on the number of the components of the spinor
system and magnetic field but not on the statistics. Using
the same method one can prove the existence of DF in the
case of an arbitrary Bose-Fermi mixture [55,72,76,82,83]
using the fact that the wave functions in the TG regime also
factorize with the spin component given by wave functions
of an appropriate graded spin chain while the charge part is
still described by a Slater determinant of Hermite functions.
The proof runs along the same lines taking into account that
the thermodynamics (partition function) of impenetrable
particles is independent of the statistics of the constituent
particles.

Financial support from the Grants No. 16N/2019 and
No. 30N/2023 of the National Core Program of the
Romanian Ministry of Research, Innovation and
Digitization is gratefully acknowledged.

[1] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London)
440, 900 (2006).

[2] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)
452, 854 (2008).

[3] A. Polkovnikov, K. Sengupta, A. Silva,
Vengalattore, Rev. Mod. Phys. 83, 863 (2011).

[4] W. Kao, K.-Y. Li, K.-Y. Lin, S. Gopalakrishnan, and B. L.
Lev, Science 371, 296 (2021).

[5] J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203
(2013).

[6] J.-S. Caux, J. Stat. Mech. (2016) 064006.

[7] O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys.
Rev. X 6, 041065 (2016).

and M.

163201-5


https://doi.org/10.1038/nature04693
https://doi.org/10.1038/nature04693
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1126/science.abb4928
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1103/PhysRevLett.110.257203
https://doi.org/10.1088/1742-5468/2016/06/064006
https://doi.org/10.1103/PhysRevX.6.041065
https://doi.org/10.1103/PhysRevX.6.041065

PHYSICAL REVIEW LETTERS 130, 163201 (2023)

[8] B. Bertini, M. Collura, J. De Nardis, and M. Fagotti, Phys.
Rev. Lett. 117, 207201 (2016).
[9] R. Pezer and H. Buljan, Phys. Rev. Lett. 98, 240403 (2007).

[10] D. Juki¢, R. Pezer, T. Gasenzer, and H. Buljan, Phys. Rev. A
78, 053602 (2008).

[11] P. Calabrese, F. H. L. Essler, and M. Fagotti, Phys. Rev. Lett.
106, 227203 (2011).

[12] D. Iyer and N. Andrei, Phys. Rev. Lett. 109, 115304 (2012).

[13] J. De Nardis, B. Wouters, M. Brockmann, and J.-S. Caux,
Phys. Rev. A 89, 033601 (2014).

[14] B. Pozsgay, J. Stat. Mech. (2013) P10028.

[15] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M.
Rigol, and J.-S. Caux, Phys. Rev. Lett. 113, 117202 (2014).

[16] B. Pozsgay, M. Mestyan, M. A. Werner, M. Kormos, G.
Zarand, and G. Takdcs, Phys. Rev. Lett. 113, 117203 (2014).

[17] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L.
Essler, and T. Prosen, Phys. Rev. Lett. 115, 157201 (2015).

[18] L. Piroli, B. Pozsgay, and Eric Vernier, J. Stat. Mech. (2017)
023106.

[19] R. van den Berg, B. Wouters, S. Eliéns, J. De Nardis, R. M.
Konik, and J.-S. Caux, Phys. Rev. Lett. 116, 225302 (2016).

[20] M. Collura, S. Sotiriadis, and P. Calabrese, Phys. Rev. Lett.
110, 245301 (2013).

[21] M. A. Rajabpour and S. Sotiriadis, Phys. Rev. A 89, 033620
(2014).

[22] M. Kormos, M. Collura, G. Takacs, and P. Calabrese, Nat.
Phys. 13, 246 (2017).

[23] M. Collura, M. Kormos, and P. Calabrese, Phys. Rev. A 97,
033609 (2018).

[24] L. Vidmar, D. Iyer, and M. Rigol, Phys. Rev. X 7, 021012
(2017).

[25] Y. Y. Atas, D.M. Gangardt, I. Bouchoule, and K. V.
Kheruntsyan, Phys. Rev. A 95, 043622 (2017).

[26] Y. Y. Atas, I. Bouchoule, D.M. Gangardt, and K. V.
Kheruntsyan, Phys. Rev. A 96, 041605(R) (2017).

[27] Y. Y. Atas, S. A. Simmons, and K. V. Kheruntsyan, Phys.
Rev. A 100, 043602 (2019).

