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Following the removal of axial confinement the momentum distribution of a Tonks-Girardeau gas
approaches that of a system of noninteracting spinless fermions in the initial harmonic trap. This
phenomenon, called dynamical fermionization, has been experimentally confirmed in the case of the
Lieb-Liniger model and theoretically predicted in the case of multicomponent systems at zero temperature.
We prove analytically that for all spinor gases with strong repulsive contact interactions at finite
temperature the momentum distribution after release from the trap asymptotically approaches that of a
system of spinless fermions at the same temperature but with a renormalized chemical potential which
depends on the number of components of the spinor system. In the case of the Gaudin-Yang model
we check numerically our analytical predictions using the results obtained from a nonequilibrium
generalization of Lenard’s formula describing the time evolution of the field-field correlators.
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Introduction.—In the last decade considerable effort has
been devoted to understanding the nonequilibrium dynam-
ics of one-dimensional (1D) integrable and near-integrable
many-body systems after the realization that such systems
do not thermalize [1–4]. This flurry of activity resulted in
the introduction of powerful techniques like the quench
action [5,6] and generalized hydrodynamics [7,8], and in
the investigation of various nonequilibrium scenarios in
both single component [9–33] and multicomponent sys-
tems [34–44].
At zero temperature the momentum distribution of 1D

strongly interacting bosons released from a harmonic trap
will asymptotically approach the momentum distribution of
a similar number of spinless fermions in the initial trap.
This phenomenon, dubbed dynamical fermionization (DF)
was theoretically predicted in Refs. [45,46] (see also
Refs. [47–52]) and experimentally confirmed recently
using ultracold atomic gases [53]. DF was also theoretically
predicted to occur in multicomponent systems, bosonic,
fermionic [54], or mixtures [55] using the factorization of
the wave functions in charge and spin components in the
strongly interacting regime [56–64]. At finite temperature
results in the literature regarding DF are almost nonexistent
with the only example that we are aware of being the
numerical confirmation in the case of single component
bosons reported in Ref. [51]. Generalizing the method of
Ref. [46] for finite temperature it can be shown in the
Supplemental Material [65] that for a system of trapped
impenetrable bosons described by the grandcanonical
ensemble at temperature T and chemical potential μ that
DF is present and the asymptotical momentum distribution
is the same as the one for a system of spinless fermions at
the same temperature and chemical potential. The situation
in the case of multicomponent systems is, obviously, more

complicated. Naively, one would expect that if DF occurs in
a multicomponent system at finite temperature then the
asymptotic momentum distribution would be expressed as
a sum of momentum distributions of free fermions with
different chemical potentials. Contrary to this expectation
in this Letter we show that for a spinor system at finite
temperature the asymptotic momentum distribution after
release from the trap approaches that of a system of spinless
fermions at the same temperature but with a renormalized
chemical potential, denoted by μ0, which depends on the
number of components of the system (or magnetic field in
the case of unbalanced systems) but not on the statistics of
the particles. More precisely, for any harmonically trapped
multicomponent gas, bosonic or fermionic, with strong
repulsive contact interactions we will show that after
release from the trap (0) the initial density profile of the
spinor gas is the same as the density profile of spinless
noninteracting fermions described by T and μ0 (this is in
general called fermionization); (1) the asymptotic momen-
tum distribution has the same shape as the initial density
profile; and (2) the asymptotic momentum distribution is
the same as the one for spinless noninteracting fermions
characterized by T and μ0 which represents the dynamical
fermionization of the gas. In the case of the Gaudin-Yang
model we present results also for each component (spin-up
and spin-down) and numerically check our analytical
predictions by deriving an extremely efficient determinant
representation for the correlators which can be understood
as the nonequilibrium multicomponent generalization of
Lenard’s formula [66].
The Gaudin-Yang model.—It is instructive to look first at

the two-component case which provides the general tem-
plate for the proof of DF in spinor gases but also has the
advantage of allowing one to investigate the contribution of
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each component (and not only the sum like in the general
case) both analytically and numerically. The Gaudin-Yang
model [67,68] describes one-dimensional fermions or
bosons with contact interactions and is the natural two-
component generalization of the Lieb-Liniger model [69].
In the presence of a time-dependent harmonic potential
Vðx; tÞ ¼ mω2ðtÞx2=2 the Hamiltonian reads as

