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We obtain a closed formula for the Kihler potential of a broad class of four-dimensional Lorentzian
or Euclidean conformal “Kihler” geometries, including the Plebanski-Demianski class and various
gravitational instantons such as Fubini-Study and Chen-Teo. We show that the Kihler potentials of
Schwarzschild and Kerr are related by a Newman-Janis shift. Our method also shows that a class of
supergravity black holes, including the Kerr-Sen spacetime, is Hermitian. We finally show that the
integrability conditions of complex structures lead naturally to the Weyl double copy.
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Introduction.—Complex methods as a tool to investigate
spacetime structure in general relativity (GR) have a long
and fruitful history of remarkable developments. Profound
constructions, pioneered by Penrose, Newman, Plebanski,
Robinson, and Trautman [1-6] among others, include
twistor theory and heavenly structures, but there are also
simple yet intriguing results such as the “Newman-Janis
shift” relating special solutions via complex coordinate
transformations.

An important insight regarding complex structures in GR
is provided by Flaherty [7], who showed that type D
vacuum and Einstein-Maxwell spacetimes possess an
analog of the Hermitian structures of Riemannian geom-
etry. In Lorentz signature, a Hermitian structure must
necessarily be complex-valued, so its integrability proper-
ties are more subtle than in the Euclidean case. Flaherty
gave a comprehensive analysis of such properties [8,9], and
he found that the above classes of type D spacetimes are not
only Hermitian but also satisfy the Lorentzian analog of the
conformal Kéhler condition.

In Riemannian geometry, Kéhler metrics are encoded in
“generating functions” or scalar Kéhler potentials. An
analogous feature in GR occurs in perturbation theory,
where perturbative fields are generated by scalar Debye
potentials. These potentials are instrumental for modern
studies of black hole stability and gravitational wave
physics (e.g., [10-14]). The increasing interest in non-
perturbative structures for gravitational wave science [15],
together with the importance of scalar potentials for
perturbation theory, motivate the question of whether there
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are “Debye potentials” for exact, astrophysically relevant
solutions of GR. Moreover, the recently discovered appli-
cations of the Newman-Janis shift [16,17] suggest that
complex structures in GR may play an important role in the
understanding of such nonperturbative structures.

Motivated by the above considerations, in this Letter we
develop a method to find the Kéhler potentials of a broad
class of geometries, including black holes and gravitational
instantons, and we show intimate connections of this
approach with other theoretical structures of modern
interest for gravitational wave physics such as the
Newman-Janis shift and the double copy relation between
gauge and gravity theories.

As an example, consider the Kerr metric g with param-
eters M, a for mass and angular momentum per mass,
respectively. In Boyer-Lindquist coordinates (¢, r, 8, ¢), the
metric is block diagonal in (dt,d¢) and (dr,d6), with
components in the first block given by

g = (A — a?sin?0)x7!,
9ip = —alA — (r* + a*)]=7sin%6),
Gpp = [a*Asin?0 — (r* + a?)?|Z7"sin’6),
where X = r? + a’cos’0, A = r* —2Mr + a*. Following

Flaherty [8], one can find four complex scalar fields,
(2%, 7',29,z1), defined by

d7’ = dt — (a® + r*)A~'dr — iasin 6d6,
dz' = d¢p — aA™'dr — i csc6do,
d?® = dt + (a* + r*)A~'dr + iasin 6d6,
dz' = d¢p + aA~'dr + i csc 0dO

such that the Kerr metric is

9= gudz"dZ° + g,y (d"dZ' + dz'dZ°) + g,pdz' dZ.

Published by the American Physical Society


https://orcid.org/0000-0001-8046-7636
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.161502&domain=pdf&date_stamp=2023-04-21
https://doi.org/10.1103/PhysRevLett.130.161502
https://doi.org/10.1103/PhysRevLett.130.161502
https://doi.org/10.1103/PhysRevLett.130.161502
https://doi.org/10.1103/PhysRevLett.130.161502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 130, 161502 (2023)

In addition, letting Q= = (r — ia cos 6)?, there must exist a
scalar K such that g, = Q720,002K, g,y = Q7%0,00:1K,
9pp = Q720102 K. However, expressions for K do not
seem to have been obtained in the literature.