[28] O.1. Patu, Phys. Rev. A 102, 043303 (2020).

[29] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, Phys.
Rev. Lett. 122, 090601 (2019).

[30] P. Ruggiero, Y. Brun, and J. Dubail, SciPost Phys. 6, 051
(2019).

[31] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail, Phys.
Rev. Lett. 124, 140603 (2020).

[32] N. Malvania, Y. Zhang, Y. Le, J. Dubail, M. Rigol, and D. S.
Weiss, Science 373, 1129 (2021).

[33] S. Scopa, A. Krajenbrink, P. Calabrese, and J. Dubail,
J. Phys. A 54, 404002 (2021).

[34] L. Yang and H. Pu, Phys. Rev. A 94, 033614 (2016).

[35] E. Ilievski and J. De Nardis, Phys. Rev. B 96, 081118(R)
(2017).

[36] M. Mestyén, B. Bertini, L. Piroli, and P. Calabrese, J. Stat.
Mech. (2017) 083103.

[37] P. Siegl, S. 1. Mistakidis, and P. Schmelcher, Phys. Rev. A
97, 053626 (2018).

[38] Y. Zhang, L. Vidmar, and M. Rigol, Phys. Rev. A 99,
063605 (2019).

[39] S. Wang, X. Yin, Y.-Y. Chen, Y. Zhang, and X.-W. Guan,
J. Phys. A 53, 464002 (2020).

[40] Y. Nozawa and H. Tsunetsugu, Phys. Rev. B 101, 035121
(2020).

[41] Y. Nozawa and H. Tsunetsugu, Phys. Rev. B 103, 035130
(2021).

[42] S. Scopa, P. Calabrese, and L. Piroli, Phys. Rev. B 104,
115423 (2021).

[43] C. Rylands, B. Bertini, and P. Calabrese, J. Stat. Mech.
(2022) 103103.

[44] S. Scopa, P. Calabrese, and L. Piroli, Phys. Rev. B 106,
134314 (2022).

[45] M. Rigol and A. Muramatsu, Phys. Rev. Lett. 94, 240403
(2005).

[46] A. Minguzzi and D.M. Gangardt, Phys. Rev. Lett. 94,
240404 (2005).

[47] A. del Campo, Phys. Rev. A 78, 045602 (2008).

[48] D. M. Gangardt and M. Pustilnik, Phys. Rev. A 77, 041604
(R) (2008).

[49] C.J. Bolech, FE. Heidrich-Meisner, S. Langer, L P.
McCulloch, G. Orso, and M. Rigol, Phys. Rev. Lett. 109,
110602 (2012).

[50] A.S. Campbell, D. M. Gangardt, and K. V. Kheruntsyan,
Phys. Rev. Lett. 114, 125302 (2015).

[51] W. Xu and M. Rigol, Phys. Rev. A 95, 033617 (2017).

[52] J.-S. Caux, B. Doyon, J. Dubail, R. Konik, and T.
Yoshimura, SciPost Phys. 6, 070 (2019).

[53] J. M. Wilson, N. Malvania, Y. Le, Y. Zhang, M. Rigol, and
D.S. Weiss, Science 367, 1461 (2020).

[54] S.S. Alam, T. Skaras, L. Yang, and H. Pu, Phys. Rev. Lett.
127, 023002 (2021).

[55] O.1. Patu, Phys. Rev. A 105, 063309 (2022).

[56] M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990).

[57] A.G. Izergin and A.G. Pronko, Nucl. Phys. B520, 594
(1998).

[58] F. Deuretzbacher, K. Fredenhagen, D. Becker, K. Bongs, K.
Sengstock, and D. Pfannkuche, Phys. Rev. Lett. 100,
160405 (2008).

[59] L. Guan, S. Chen, Y. Wang, and Z. Q. Ma, Phys. Rev. Lett.
102, 160402 (2009).

[60] A.G. Volosniev, D. V. Fedorov, A.S. Jensen, M. Valiente,
and N. T. Zinner, Nat. Commun. 5, 5300 (2014).

[61] J. Levinsen, P. Massignan, G. M. Bruun, and M. M. Parish,
Sci. Adv. 1, 1500197 (2015).

[62] L. Yang and X. Cui, Phys. Rev. A 93, 013617 (2016).