H ¼
Z

dx
ℏ2

2m
ð∂xΨ†

∂xΨÞ þ g∶ðΨ†ΨÞ2∶

þ ½Vðx; tÞ − μ�ðΨ†ΨÞ þ BðΨ†σzΨÞ; ð1Þ

where Ψ ¼ ðΨ↑ðxÞ
Ψ↓ðxÞÞ, Ψ† ¼ ðΨ†

↑ðxÞ;Ψ†
↓ðxÞÞ, σz is the third

Pauli matrix, μ is the chemical potential, B the magnetic
field and ∶ ∶ denotes normal ordering. Ψ↑;↓ðxÞ are fer-
mionic or bosonic fields which satisfy the commutation
relations ΨαðxÞΨ†

βðyÞ − εΨ†
βðyÞΨαðxÞ ¼ δαβδðx − yÞ with

ε ¼ 1 in the bosonic case and ε ¼ −1 in the fermionic case.
In this Letter we will investigate the nonequilibrium
dynamics in the Tonks-Girardeau (TG) regime character-
ized by g ¼ ∞. In the TG regime, also known as the
impenetrable regime, the system is integrable even in
the presence of the external potential, and at t ¼ 0 the
eigenstates of a system of N particles of which M have
spin-down are [x ¼ ðx1;…; xNÞ, dx ¼ Q

N
i¼1 dxi]:

jΦN;Mð j; λÞi ¼
Z

dx
X

α1;…;αN¼f↓;↑g
χα1���αNN;M ðxj j; λÞ

Ψ†
αN ðxNÞ � � �Ψ†

α1ðx1Þj0i: ð2Þ

Here the summation is over the CN
M sets of α’s of which M

are spin-down and N −M are spin-up, and j0i is the Fock
vacuum satisfying ΨαðxÞj0i ¼ h0jΨ†

αðxÞ ¼ 0 for all x and
α. The eigenstates [Eq. (2)] are identified by two sets of
unequal numbers j ¼ ðj1;…; jNÞ and λ ¼ ðλ1;…; λMÞ
which correspond to the charge and spin degrees of
freedom. The normalized wave functions are

χα1���αNN;M ðxj j; λÞ ¼ 1

N!NM=2

�X
P∈SN

ð−εÞPηαP1 ���αPNN;M ðλÞ

× θðPxÞ
�
det
N
½ϕjaðxbÞ�; ð3Þ

with the determinant expressed in terms of Hermite
functions of frequency ω0 ¼ ωðt ≤ 0Þ, i.e., ϕjðxÞ ¼
ð2jj!Þ−1=2ðmω0=πℏÞ1=4e−ðmω0x2=2ℏÞHjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmω0=ℏÞ
p

xÞ with
HjðxÞ the Hermite polynomials. In Eq. (3) the sum is over
the permutations ofN elements, and θðPxÞ ¼ θðxP1

< � � � <
xPN

Þ ¼ Q
N
j¼2 θðxPj

− xPj−1
Þ with θðxÞ the Heaviside func-

tion. The ηN;M functions describing the spin sector are the
wave functions of the XX spin chain with periodic boundary

conditions ηα1���αNN;M ðλÞ ¼ Q
j>k signðnj − nkÞdetM ðeinaλbÞ,

where λ ¼ ðλ1;…; λMÞ with eiλaN ¼ ð−1ÞMþ1 and n ¼
ðn1;…; nMÞ is a set of integers, na ∈ f1;…; Ng, describing
the positions of the spin-down particles in the ordered set
fx1;…; xNg. The wave functions [Eq. (3)] represent the
natural generalization of the Bethe ansatz wave functions for
the Gaudin-Yang model [57] in the presence of an external
confining potential. They solve the many-body Schrödinger
equation, have the appropriate symmetries when exchanging
two particles of the same type, satisfy the hard-core condition
(the wave functions vanish when two coordinates are equal),
and form a complete system. We stress again that the wave
functions [Eq. (3)] and all the results derived below are valid
only in the TG regime (g ¼ ∞). The eigenstates [Eq. (2)] are
normalized hΦN0;M0 ð j0; λ0ÞjΦN;Mð j; λÞi ¼ δN0NδM0Mδ j0 j0δλ0λ,
highly degenerate (their energies do not depend on λ),
and satisfy HjΦN;Mð j; λÞi ¼ EN;Mð j; λÞjΦN;Mð j; λÞi with
EN;Mð j;λÞ¼