The method developed in this Letter computes the
generating function and Kéhler potential of Kerr to be

K:4/rA‘1dr+410gsin9.

As a function K = K(z, Z), the potential fully generates the
spacetime geometry. Moreover, using Kéhler transforma-
tions, we shall show that the Kéhler potentials for Kerr and
Schwarzschild are simply related by a Newman-Janis shift.
More generally, the geometries studied in this Letter
include the general Plebanski-Demianski class [18] as well
as the Chen-Teo family [19] of gravitational instantons. Our
method also allows us to prove that a general class of
supergravity black holes [20], including the Kerr-Sen
spacetime [21], has a Hermitian (not conformal Kihler)
structure.

In addition, we shall show that the integrability of
complex structures leads to the existence of special scalar
and massless free fields associated to the geometry, that can
be combined to give a unified geometric description of the
“Weyl double copy” [22-24]. Our results contain not only
the type D and N double copies, but also provide new
examples of this relation for both vacuum and nonvacuum
geometries, including, e.g., the general Einstein-Maxwell
Plebanski-Demianski class and the Fubini-Study and
Chen-Teo instantons.

Importantly, we shall not impose any field equations: the
conformal Kihler property of the geometries we study does
not depend on a particular field theory. This means that the
conformal factor does not, in principle, play a role in our
construction, but we shall nevertheless include it since it
arises naturally in GR, where the Einstein and Kihler
metrics are conformally related.

Complexified Kdhler geometry.—Given a four-
dimensional complex geometry (M,g), we define an
almost-Hermitian structure [25] as a (1,1) tensor field J
such that J?> =-I and g(J-,J-) = g(-,-). The tangent
bundle decomposes as TM =T+ @ T, where T+ corre-
sponds to vectors with eigenvalue £i under J. We say that
the almost-Hermitian structure is integrable, and is thus a
Hermitian structure, if [T7%,7*] c T+ (for both signs),
where [-,-] is the Lie bracket of vector fields. One can
show that a Hermitian structure implies that there are four
complex scalars (z',z’) such that

g = gpdz'd?, (1)
where g;; = (0,1, 05), with i =0, 1, j =0,1.

The fundamental 2-form is defined by «(-,-) = g(J-, ).
We say that a Hermitian geometry is Kéhler if dkc = 0, and

conformal Kihler if there is a scalar field Q> such that
dk = 0, where & = Q%k. By the complex version of the
Poincaré Lemma, if dk = 0 then there exists, locally, a
complex scalar K such that

4 = 005K 2)
where @i; = ngi}-, cf. [ [8], Theorem IX.8]. We say that K
is a Kéhler potential. It is not unique: one has the freedom
to perform “Kéihler transformations’:

K - K+ F(') + F(z)). (3)

The Kéhler potential can be found by integrating Eq. (2).
Define p; = 0K/ 0%/, then p i=/ f]i;dzi . Integrating once
again, the potential is K = [ p;dz".

In this Letter, we shall study geometries whose metric
has the block-diagonal form

g = a;jdo'de’ + byydx"dx’ (4)

for some coordinates ¢’ = (7,¢) and x! = (x,y), and

known functions a;;, b;;. Introduce an orthonormal coframe
el = cldo!, & = c2dx!, &3 = cidx!, e* = ctdo', for some
functions ¢!, ¢?, c3, c};suchthatg=e' @ e! +--- +e* @ e*.

Define now a null coframe by

fz\}i(euriez), nz\}i(el—iez),
m :%(63 +iet), i :%(—63 +iet).  (5)

The metric is g =2(£ © n —m © ). We shall consider
almost-Hermitian structures whose fundamental 2-forms are
ki =1(€ An+m A 7). For concreteness, let us focus
on k_ =k.

