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Nuclear burning plays a key role in a wide range of astrophysical stellar transients, including
thermonuclear, pair instability, and core collapse supernovae, as well as kilonovae and collapsars.
Turbulence is now understood to also play a key role in these astrophysical transients. Here, we
demonstrate that turbulent nuclear burning may lead to large enhancements above the uniform background
burning rate, since turbulent dissipation gives rise to temperature fluctuations, and in general the nuclear
burning rates are highly sensitive to temperature. We derive results for the turbulent enhancement of the
nuclear burning rate under the influence of strong turbulence in the distributed burning regime in
homogeneous isotropic turbulence, using probability distribution function methods. We demonstrate that
the turbulent enhancement obeys a universal scaling law in the limit of weak turbulence. We further
demonstrate that, for a wide range of key nuclear reactions, such as C12ðO16; αÞMg24 and 3-α, even
relatively modest temperature fluctuations, of the order of 10%, can lead to enhancements of 1–3 orders of
magnitude in the turbulent nuclear burning rate. We verify the predicted turbulent enhancement directly
against numerical simulations, and find very good agreement. We also present an estimation for the onset of
turbulent detonation initiation, and discuss implications of our results for stellar transients.
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Introduction.—Nuclear energy plays a fundamental role
in stellar astrophysics, providing the ultimate power source
of all stars [1,2]. In particular, nuclear reactions play an
important role in a wide range of stellar astrophysical
transients, powering thermonuclear and pair instability
supernovae, liberating the neutrinos which give rise to
core collapse supernovae, and synthesizing r-process heavy
nuclei in kilonovae and collapsars [3–5].
The inferred Reynolds numbers of stellar transients are

typically extremely large, implying that their stellar plas-
mas are highly turbulent [6,7]. Turbulence naturally gives
rise to stochastic fluctuations in velocity as well as in
temperature and density, with important consequences for
nuclear burning. In particular, because of the strong energy
dependence of the quantum nuclear penetration factor,
thermonuclear reaction rates are extremely sensitive to
temperature, and modest thermodynamic fluctuations
enhance their rates dramatically. Previous authors have
used theory to examine how small-scale turbulent inter-
mittent velocity fluctuations may influence the burning
rate, [8–10]. In this Letter, we focus specifically upon the
role which the intrinsically stochastic turbulent thermody-
namic fluctuations have upon key thermonuclear rates,

using a combination of both theory and three-dimensional
hydrodynamical simulations.
Analytic derivation of turbulent nuclear burning

enhancement for power-law rates.—When the turbulent
background is weak, and the fuel and ash are spatially
separated, the burning proceeds through a thin laminar
flame surface whose thickness is established by the balance
of nuclear energy release and thermal conduction. In
contrast, when turbulence is sufficiently strong, the flame
surface is completely disrupted, causing burning to develop
throughout the volume in the distributed nuclear burning
regime [11,12]. The dimensionless Karlovitz number,

defined as Ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u3l=ðs3l LÞ

q
, determines the relative

importance of turbulence in a reactive medium. Here, u
is the root-mean-squared (rms) velocity on the integral
scale L, and sl and l are the laminar flame speed and
thickness, respectively [3]. When Ka < 1, turbulence plays
a minor role on the scale of the flame, and the flame
remains laminar. For large Ka > 1, the flame is disrupted
by the turbulence, and exists in the distributed burning
regime [3]. This distributed burning regime is most relevant
to strongly dynamical stellar transients, arising, for in-
stance, in accretion flows in white dwarf mergers [7] and in
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x-ray bursts on neutron stars [13]. In this Letter, we focus
on distributed nuclear burning, and assume that the burning
is sufficiently weak that its backreaction upon the turbulent
velocity and temperature fields can be neglected. These
assumptions apply up to the onset of detonation initiation,
because the nuclear reaction rate is highly sensitive to
temperature [7]. Under our presumed conditions, temper-
ature, density, and abundances all behave as passive scalars.
The power spectrum of a scalar field is defined to be the

angle-averaged Fourier transform of its spatially averaged
autocorrelation function. However, unlike the statistics of
the velocity field, passive scalars in general depend upon
initial and boundary conditions (see, for example, [14]).
The inertial range scaling of temperature fluctuations in
homogeneous and isotropic turbulence was first argued by
Obukhov and Corrsin [15,16], and later verified exper-
imentally [17,18], to have the same power law index as the
Kolmogorov velocity spectrum:

ETðkÞ ∝ k−5=3: ð1Þ

We next consider the question of the scale dependence of
the burning rate. The integral of the power spectrum is, by
Parseval’s theorem, the square of the rms temperature
fluctuation over the spatial domain [14], δT:

δT2 ¼
Z

ETðkÞdk: ð2Þ

Consequently, Obukhov-Corrsin scaling implies the rms
temperature fluctuation on a length scale r, δTðrÞ, similarly
follows a Kolmogorov-like distribution,

δTðrÞ ¼ δT

�
r
L

�
1=3

: ð3Þ

The Obukhov-Corrsin scaling of turbulent temperature
fluctuations neglects the influence of turbulent intermit-
tency, which can play an important role on small scales
much less than the integral scale r ≪ L [19]. However, just
as the turbulent specific kinetic energy δvðrÞ2 is greater on
larger length scales, so too is the temperature fluctuation
δTðrÞ2 greater on large length scales. Consequently, the
largest length scales, comparable to the integral scale, must
dominate the turbulent nuclear burning in the distributed
burning regime. Here, we focus upon the influence of
turbulence on these largest scales in homogeneous and
isotropic turbulence, whose passive scalars are well
described by Obukhov-Corrsin scaling.
We express the local specific energy generation rate at a

given point as ϵðX; ρ; TÞ. We model the specific energy
generation rate as the power-law expression ϵðX; ρ; TÞ ¼
ϵ0Xmþ1ρmTn, where X is the mass fraction, ρ is the density,
for a (mþ 1)-body single species reaction. The results
obtained can be easily extended to multiple species

reactions. We express the mean temperature as T0, the
mean density as ρ0, and the mean abundance as X0,
averaged over a spherical volume of radius r.
Integrating the energy generation weighted by the joint

probability distribution function (PDF) of composition
[20], density, and temperature, PrðX; ρ; TÞ, we obtain the
volume-averaged energy generation rate ϵr on the length
scale r:

ϵrðδX=X0; δρ=ρ0; δT=T0Þ

¼
Z

dX
Z

dρ
Z

dT ϵðX; ρ; TÞPrðX; ρ; TÞ: ð4Þ

This volume-averaged energy generation rate plays a key
role in computational hydrodynamical modeling of the
nuclear burning rate, serving as a source term to the energy
equation.
Let us assume the PDFs of temperature, density, and

composition individually follow Gaussian distributions,

PrðTÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πδTðrÞ2
p exp

�
−
ðT − T0Þ2
2δTðrÞ2

�
; ð5Þ

PrðρÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πδρðrÞ2
p exp

�
−
ðρ − ρ0Þ2
2δρðrÞ2

�
; ð6Þ

PrðXÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πδXðrÞ2
p exp

�
−
ðX − X0Þ2
2δXðrÞ2

�
: ð7Þ

The joint PDF PrðX; ρ; TÞ is then a multivariate Gaussian
distribution, including possible correlations between
density, temperature, and composition. We illustrate the
calculation of this integral by focusing on the density-
temperature correlation only, before extending the result to
the full multivariate distribution.
The joint bivariate distribution [20] for density and

temperature ρ and T with correlation rcorrðρ; TÞ can be
expressed in terms of uncorrelated normal variates x and y:

T ¼ δTðrÞxþ T0; ð8Þ

ρ ¼ δρðrÞ½rcorrðρ; TÞxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2corrðρ; TÞ

q
y� þ ρ0: ð9Þ

Here, the density-temperature correlation rcorrðρ; TÞ is
defined as usual as

rcorrðρ; TÞ ¼
RR

dρdTPrðρ; TÞρT
δρδT

: ð10Þ

As can be expected, simulations of driven homogeneous
isotropic turbulence exhibit a strong positive correlation of
density and temperature. From the 3D simulations pre-
sented in Sec. 3, we have computed rcorrðρ; TÞ ≃ 0.5.
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The dimensionless normal variate x has a simple
interpretation. x is the ratio of the differential temperature
T − T0 to the rms temperature fluctuation on the scale r,
δTðrÞ,