P
N
i¼1 ½ℏω0ðjiþ1=2Þ−μþB�−2BM. It should

be noted that the energy spectrum is independent of statistics.
Quench protocol.—We are interested in investigating the

dynamics of the real space and momentum densities at
finite temperature after release from the trap. Our quench
protocol is the following. Initially the system is prepared in
a grandcanonical thermal state with the density matrix

ρμ;B;T ¼
X∞
N¼0

XN
M¼0

X
f jg

X
fλg

p j;λ
N;Mðμ; B; TÞ

× jΦN;Mð j; λÞihΦN;Mð j; λÞj; ð4Þ

where p j;λ
N;Mðμ;B;TÞ¼e−EN;Mð j;λÞ=kBT=Zðμ;B;TÞ, Zðμ;B;TÞ¼

Tr½e−HI=kBT � is the partition function of the Gaudin-Yang
model and HI is the Hamiltonian (1) at t ¼ 0
[ωðt ≤ 0Þ ¼ ω0]. At t > 0 we remove the axial confine-
ment, and the system evolves with HF which is the
Hamiltonian (1) with ωðt > 0Þ ¼ 0. Our main objects of
study are the field-field correlators defined as (σ ¼ f↑;↓g):

gμ;B;Tσ ðξ1; ξ2; tÞ ¼ Tr½ρμ;B;TΨ†
σðξ1; tÞΨσðξ2; tÞ�; ð5Þ

with Ψ†
σðξ; tÞ ¼ eiH

FtΨ†
σðξÞe−iHFt. From the correlators

one can obtain the real space densities ρμ;B;Tσ ðξ; tÞ ¼
gμ;B;Tσ ðξ; ξ; tÞ and the momentum distributions
nμ;B;Tσ ðp; tÞ ¼ R

eipðξ1−ξ2Þ=ℏgμ;B;Tσ ðξ1; ξ2; tÞdξ1dξ2=2π. Be-
cause gμ;B;T↑ ðξ1; ξ2; tÞ ¼ gμ;−B;T↓ ðξ1; ξ2; tÞ it is sufficient to
consider only one of the correlators.
Time-evolution of the correlators.—The important obser-

vation which allows for the analytical investigation of the
dynamics is that the spin component of the wave functions
remains frozen during the time evolution due to the strong
interactions between the particles [54,55]. The charge
component of the wave functions [Eq. (3)] is expressed
in terms of harmonic oscillator functions whose dynamics in
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the case of time-dependent frequency is known [70,71] and
is implemented by the scaling transformation ϕjðx; tÞ ¼
ð1= ffiffiffi

b
p Þϕj½ðx=bÞ; 0� exp ½iðmx2=2ℏÞð _b=bÞ − iEjτðtÞ� with

Ej ¼ ℏω0ðjþ 1=2Þ and τðtÞ ¼ R
t
0 dt

0=b2ðt0Þ. In the pre-
vious relations bðtÞ is a solution of the Ermakov-Pinney
equation b̈ ¼ −ωðtÞ2bþ ω2

0=b
3 with boundary conditions

bð0Þ ¼ 1, _bð0Þ ¼ 0. Therefore, we can investigate the
dynamics computing the correlators at t ¼ 0 and then
applying the scaling transformation. At t ¼ 0 the correlators
in the initial thermal state described by the density matrix
[Eq. (4)] can be written as

gμ;B;Tσ ðξ1; ξ2Þ ¼
X∞
N¼1

XN
M¼0

X
f jg

X
fλg

p j;λ
N;MG

j;λ
N;M;σðξ1; ξ2Þ; ð6Þ

with G j;λ
N;M;σðξ1; ξ2Þ ¼ hΦN;Mð j; λÞjΨ†

σðξ1ÞΨσðξ2ÞjΦN;M

ð j; λÞi. The G functions are the normalized mean values
of bilocal operators in arbitrary states described by j and λ.
Introducing a new parametrization [55,65,72] which makes
the decoupling of the degree of freedom explicit then, for
ξ1 ≤ ξ2, the G functions can be expressed as sums of
products of spin and charge functions (for their explicit
expressions see the Supplemental Material [65])