Let V! = (—0,.0,). We define the 1-forms

o' =pVia(EAm), @ =aViiin Am), (6)

where y~' = (£ A m)(9,.9,) and ™' = (n A m)(9,.0,).
A calculation shows that

o' = do' + Eldx!, @' = do' — Etdx!, (7)

for some functions E} = w'(9;), where d; = d/dx!. In
addition, the metric and fundamental 2-form are

i

g:gijwiGd)ja K:2

gi;a)i A @ (8)

where g;; = 9(0,i,0,;). Note that this implies that

900 = YGrr> 901 = 910 = g‘r(/}? qii = gq’)(/)
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The almost-Hermitian structure is integrable if and only if
do' = 0 = d@': if this is satisfied, then there will be (locally)
7,7 such that o' = dz' and @' = d%', and from the first
equation in Eq. (8) we see that the metric, Eq. (4), will have
the Hermitian expression, Eq. (1). Using Eq. (7), this
integrability condition has a simple form: do' = 0 = d@'
if and only if

Ej = Ej(x') and 9 E} =0. 9)

The second equation implies that, locally, there are functions
wO(x!), w!(x!) such that E} = d,;y'. The (7', 7') coordinates
will then be given by
7 =d +y, 3 =gl —y. (10)
The associated vector fields are 0, =3(d, +0d,),
0: =% (0,
where E! is the inverse of E' (thought of as a 2 X 2 matrix).
We shall now assume that d,; =0, and d, = d,, are
Killing vectors. This includes all of the examples studied in
this Letter. Using k = —ig;do’ A dy/ and g5 := Q%g;5, a
short calculation shows that the conformal Kéhler condition
d(Q%*c) =0 is

—0,:). In terms of x/, we have 9, = El9,,

0,00ep = Oy 0 = 0 = 00049 — 0y Uepr (1)

Assuming the above conditions, the formula K =
f p;dz' for the Kihler potential can be rewritten as follows.
From Cartan’s formula £,8 = d(v 1&) + v 1 di, we deduce
that the Killing fields have Hamiltonians, i.e., functions H),
H; such that dH; = 0, ak = _l@ijdll’j’ where the second
equality follows from the expression of & in terms of ¢/, y'.
Choosing K to be independent of o', we get

K= —4i/H,-dy/". (12)

The integration in y' can be replaced by an integration in x/

by using dy' = Ejdx!.

To recover real metrics with different signatures, we
impose reality conditions on the null coframe (£, n, m, in).
Euclidean signature (4 + ++) corresponds to requiring
n = ¢ and m = —m. The functions E’ in Eq. (7) are then
purely imaginary, so @ = @' and % = Z'. Lorentzian
signature (+ — ——) corresponds to #, n real and /m = .
The functions E} in Eq. (7) are generally complex, so z' and
7' in Eq. (10) are not complex conjugates.

Black holes and instantons.—Diagonal metrics:
Consider the special case of Eq. (4) where g = g,.dr*+
g,/,(/,dqbZ + gy dx* + gyydyz. We choose the frame such that

the functions Ej in Eq. (7) are E} = i\/gxx/Geer E5 =0,
Ez’ =0, E;ﬁ = —iw/gy),/ 9p¢- The Hermitian condition is

equivalent to  0,(gy:/9z) =0, 0.(9yy/94) =0, and
the conformal Kihler condition is 0,(Q%g,,) =0,
9,(@gyy) = 0.

A simple example is an arbitrary static, spherically
symmetric spacetime g = f(r)dt*> — h(r)dr? — r*(d6* +
sin’0d¢?). Using Q* = 1/r%, and regardless of the form
of f(r), h(r), the geometry is conformal Kéhler. This
includes not only the well-known spherical black hole
spacetimes but also solutions from the Einstein-scalar field
system such as the Janis-Newman-Winicour wormhole [26].
In the special case i = f~!, the Kihler potential is given
by K = 4{[[rf(r)]""dr + logsin6}.