[63] F. Deuretzbacher, D. Becker, J. Bjerlin, S. M. Reimann, and
L. Santos, Phys. Rev. A 95, 043630 (2017).

[64] L. Yang, S. S. Alam, and H. Pu, J. Phys. A 55, 464005 (2022).

[65] See  Suplemental  Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.163201 for a proof
of finite temperature DF in the Lieb-Liniger model and other
technical details.

[66] A. Lenard, J. Math. Phys. (N.Y.) 7, 1268 (1966).

[67] M. Gaudin, Phys. Lett. 24A, 55 (1967).

[68] C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967).

[69] E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).

[70] V.S. Popov and A. M. Perelomov, Zh. Eksp. Teor. Fiz. 57,
1684 (1970) [J. Exp. Theor. Phys. 30, 910 (1970)], http://
jetp.ras.ru/cgi-bin/e/index/e/30/5/p910?a=list.

[71] A. M. Perelomov and Y. B. Zeldovich, Quantum Mechanics
(World Scientific, Singapore, 1998).

163201-6


https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.117.207201
https://doi.org/10.1103/PhysRevLett.98.240403
https://doi.org/10.1103/PhysRevA.78.053602
https://doi.org/10.1103/PhysRevA.78.053602
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.106.227203
https://doi.org/10.1103/PhysRevLett.109.115304
https://doi.org/10.1103/PhysRevA.89.033601
https://doi.org/10.1088/1742-5468/2013/10/P10028
https://doi.org/10.1103/PhysRevLett.113.117202
https://doi.org/10.1103/PhysRevLett.113.117203
https://doi.org/10.1103/PhysRevLett.115.157201
https://doi.org/10.1088/1742-5468/aa5d1e
https://doi.org/10.1088/1742-5468/aa5d1e
https://doi.org/10.1103/PhysRevLett.116.225302
https://doi.org/10.1103/PhysRevLett.110.245301
https://doi.org/10.1103/PhysRevLett.110.245301
https://doi.org/10.1103/PhysRevA.89.033620
https://doi.org/10.1103/PhysRevA.89.033620
https://doi.org/10.1038/nphys3934
https://doi.org/10.1038/nphys3934
https://doi.org/10.1103/PhysRevA.97.033609
https://doi.org/10.1103/PhysRevA.97.033609
https://doi.org/10.1103/PhysRevX.7.021012
https://doi.org/10.1103/PhysRevX.7.021012
https://doi.org/10.1103/PhysRevA.95.043622
https://doi.org/10.1103/PhysRevA.96.041605
https://doi.org/10.1103/PhysRevA.100.043602
https://doi.org/10.1103/PhysRevA.100.043602
https://doi.org/10.1103/PhysRevA.102.043303
https://doi.org/10.1103/PhysRevLett.122.090601
https://doi.org/10.1103/PhysRevLett.122.090601
https://doi.org/10.21468/SciPostPhys.6.4.051
https://doi.org/10.21468/SciPostPhys.6.4.051
https://doi.org/10.1103/PhysRevLett.124.140603
https://doi.org/10.1103/PhysRevLett.124.140603
https://doi.org/10.1126/science.abf0147
https://doi.org/10.1088/1751-8121/ac20ee
https://doi.org/10.1103/PhysRevA.94.033614
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1103/PhysRevB.96.081118
https://doi.org/10.1088/1742-5468/aa7df0
https://doi.org/10.1088/1742-5468/aa7df0
https://doi.org/10.1103/PhysRevA.97.053626
https://doi.org/10.1103/PhysRevA.97.053626
https://doi.org/10.1103/PhysRevA.99.063605
https://doi.org/10.1103/PhysRevA.99.063605
https://doi.org/10.1088/1751-8121/abc128
https://doi.org/10.1103/PhysRevB.101.035121
https://doi.org/10.1103/PhysRevB.101.035121
https://doi.org/10.1103/PhysRevB.103.035130
https://doi.org/10.1103/PhysRevB.103.035130
https://doi.org/10.1103/PhysRevB.104.115423
https://doi.org/10.1103/PhysRevB.104.115423
https://doi.org/10.1088/1742-5468/ac98be
https://doi.org/10.1088/1742-5468/ac98be
https://doi.org/10.1103/PhysRevB.106.134314
https://doi.org/10.1103/PhysRevB.106.134314
https://doi.org/10.1103/PhysRevLett.94.240403
https://doi.org/10.1103/PhysRevLett.94.240403
https://doi.org/10.1103/PhysRevLett.94.240404
https://doi.org/10.1103/PhysRevLett.94.240404
https://doi.org/10.1103/PhysRevA.78.045602
https://doi.org/10.1103/PhysRevA.77.041604
https://doi.org/10.1103/PhysRevA.77.041604
https://doi.org/10.1103/PhysRevLett.109.110602
https://doi.org/10.1103/PhysRevLett.109.110602
https://doi.org/10.1103/PhysRevLett.114.125302
https://doi.org/10.1103/PhysRevA.95.033617
https://doi.org/10.21468/SciPostPhys.6.6.070
https://doi.org/10.1126/science.aaz0242
https://doi.org/10.1103/PhysRevLett.127.023002
https://doi.org/10.1103/PhysRevLett.127.023002
https://doi.org/10.1103/PhysRevA.105.063309
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1016/S0550-3213(98)00182-5
https://doi.org/10.1016/S0550-3213(98)00182-5
https://doi.org/10.1103/PhysRevLett.100.160405
https://doi.org/10.1103/PhysRevLett.100.160405
https://doi.org/10.1103/PhysRevLett.102.160402
https://doi.org/10.1103/PhysRevLett.102.160402
https://doi.org/10.1038/ncomms6300
https://doi.org/10.1126/sciadv.1500197
https://doi.org/10.1103/PhysRevA.93.013617
https://doi.org/10.1103/PhysRevA.95.043630
https://doi.org/10.1088/1751-8121/aca302
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.163201
https://doi.org/10.1063/1.1705029
https://doi.org/10.1016/0375-9601(67)90193-4
https://doi.org/10.1103/PhysRevLett.19.1312
https://doi.org/10.1103/PhysRev.130.1605
http://jetp.ras.ru/cgi-bin/e/index/e/30/5/p910?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/30/5/p910?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/30/5/p910?a=list
http://jetp.ras.ru/cgi-bin/e/index/e/30/5/p910?a=list