G j;λ
N;M;σðξ1; ξ2Þ ¼

1

cσNM

XN
d1¼1

XN
d2¼d1

Sσðd1; d2Þ

× Iðd1; d2; ξ1; ξ2Þ; ð7Þ

with c↓ ¼ ðN −MÞ!ðM − 1Þ! and c↑ ¼ ðN −M − 1Þ!M!.
The time evolution of the correlators is obtained by
plugging the scaling transformation of the Hermite func-
tions in the expression for G j;λ

N;M;σðξ1; ξ2Þ in terms of wave
functions (see the Supplemental Material [65]). We find
(l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmω0Þ

p
)

G j;λ
N;M;σðξ1;ξ2; tÞ ¼

1

b
G j;λ

N;M;σ

�
ξ1
b
;
ξ2
b
; 0

�
e
− i

b
_b
ω0

ξ2
1
−ξ2

2

2l2
0 ; ð8Þ

and introducing the notation G̃ j;λ
N;M;σðp; tÞ ¼R

eipðξ1−ξ2Þ=ℏG j;λ
N;M;σðξ1; ξ2; tÞdξ1dξ2=2π we have

G̃ j;λ
N;M;σðp; tÞ ¼

b
2π

Z
G j;λ

N;M;σðξ1; ξ2; 0Þ

× e
−ib

h
_b
ω0

ξ2
1
−ξ2

2

2l2
0

− pðξ1−ξ2Þ
ℏ

i
dξ1dξ2: ð9Þ

The dynamics of the real space density and momentum
distribution is derived using (8) and (9) in Eq. (6).
Analytical derivation of dynamical fermionization.—As

a preliminary step we will compute the partition function
of the Gaudin-Yang (GY) model which appears in the

definition of the state probabilities p j;λ
N;Mðμ; B; TÞ describ-

ing the density matrix [Eq. (4)]. We should point out that
the thermodynamics of trapped impenetrable particles
with contact interactions is independent of statistics
(the energy spectrum is identical and double occupancies
are excluded). In the case of homogeneous systems a
proof can be found in Ref. [57]. Using the identityP

N
M¼0

P
fλg eð2BM=kBTÞ ¼ ð1þ eð2B=kBTÞÞN we obtain

Zðμ;B;TÞ¼P∞
N¼0

P
f jg ½2coshðB=kBTÞ�Ne−ENð jÞ=kBT with

ENð jÞ ¼
P

N
i¼1 ½ℏω0ðji þ 1=2Þ − μ� which shows that the

partition function of the harmonically trapped GY model
in the TG regime is the same as the one of trapped spinless
free fermions ZFFðμ0; TÞ at the same temperature but
with renormalized chemical potential (this is the gener-
alization of the homogeneous result first obtained by
Takahashi in Ref. [73]),

μ0 ¼ μþ kBT ln½2 coshðB=kBTÞ�: ð10Þ

Let us investigate thedensities at t ¼ 0. From thedefinition
[Eq. (6)] we have ρμ;B;Tσ ðξÞ ¼ P∞

N¼1

P
N
M¼0

P
f jg

P
fλg ×

p j;λ
N;MG

j;λ
N;M;σðξ; ξÞ with G j;λ

N;M;σðξ; ξÞ ¼
P

N
d¼1 Sσðd; dÞ

Iðd; d; ξ; ξÞ=ðcσNMÞ. It can be shown in the
Supplemental Material [65] that S↓ðd;dÞ¼
ðN−MÞ!M!NM−1, S↑ðd; dÞ ¼ ðN −M − 1Þ!M!NM−1