The Plebafiski-Demianski class:
Eq. (4) with

Consider the metric

G = [Ar - azAx]/(Hz)’
Gep = al(r? +a?)A, = (1-x?)A,]/(IIZ),
9pp =@ (1=2*°A, = (r* +a?)*A,]/ (ITZ),

Gxx = _Z/(HA)C)’ Ixy = 0, Gyy = _Z/ (HAr>’ (13)

where y = r, £ = r? + a®x?, a = const, and IT = I1(r, x),
A, = A (x), A, = A,(r) are arbitrary functions of their
arguments. We find that, regardless of the specific form of
IL, A,, A, the geometry is conformal Kéhler, with complex
coordinates

0 _

) =1—(r —iax"), = — (art —ixh),

=1+ (r —iax"), 2l =g+ (art — ix?h), (14)
where r*, x*, ¥, x! are defined by

dr* = (r* + a*) Ay \dr,
drt = A;'dr,

dx* = (1 —x*)A;'dx,
dx = A7ldx, (15)

and the conformal factor is
Q% =T11/(r — iax)>. (16)

The Kihler form & = Q%k is given by

2= m {=ddp A la(1 = x2)dr — i(7 + a?)d]

+dt A (dr —iadx)}. (17)
Notice that this is independent of A, A,. The Hamiltonians

are Hy=—i/(r—iax) and H, = i(a+ irx)/(r — iax),
hence, using Eq. (12), we find that the Kéhler potential is

K:4[/Aerr—/Aixdx} (18)
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We stress that the existence of this potential is independent
of the explicit form of the functions A,, A,.

The Plebanski-Demianski family [18,27,28] is Eq. (13)
with IT = (1 — arx)? and

2N A
Ay =1+=x—x*+2aMx’ ~ [gaz +a’(Q* + az)}x“,
a
2aN 1
A =0 +a—oMr+ -5 (az—i—g/l)r“,
a

where a = const, 0* = ¢2 + ¢, and 4, q,, g,, correspond,
respectively, to cosmological constant and electric and
magnetic charges. The rest of the parameters can be related
to mass, angular momentum, acceleration, and Newman-
Unti-Tamburino charge, cf. [27] for details. This is the
general type D solution (assuming non-null orbits of the
isometry group) of the Einstein equations with an aligned
electromagnetic field.

We note that, for the case Q = 0, the transformation
(r,M) < *(iax, iN) leaves the Kihler potential and the
metric invariant, and the coordinates, Eq. (14), change
according to z' <>z for + and are invariant for —.
A detailed analysis of this and other dualities will be given
in a separate work [29].

Newman-Janis shifts: For the Schwarzschild and Kerr
spacetimes (putting x = cos ), we find the Kéhler poten-
tials to be

Khw = 4[log |r — 2M| + log sin 6], (19a)
1 5 ) )
Kyew =4 E]Og|r —2Mr + a*| + logsin @
M -M
- f( ! )] (19b)
VM? —a®" \VM? - a?

where f = tanh™! if r is in between the two roots of A, and

f = coth™! outside the roots and we assume M? # a.
Using Eq. (14) and Kihler transformations, Eq. (3), a

calculation shows that Egs. (19a) and (19b) are equivalent to

Koy = 4 {— ﬁ + log sin 9} , (20a)

(r—iacos®)

Kiew = 4 {— M + log sin 9} . (20b)

where we assume M # 0. Thus, the Kéhler potentials are
related by a Newman-Janis shift » — r —iacosf [5],
although it is not at all obvious from Eq. (19).