PHYSICAL REVIEW LETTERS 130, 163201 (2023)

[72] A. Imambekov and E. Demler, Ann. Phys. (NY) 321, 2390 [79] F. Deuretzbacher, D. Becker, and L. Santos, Phys. Rev. A

(20006). 94, 023606 (2016).
[73] M. Takahashi, Progr. Theor. Phys. 46, 1388 (1971). [80] A.G. Volosniev, H.-W. Hammer, and N.T. Zinner, Phys.
[74] N. Bleistein and R. A. Handelsman, Asymptotic Epansions Rev. B 93, 094414 (2016).

of Integrals (Dover Publications, New York, USA, 1986). [81] V.I. Yudson, Sov. Phys. JETP 61, 1043 (1985); Phys. Lett.
[75] A. Erdélyi, Asymptotic Expansions (Dover Publications, A 129, 17 (1988).

New York, USA, 1956). [82] B. Fang, P. Vignolo, M. Gattobigio, C. Miniatura, and A.
[76] B. Sutherland, Phys. Rev. Lett. 20, 98 (1968). Minguzzi, Phys. Rev. A 84, 023626 (2011).
[77] P. Schlottmann, J. Phys. C §, 5869 (1993). [83] J. Decamp, J. Jiinemann, M. Albert, M. Rizzi, A. Minguzzi,
[78] L. Yang, L. Guan, and H. Pu, Phys. Rev. A 91, 043634 (2015). and P. Vignolo, New J. Phys. 19, 125001 (2017).

163201-7


https://doi.org/10.1016/j.aop.2005.11.017
https://doi.org/10.1016/j.aop.2005.11.017
https://doi.org/10.1143/PTP.46.1388
https://doi.org/10.1103/PhysRevLett.20.98
https://doi.org/10.1088/0953-8984/5/32/016
https://doi.org/10.1103/PhysRevA.91.043634
https://doi.org/10.1103/PhysRevA.94.023606
https://doi.org/10.1103/PhysRevA.94.023606
https://doi.org/10.1103/PhysRevB.93.094414
https://doi.org/10.1103/PhysRevB.93.094414
https://doi.org/10.1016/0375-9601(88)90465-3
https://doi.org/10.1016/0375-9601(88)90465-3
https://doi.org/10.1103/PhysRevA.84.023626
https://doi.org/10.1088/1367-2630/aa94ef