ðN −MÞ and that
P

N
d¼1 Iðd; d; ξ; ξÞ ¼ Gj

N;FFðξ; ξÞ where

Gj
N;FFðξ; ξÞ is the density of free fermions (in the state j) at

position ξ. Using these results we obtain

ρμ;B;T↓ ðξÞ ¼ eB=kBT

2 coshðB=kBTÞ
ρμ

0;T
FF ðξÞ; ð11Þ

ρμ;B;T↑ ðξÞ ¼ ρμ;−B;T↓ ðξÞ, and ρμ;B;T↓ ðξÞ þ ρμ;B;T↑ ðξÞ ¼ ρμ
0;T

FF ðξÞ
proving that the initial densities are proportional to the
densities of trapped spinless free fermions at the same
temperature and chemical potential given by Eq. (10) (prop-
erty 0 from the introduction).
Now we can investigate the dynamics. In the case of free

expansion the solution of the Ermakov-Pinney equation is
bðtÞ ¼ ð1þ ω2

0t
2Þ1=2 and in the large time limit we have

limt→∞bðtÞ ¼ ω0t and limt→∞ _bðtÞ ¼ ω0. The momentum
distribution is

nσðp; tÞ ¼
X∞
N¼1

XN
M¼0

X
f jg

X
fλg

p j;λ
N;MG̃

j;λ
N;M;σðp; tÞ; ð12Þ

and we need limt→∞G̃
j;λ
N;M;σðp; tÞ. Using the method of

stationary phase (Chap. 6 of Ref. [74] or Chap. 2.9 of
Ref. [75]) in Eq. (9) with the points of stationary phase being
ξ0 ¼ pω0l20=ð _bℏÞ for both integrals we find G̃ j;λ

N;M;σðp; tÞ ∼
t→∞

jðω0l20= _bÞjG j;λ
N;M;σ½ðpω0l20= _bℏÞ; ðpω0l20= _bℏÞ; 0�. We have
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G j;λ
N;M;↓ðξ; ξÞ ¼ MG j

N;FFðξ; ξÞ=N and G j;λ
N;M;↑ðξ; ξÞ ¼

ðN −MÞG j
N;FFðξ; ξÞ=N. Performing similar computations

like in the case of the initial densities we obtain

nμ;B;T↓ ðp; tÞ ∼
t→∞

l20
eB=kBT

2 coshðB=kBTÞ
ρμ

0;T
FF

�
pl20
ℏ

�
; ð13Þ

andnμ;B;T↑ ðp; tÞ ¼ nμ;−B;T↓ ðp; tÞwhich shows that the asymp-
totic momentum distributions have the same shape as the
initial densities (property 1). Finally, using the identity
nμ;TFF ðpÞ ¼ l20ρ

μ;T
FF ðpl20=ℏÞ (see Appendix E of Ref. [55])

we obtain

nμ;B;T↓ ðp; tÞ ∼
t→∞

eB=kBT

2 coshðB=kBTÞ
nμ

0;T
FF ðpÞ; ð14Þ

and nμ;B;T↓ ðp; tÞ þ nμ;B;T↑ ðp; tÞ ∼
t→∞

nμ
0;T

FF ðpÞ which proves the

dynamical fermionization at finite temperature (property 2).
We can numerically check the analytical predictions

given by Eq. (14) using a determinant representation for the
field correlators which represents the other main result of
this Letter. This representation obtained via summation of
the form factors is the nonequilibrium multicomponent
generalization of Lenards’s formula [66] originally intro-
duced for impenetrable bosons, and it reads as
[gμ;B;T↓ ðξ1; ξ2; tÞ ¼ gμ;−B;T↑ ðξ1; ξ2; tÞ]

gμ;B;T↓ ðξ1; ξ2; tÞ ¼ det ð1þ γVþ RÞ − det ð1þ γVÞ; ð15Þ

with γ ¼ −ð1þ e2B=T þ εÞsignðξ2 − ξ1Þ, and the
elements of the (infinite) matrices V;R are given by
Va;b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞfðbÞp R ξ2

ξ1
ϕ̄aðv; tÞϕbðv; tÞdv and Ra;b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðaÞfðbÞp
ϕ̄aðξ1; tÞϕbðξ2; tÞ where fðaÞ ¼ e−B=T=

½2 coshðB=TÞ þ ef½ℏω0ðaþ1=2Þ−μ�=Tg� is the Fermi function
and ϕaðv; tÞ are the time-evolved harmonic orbitals. In
addition to representing the starting point for the rigorous
derivation of various analytical properties of the correlators
(for example one can show that gμ;B;T↓;↑ ðξ1; ξ2; tÞ can be
expressed in terms of Painlevé transcendents) Eq. (15) is
also extremely efficient numerically due to the fact that the
main computational effort is reduced to the calculation of
partial overlaps of the single particle evolved wave func-
tions and, therefore, can be used to investigate different
experimentally relevant quench scenarios like breathing
oscillations [25,26], quantum Newton’s cradle [1,19],
periodic modulation of the frequency [27], etc., which
were not previously accessible in the case of multi-
component systems. Figure 1 presents the dynamics of
n↓ðp; tÞ derived from Eq. (15) for an unbalanced system
with N ¼ 30 particles and N↓ ¼ 20 after release from the
trap which shows the excellent agreement with the ana-
lytical result [Eq. (14)].