x ¼ T − T0

δTðrÞ ¼ T − T0

δT

�
L
r

�
1=3

: ð11Þ

Similarly, in the absence of correlations, when rcorr ¼ 0, y
can be interpreted as the ratio of the differential density
fluctuation ρ − ρ0 to the rms density fluctuation on the
scale r, δρðrÞ.
The turbulent enhancement ϵrðδρ=ρ0; δT=T0Þ is then

expressed as an integral over the uncorrelated x and y
variates,

ϵrðδρ=ρ0; δT=T0Þ ¼
1

2π

Z
dx

Z
dy ϵðρ; TÞ

× exp

�
−
1

2
ðx2 þ y2Þ

�
; ð12Þ

where we have used the fact that the joint PDF of the normal
variatesx and y are uncorrelated. SubstitutingEqs. (8) and (9)
into Eq. (12), one can evaluate the resulting Gaussian
integrals by writing Tn ¼ Tn

0½1þ δT=T0ðr=LÞ1=3x�n, and
similarly for ρ, and then expanding these expressions using
the binomial theorem. One finds the general turbulent
enhancement for two-body power law rates (m ¼ 1) includ-
ing density-temperature correlations. A complete calculation
extending this derivation for the fullmultivariate distribution,
including all cross-correlations, yields

ϵrðδX=X0;δρ=ρ0;δT=T0Þ
ϵðX0;ρ0;T0Þ

¼
Xn
k¼0
keven

n!ðk−1Þ!!
ðn−kÞ!k!

×

�
1þf1þkr2corrðX;TÞg

�
δX
X0

�
2
�
r
L

�
2=3

��
δT
T0

�
k
�
r
L

�
k=3

þ rcorrðρ;TÞ
�
δρ

ρ0

�Xn
k¼1
kodd

n!k!!
ðn−kÞ!k!

�
δT
T0

�
k
�
r
L

�ðkþ1Þ=3

þ2rcorrðX;TÞ
�
δX
X0

�Xn
k¼1
kodd

n!k!!
ðn−kÞ!k!

�
δT
T0

�
k
�
r
L

�ðkþ1Þ=3

þ2rcorrðX;ρÞ
�
δX
X0

��
δρ

ρ0

��
r
L

�
2=3

: ð13Þ

The double factorial function employed here is defined as the
factorial function including only those factors with the same
parity (even or odd) as the argument.
In the weak enhancement regime [δX=X0ðr=LÞ1=3 ≪ 1,

δT=T0ðr=LÞ1=3 ≪ 1, δρ=ρ0ðr=LÞ1=3 ≪ 1], the turbulent
enhancement of the averaged burning rate ϵr grows
quadratically with temperature, density, and composition

fluctuations. For two-body interactions (m ¼ 1), this weak
limit yields

ϵrðδX=X0;δρ=ρ0;δT=T0Þ
ϵðX0;ρ0;T0Þ

≃1þ
�
nðn−1Þ

2

�
δT
T0

�
2

þn

�
δT
T0

��
rcorrðρ;TÞ

�
δρ

ρ0

�
þ2rcorrðX;TÞ

�
δX
X0

��

þ2rcorrðX;ρÞ
�
δX
X0

��
δρ

ρ0

�
þ
�
δX
X0

�
2
��

r
L

�
2=3

: ð14Þ

A similar calculation can be carried out for three-body
interactions (m ¼ 2), with the resulting enhancement also
scaling as r2=3, including all cross-correlations.
It can be seen that, regardless of the reaction, the

amplitude of the turbulent fluctuations, and the correlation
between composition, density, and temperature fluctua-
tions, the enhancement of the averaged burning rate ϵr
scales as ðr=LÞ2=3 in the weak enhancement regime.
Crucially, the dependence of the averaged burning rate
upon length scale is universal for weak homogeneous,
isotropic turbulence. Physically, this universality of the
turbulent enhancement of the averaged burning rate can be
understood as a direct manifestation of the universality of
the temperature field in Obukhov-Corrsin turbulence,
Eq. (3).
For realistic nuclear burning rates which typically have

n ≫ 1, a useful simplified expression for the volume-
averaged turbulent burning rate which includes only the
temperature fluctuations is

ϵrðδT=T0Þ
ϵðT0Þ

¼
Z

dxffiffiffiffiffiffi
2π

p
�
1þδT

T0

�
r
L

�
1=3

x

�
n
expð−x2=2Þ

¼
Xn
k¼0
keven

n!ðk−1Þ!!
ðn−kÞ!k!