For M = 0, which corresponds (locally) to flat spacetime
[30], we can see the Newman-Janis shift as follows.
Consider complexified Minkowski space, in complexified
spherical coordinates (7., 0., ¢.). In terms of complexified
inertial coordinates (., x.,y.,z.), we have the usual

relations x2 + y2 = r2sin’,, z, = r.cosf,.. The Kihler
potential can be shown to be K =4log(r.sinf,).
Consider  first the real slice M given by
{t.=t,x, =x,y. =y,z. = 2}, where 1, x, y, z are real.
Then (r.,0.,¢.) become ordinary real spherical coordi-
nates, and the Kéhler potential is

K|y = 4log(rsin8). (21)

Now consider a different real slice M’ given by a Newman-
Janis shift [31]: {7. =t,x. =x,y. =y,2. = z—ia},
where a is a real constant. Choosing the complex
radius to be r.=r—iacos6@, a calculation gives
x? +y* = (r* + a*)sin’ 0, so

1
K|y =4 E1og(r2 +a?) +logsin@|. (22)

Equations (21) and (22) correspond, respectively, to the
M — 0 limits in Egs. (19a) and (19b).

Supergravity black holes: Consider the metric,
Eq. (4), with

9o = (R - U)/W’ Grp = (RWM + UW,)/W,

9gp = (RWE=UW?)/W,

Ixx = _W/R’ Gxy = 0, Gyy = _W/ U, (23)

where x=r, y=u, (R,W,) and (U,W,) are arbitrary
functions of r and u, respectively, and W = a(W, + W),
with real constant a. The metric, Eq. (23), includes a
general class of black hole solutions of supergravity [20], in
particular the Kerr-Sen black hole [21].

Using the almost-Hermitian structure associated to the
frame given in [ [20], Eq. (4.79)], our method shows that
the geometry, Eq. (23), is Hermitian, with complex coor-
dinates, Eq. (10), where y° = r* + iu*, y' = ! —iu?, and
dr* = a(W,/R)dr, du* =a(W,/U)du, dr* = (a/R)dr,
du' = (a/U)du. However, the conformal Kihler condi-
tion, Eq. (11), does not hold for this Hermitian structure.

Gravitational instantons: We now specialize to
Euclidean signature. Consider first the metric, Eq. (4), with

a*x?

_— N :0’
41+ Sy

9 = 9pp = g‘t“t‘(l + XZSinzy),

4 2
9rp = 91 COSY, Gxx = Wg‘ﬂ" Gyy = (l +x )grr’
where a is an arbitrary constant. Using “(F)” to denote

quantities associated to k-, one can choose frames such

that the functions in Eq. (7) are E&)Xzzi/(ax),
Els), = Ficoty, ET;)x:O’ E?):F)y =F icscy. Then a

calculation shows that the geometry is conformal Kihler
with regard to both sides, with Q2 = [(1 + x2)/x?]!F1/a,
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For a = +1, one side becomes Kihler and the metric is
Einstein: this is the Fubini-Study metric in CP2.

A new family of gravitational instantons was discovered
by Chen and Teo [19]. This is a toric, Ricci-flat geometry of
the form, Eq. (4), that depends on seven parameters
k,v,aq...as. The nontrivial metric components are
Gzes Jep> 9pp» Jxxs Jyy» @and depend on functions F, G, H, X,
Y given explicitly in [ [19], Eq. (2.1)]. The family contains
other known instantons such as Eguchi-Hanson and
Euclidean Plebanski-Demianski. It was recently shown [32]
that the Chen-Teo geometry is one-sided type D, and
thus (from Ricci-flatness) conformal Kihler, with
Q? = (x —y)?/(vx +y)>. See also [33]. Our method com-
putes the complex coordinates to be dz° = dr + dy®, dz' =
dp + dy' [cf. Eq. (10)], where dy® = Eldx + Ejdy,
dy' = Eldx + Ef?dy, and