General case.—In the general case of a system with κ
components the second line of the Hamiltonian [Eq. (1)]
becomes Vðx; tÞΨ†Ψ − Ψ†μΨ where now Ψ† ¼
ðΨ†

1ðxÞ;…;Ψ†
κðxÞÞ with ΨσðxÞ ðσ ¼ f1;…; κgÞ fermionic

or bosonic fields satisfying the commutation relations
ΨσðxÞΨ†

σ0 ðyÞ − εΨ†
σ0 ðyÞΨσðxÞ ¼ δσσ0δðx − yÞ, and μ is a

diagonal matrix with ðμ1;…; μκÞ on the diagonal
which are the chemical potentials of each component.
The eigenstates of the system are described by κ

sets of parameters [76,77] j ¼ fjigNi¼1 and ½λ� ¼
ðfλð1Þi gN1

i¼1;…; fλðκ−1Þi gNκ−1
i¼1 Þ with N ≥ N1 ≥ � � � ≥ Nκ−1 ≥

0 and will be denoted by jΦκð j; ½λ�Þi. The number of
particles in the state σ is mσ ¼ Nσ−1 − Nσ where we
consider N0 ¼ N and Nκ ¼ 0 and HjΦκð j; ½λ�Þi ¼
Eκð j; ½λ�ÞjΦκð j; ½λ�Þi with jEκð j; ½λ�Þi ¼

P
N
i¼1 ℏω0ðjiþ

1=2Þ −P
κ
σ¼1 μσðNσ−1 − NσÞ. The energies of the eigen-

states do not depend on the spin configuration ½λ� resulting
in large degeneracies. From now on we will consider the
case of pure Zeeman splitting which is described by μ1 ¼
μ − Bðκ − 1Þ and μiþ1 − μi ¼ 2B. The initial grandcanon-
ical thermal state [analog of Eq. (4)] is

ρμ;B;Tκ ¼
X∞
N¼0

XN
N1¼0

� � �
XNκ−2

Nκ−1¼0

X
f jg

X
fλð1Þg

� � �
X

fλðκ−1Þg

× p j;½λ�
κ ðμ; B; TÞjΦκð j; ½λ�ÞihΦκð j; ½λ�Þj;

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Dynamics of the momentum distribution of spin-down
particles after release from the trap in the GY model with N ¼ 30
and N↓ ¼ 20. The temperature and initial trap frequency are T ¼
5 and ω0 ¼ 1 (μ ¼ 26.22, jBj ¼ 1.73, Δt ¼ π=ω0). The con-
tinuous line in (a), (c), and (e) [(b), (d), and (f)] represents the
momentum distribution n↓ðp; tÞ for a bosonic (fermionic) system
while the dashed line is the analytical prediction [Eq. (14)].
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where now p j;½λ�
κ ðμ; B; TÞ ¼ e−Eκð j;½λ�Þ=kBT=Zκðμ; B; TÞ,

with Zκðμ; B; TÞ ¼ Tr½e−HI
κ=kBT � the partition function of

the system with κ components at t ¼ 0. Like in the two-
component case (see the Supplemental Material [65]) it can
be shown that Zκðμ; B; TÞ ¼ ZFFðμ0κ; TÞ but now the
renormalized chemical potential is (in the homogeneous
case this result was first obtained by Schlottmann in
Ref. [77])

μ0κ ¼ μþ kBT ln½sinhðκB=kBTÞ= sinhðB=kBTÞ�: ð16Þ

The calculations in the general case are very similar
with the ones for the GY model. We now have κ field
correlators gμ;B;Tσ ðξ1; ξ2; tÞ ¼ Tr½ρμ;B;Tκ Ψ†