��
δT
T0

��
r
L

�
1=3

�
k
: ð15Þ

Because the fluctuations ðδT=T0Þ, ðδρ=ρ0Þ, and ðδX=X0Þ
are of the same order, this expression is typically accurate
to within a factor of 1=n or better (2.5% − 5% for a range of
astrophysically relevant reactions, with n ¼ 20 − 40) of the
complete result, Eq. (13), including all fluctuation terms
and their correlations. Figure 1 plots the fractional enhance-
ment ϵrðδT=T0Þ=ϵðT0Þ − 1 as a function of the rms temper-
ature fluctuation on the scale r, ðδT=T0Þðr=LÞ1=3. This plot
illustrates both the universal scaling of the enhancement for
weak turbulence, as well as the nonuniversal enhancement
for strong turbulence.
Verification of turbulent nuclear burning enhancement.—

The analytic predictions of the preceding section can be
verified by comparison against three-dimensional numeri-
cal simulations of turbulent distributed nuclear burning. For
this purpose, we have used the unsplit PPM solver of
FLASH4 code with a CFL factor 0.4 [21]. We employ the
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Helmholtz equation of state, which incorporates both ions
(treated as an ideal gas) as well as electrons with an
arbitrary degree of degeneracy and special relativity [22].
Nuclear burning is included using a 19-isotope network
with 78 rates [23], and optimized in a hardwired imple-
mentation [24].
The simulations presented in this Letter are initially static

and uniform, at a resolution of 2563, and are driven by a
large-scale stochastic forcing routine [25,26] with nuclear
burning turned off. Once a steady state is achieved in the

rms velocity and the enstrophy, nuclear burning is activated.
The turbulence-driving methodology has been extensively
verified and validated against both theory and experiment—
see Fisher et al. [7], and references therein.
The results of the verification are shown in Fig. 2. A time

series of the simulated power-law burning rate sampled
from the turbulent simulations, calculated with n ¼ 23,
appropriate to C12 fusion in the regime of astrophysical
interest, is plotted against the predicted rate. On the left,
a plot of the predicted fractional turbulent enhancement is
compared with simulated turbulent data versus the dimen-
sionless rms temperature fluctuation δT=T0ðr=LÞ1=3,
for two turbulent models, with δT=T0 ¼ 0.03 and
δT=T0 ¼ 0.3, shown in the open circles and open squares,
respectively. The inset shows the fractional log error versus
the dimensionless temperature fluctuation.
The simulations are in very good agreement with the

predicted enhancement rates throughout the weak regime
(δT=T0 ≪ 0.1), with typical fractional errors much less
than 1%. Notably, this agreement applies even in the
driving regime, when the turbulence is not yet in steady
state, because it is the large-scale temperature fluctuations
that dominate the enhancement. Furthermore, the results
also show agreement to within 10% (arbitrary assumption),
into the moderately strong regime (δT=T0 ≃ 0.1). It is only
at δT=T0 > 0.1 that the fractional errors become of order
unity. At these higher levels of turbulent temperature
fluctuations, higher-order moments of the temperature dis-
tribution become more important in the calculated enhance-
ment rates, and possible departures from Gaussianity in the
numerical simulations may become important.
Turbulent detonation initiation.—With a description of

turbulent enhancement of nuclear burning in place, we next
address the conditions under which burning may transition
to a detonation. Detonation arises during supersonic burn-
ing. Consequently, we construct a simple estimate for the

FIG. 2. Figures showing the verification of the predicted turbulent burning rate enhancement. See text for description.