AL L L R A1
FlX (x-y) X
K[Gy H ik
E(,:—i£ AN i’—@. (24)
: FlY (x=y) Y

The Hermitian condition, Eq. (9), reduces to
d,E% — d.E}, =0, which provides an interpretation for
Eq. (3.49) in [32]. The Hamiltonians are

__ Vkx—y) _
Ty T

Vkf(x,y)
(bx+y)(x=y)’

where f(x,y) = (v—1)(ag + asx*y?*) — arx[v(x=2y) +y] +
(a; +asxy)(vx—y). The Kihler potential can now be
computed using Eq. (12):

4k hy hs
K=-—"""l4(1=v)loglx—y) - [ 2g "2 gyl
a0 - t0a(e ) /x”/yy]

where ) (x) =a; +a,(1-2v)x+a3(2—v)x* +2a4(1 —v)x*
and hy(y) = ajv — ay — a3 (1 = 2v)y* — 2a4(1 —v)y>.
Double copy structures.—In string theory, the Kawai-
Lewellen-Tye relations [34] imply that gravitational ampli-
tudes are closely related to the square of Yang-Mills
amplitudes. The extension of these relations to field theory
is known as the “double copy.” At the classical level, a
recent formulation is the “curved Weyl double copy” [23],
which asserts that for some vacuum gravity solutions, the
Weyl curvature spinor is Wypcp = (1/S)<I)<ABG>CD) for
some scalar field S (“zeroth copy”) and symmetric spinor
field @45 (“single copy”), where S satisfies a wave
equation and @, satisfies Maxwell’s equations. (We refer
to [35,36] for background on the 2-spinor formalism.) The
relation has been proven for vacuum type D and type N
spacetimes [23,24]. We shall now show that the integra-
bility conditions of complex structures give automatically

this sort of relations among scalar, Maxwell, and gravita-
tional fields.

Consider a conformal Kiahler geometry, with conformal
factor Q, Kéhler form &, = @€z, Weyl spinor ¥ pcp,
and Ricci spinor @44 5. Note that, as &,, is a Kihler
form, it must necessarily be (anti-)self-dual (cf. [[37],
Theorem 3.1]); we choose anti-self-dual for concreteness.
Then one can show the following identities:

(O +2¥, + R/6)Q = 0, (25a)
d& =0 = d'%, (25b)
Yapep = TZQ_4¢(AB§0CD)7 (25¢)
@apap = Pui[Q " papPap- (25d)

Equation (25a) follows by first noticing that the Lee form
fa (defined by dx =-2f Ak) is f, =0d,logQ, then
taking a divergence and using the identity Vf, + f4f, =
—(2%¥, + R/6) (which can be proved using the Newman-
Penrose formalism). Equation (25b) follows from the
conformal Kihler condition. Finally, Eqs. (25¢) and (25d)
follow from the integrability conditions of a conformal
Kéhler structure, where for Eq. (25d) we assume
Lorentz signature [and that the Ricci tensor satisfies
R(J-J) = R(-)].

From Eq. (25) we see that any conformal Kihler geometry
combines scalar Q, Maxwell &, and gravitational fields in a
double copylike structure, without assuming any field
equations. For Einstein manifolds (®4z45 = 0), Bianchi

identities imply Q = ‘Pé/ 3 so we recover the type D double
copy [23] (extended to nontrivial cosmological constant).
More generally, all of the conformal Kéhler examples of the
previous sections have the structure, Eq. (25), so they
represent double copy relations. New examples include
the Fubini-Study and Chen-Teo instantons, but also the
whole (nonvacuum) Plebanski-Demianski class.

Furthermore, in the Plebanski-Demianski case, the
fields ©Q and & solve flat spacetime equations. More
precisely, we see from Eq. (16) that Q is independent of
{M,N, q,,q. A}, and since the case in which these
parameters vanish corresponds to Minkowski, we immedi-
ately get 7%°0,0,Q = 0. In addition, from Eq. (17) we see
that the Kéhler form k depends only on a, so it must solve
Maxwell’s equations in Minkowski.