σðξ1; tÞΨσðξ2; tÞ�,
ðσ ¼ f1;…; κgÞ and the same number of densities
ρμ;B;Tσ ðξ; tÞ ¼ gμ;B;Tσ ðξ; ξ; tÞ and momentum distributions
nμ;B;Tσ ðp; tÞ. Similar to the GY case the wave function
has a product form with the charge component given
by a Slater determinant of Hermite functions and the
spin component given by an arbitrary function of an
appropriate spin chain [58,59]. This means that the

mean values of bilocal operators G j;½λ�
σ ðξ1; ξ2Þ ¼

hΦκð j; ½λ�ÞjΨ†
σðξ1ÞΨσðξ2ÞjΦκð j; ½λ�Þi appearing in the gen-

eralization of Eq. (6) also have a product representation
generalizing Eq. (7) and given by (explicit expressions for
the components can be found in Refs. [54,65,78,79])

G j;½λ�
σ ðξ1; ξ2Þ ¼

P
N
d1;d2¼1 Sσðd1; d2ÞIðd1; d2; ξ1; ξ2Þ. Unfor-

tunately we do not know the value of Sσðd; dÞ [a reasonable
conjecture would be Sσðd; dÞ ¼ mσ=N] only thatP

κ
σ¼1 Sσðd; dÞ ¼ 1 [54]. Using this relation we obtain

for the real space densities at t ¼ 0
P

κ
σ¼1 ρ

μ;B;T
σ ðξÞ ¼

ρμ
0
κ ;T

FF ðξÞ with μ0κ defined in Eq. (16). In the large t limit
performing the stationary phase analysis like in the GY
case we obtain that the total asymptotic momentum dis-
tribution has the same shape as the real space density

profile
P

κ
σ¼1 n

μ;B;T
σ ðp; tÞ ∼

t→∞
l20ρ

μ0κ ;T
FF ðpl20=ℏÞ and using

nμ;TFF ðpÞ ¼ l20ρ
μ;T
FF ðpl20=ℏÞ we find

Xκ
σ¼1

nμ;B;Tσ ðp; tÞ ∼
t→∞

nμ
0
κ ;T

FF ðpÞ; ð17Þ

which is the dynamical fermionization of the strongly
interacting κ component gas.
Finite interaction case.—In the case of large, but finite,

repulsion, we expect that most of the features presented
above to remain valid [54]. In this case, to first order in g,
the wave functions still have a product form [78] with the
charge degrees of freedom characterized by a Slater
determinant and the spin part described by a spin chain
[antiferromagnetic (ferromagnetic) in the fermionic
(bosonic) case] with position dependent coefficients Ci.
Fortunately, the time evolution of these coefficients during

expansion is given by CiðtÞ ¼ b−3ðtÞCið0Þ [80] which
means that spin dynamics of the system remains frozen
like in the impenetrable case, and the same considerations
apply. For arbitrary repulsion it is also sensible to assume
that the system will dynamically fermionize after expansion
and that the initial quasimomenta of the trapped gas will be
mapped to real momenta of the expanded cloud similar to
the case of single component bosons [10,12,50]. This is due
to the fact that at long time after release the dimensionless
parameter γðxÞ ¼ c=nðxÞ (c ¼ mg=ℏ2), which character-
izes the strength of the interaction, will become very large
[the density nðxÞ decreases] and, therefore, the dynamics
will be described by the TG Hamiltonian [(1) with g ¼ ∞].
We expect that these considerations can be made rigorous
using the Yudson representation for integrable systems [81]
generalizing the proof for the Lieb-Liniger model derived
in Ref. [12].
Conclusions.—We have proved that DF occurs in all

bosonic and fermionic impenetrable 1D spinor gases at
finite temperature. At long times after release from the trap
the asymptotic momentum distribution approaches that of a
system of spinless noninteracting fermions at the same
temperature and a renormalized chemical potential which
depends on the number of the components of the spinor
system and magnetic field but not on the statistics. Using
the same method one can prove the existence of DF in the
case of an arbitrary Bose-Fermi mixture [55,72,76,82,83]
using the fact that the wave functions in the TG regime also
factorize with the spin component given by wave functions
of an appropriate graded spin chain while the charge part is
still described by a Slater determinant of Hermite functions.
The proof runs along the same lines taking into account that
the thermodynamics (partition function) of impenetrable
particles is independent of the statistics of the constituent
particles.
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