FIG. 1. A log-log plot of the dimensionless fractional turbulent
enhancement in the nuclear burning rate ϵrðδT=T0Þ=ϵðT0Þ − 1, as
a function of the rms temperature fluctuation on length scale r,
normalized to the mean temperature T0, δT=T0ðr=LÞ1=3. The
curves shown are for neutrino cooling via the Urca process (solid
line), 12C-12C burning (dashed), and triple-α reaction (dot
dashed). The inset figure shows the same three curves on the
same set of axes, compensated by the factor ½nðn − 1Þ�−1. For
weak enhancement, the compensated enhancement collapses
onto a single curve, demonstrating its universal nature.
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conditions for detonation to arise within a distributed
burning region on scale r by comparing the sound-crossing
time to the nuclear burning timescale. The sound-crossing
time on the scale r is simply τsoundðrÞ ¼ r=cs. The nuclear
burning timescale τnucðrÞ on the scale r, including the
turbulent nuclear enhancement, is given by

τnucðrÞ ¼
cpT0

nϵrðδT=T0ÞϵðT0Þ
: ð16Þ

Here, cp is the ratio of specific heats at constant pressure
and at the background density and temperature T0. Our
Eq. (16) is closely related to Eq. (18) from [27]. In his
analysis, Woosley evaluates the nuclear burning time at
some temperature in the isobarically mixed ash, and
reduces to our expression when ϵrðδT=T0Þ ¼ 1. By includ-
ing the turbulent enhancement due to temperature fluctua-
tions consistently, we in general obtain a much shorter
nuclear burning timescale, and consequently a wider range
of conditions susceptible to detonation.
The condition that τnucðrÞ < τsoundðrÞ is satisfied for

length scales r above a critical length scale rcrit. In Fig. 3,
we plot the ratio of the critical length scale rcrit to the
integral scale L, as a function of the temperature fluctuation
δT=T0ðr=LÞ1=3 on the scale r, for C12ðO16; αÞMg24. The
background density and integral scale are held fixed at
ρ0¼1×107 gcm−3 and L¼100 km, while the background
temperature for three representative cases: T0 ¼ 5 × 108 K,
1.4 × 109 K, and 2 × 109 K.

In Fig. 3, the horizontal dashed line demarcates the
critical threshold of rcrit=L ¼ 1. Above this line, the critical
length scale is larger than the integral scale L, and the flow
experiences stable distributed nuclear burning. Below this
line, the critical length scale is smaller than the integral
scale, and the distributed burning regime becomes unstable
to detonation initiation. Our simple estimate predicts
temperature fluctuations of order 10% are sufficient to
produce a detonation upon a background temperature of
T0 ¼ 2 × 109 K, with increasingly stronger temperature
fluctuations required for colder temperature backgrounds.
These findings, based upon the single C12ðO16; αÞMg24

reaction, are in rough agreement with a series of detailed
numerical simulations [7] with a full reaction network,
where it was demonstrated that 10% temperature fluctua-
tions on a T0 ¼ 1.2 × 109 K background led to detonation
initiation.
Discussion.—The r2=3 scaling of the turbulent enhance-

ment of the distributed burning regime found in Eq. (14)
has been discussed by other authors. For instance, Aspden
et al. [28], derive it by considering the turbulent flame
speed, assuming that the turbulent burning time scale is
constant. Crucially, our approach clarifies that the r2=3

scaling is an approximation which applies in the limit of
weak enhancement in Obukhov-Corrsin turbulence only.
In fact, for even modestly strong turbulent enhancement,
the scaling behavior can be greatly different, with increas-
ingly stronger sensitivity to the scale length r for increasing
turbulent fluctuations.
The results obtained for turbulent enhancement and

detonation initiation may be incorporated into three-
dimensional subgrid models models for nuclear burning
within stellar transients. As we have demonstrated, an
accurate determination of the turbulent enhancement as
calculated directly from numerical simulations requires
high-ordered moments of the temperature distribution—
e.g., the 8th–13th moments for n ≃ 20 − 40. An accurate
determination of such high-ordered moments in turn
requires large statistical samples, which in turn necessitates
large numbers of cells within an integral scale. The
challenge of modeling stellar transients in full three
dimensions generally means that the integral scale of
turbulence is only very coarsely resolved, if at all. In
contrast, the analytic calculation of the turbulent enhance-
ment for Gaussian statistics requires only the rms temper-
ature fluctuation, which can be estimated accurately with
far fewer cells. Consequently, the formalism developed
here provides a promising basis for an approach for subgrid
modeling of turbulent nuclear burning and detonation
initiation within the distributed burning regime in three-
dimensional simulations.
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