The type N double copy [24] is not included in the above
construction, but it also arises from the integrability of
complex structures. First, consider a Petrov type II space-
time whose repeated principal spinor o, satisfies

0408V 4405 = 0. (26)

Equation (26) is the condition for “half-integrability” of a
complex structure (see [[38], Section 2.4]). One can
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show [ [38], Prop. 2.6] that there is a scalar Q such that the
Lee form satisfies 0 f 44 = 0"V 44 log Q. Applying 1*V4
to this equation (where 0414 = 1), after some computations
we again find that Q satisfies Eq. (25a). Notice that € is not
unique: we have the freedom to add Q — Q + v, where v is
any function such that 04V v = 0.

In addition, from [[36], Lemma (7.3.15)], Eq. (26)
implies that there are two complex scalars z/ = (2%, z')
such that dz’ = 0,4Z%,dx*"', for some spinors Z,. It fol-
lows that the 2-form dz° A dz! is anti-self-dual and closed,
soitis a Maxwell field. Note that F(z°, z!)dz° A dz'is also
a Maxwell field for any function F(z°, z').

Finally, the conditions on o, imply that there is a scalar 4
such that 04V, (log) = 0. This leads to VA4 (1Qo,) = 0,
which in turn implies that @4, 4 = Q4"04, ....04 1is a
massless free field: V414igp, , =0. For n=2 and
n=4, we get the spin 1 and 2 fields @qp = @,040p
and W apcp = W40405000p, With g, = QA% and y, = QA%
These are related by

1

Yy = Q (€02)2- (27)

In the special case in which the spacetime is type N, ¥ 45cp
can be chosen to be the Weyl curvature spinor, and Eq. (27)
is the type N double copy relation [[24], Eq. (6)]. The
nonuniqueness noticed in [24] is due to the freedom to
include the functions v(z%, z!), F(z°, z') mentioned before.

Discussion.—A general expression for the Kéhler poten-
tial K for the class of conformal Kihler (Lorentzian or
Euclidean) geometries of the form, Eq. (4), with two
Killing fields is given by Eq. (12). This includes the
Plebanski-Demianski and Chen-Teo families. The potential
K generates not only the metric, but also the Maxwell field
k. Notice that this electromagnetic field is exactly the

Coulomb field of the Schwarzschild solution, or the v/ Kerr
or magic field of the Kerr solution [16,39].

In (z, %) coordinates, K is not necessarily expressible in
terms of elementary functions. For example, while a
potential for Minkowski is

in the Schwarzschild case, Eq. (20a), r and (z, ) are related
by r+2Mlog(r—2M) = (2" —2°)/2, which can be
solved in terms of the Lambert W function.
Nevertheless, since the Kéhler potential contains (locally
and up to Kihler transformations) all the information of the
geometry, it represents a fully nonlinear version of the
Debye potentials of perturbation theory in GR. As such, it
is of intrinsic interest for the investigation of nonperturba-
tive results for gravitational wave physics, further sup-
ported by the intriguing manifestation of the Newman-Janis

shift in K found in this Letter, and by the fact that, as we
showed, Kiéhler and complex geometry in GR contain
naturally the known instances of the Weyl double copy.

The general framework and results obtained in this Letter
motivate applications to a variety of exciting problems in
different areas of interest. In mathematical GR, potential
applications include the analysis of waves on black hole
spacetimes, analytic compactifications, and possible gen-
eralizations of the Chen-Teo instanton. In gravitational
wave science, it would be interesting to make explicit
connections to modern techniques used in scattering
amplitudes and quantum field theory [15,40,41]. The
relation between Kihler potentials and the Newman-
Janis shift motivates further investigation into the geometric
origin of this trick, together with connections with its
interpretation as a generation of intrinsic spin [[8],
Chapter X], see also [16,17]. A detailed description of
dualities in the Plebanski-Demianski family will appear
elsewhere [29].
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