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We construct data-driven solutions to the Hubble tension which are perturbative modifications to the
fiducialΛCDM cosmology, using the Fisher bias formalism. Taking as proof of principle the case of a time-
varying electron mass and fine structure constant, and focusing first on Planck CMB data, we demonstrate
that a modified recombination can solve the Hubble tension and lower S8 to match weak lensing
measurements. Once baryonic acoustic oscillation and uncalibrated supernovae data are included, however,
it is not possible to fully solve the tension with perturbative modifications to recombination.
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Introduction.—The standard Λ cold dark matter
(ΛCDM) model has been providing an astonishing fit to
a wide variety of cosmological data. Yet, the precise value
of a very basic parameter of the model, the present-time
expansion rate of the Universe (or Hubble constant) H0,
remains the subject of intense debate. On the one hand, this
parameter can be inferred indirectly from early-Universe
probes, under the assumption of standard physics and
ΛCDM cosmology. The most precise early-Universe meas-
urement is that inferred from the Planck satellite’s Cosmic
Microwave Background (CMB) anisotropy data, H0 ¼
67.36� 0.54 km=s=Mpc [1]. On the other hand, H0 can
be obtained from local (or late-Universe) measurements.
The most precise local measurement is that provided by the
SH0ES Collaboration, which directly measures the current
expansion rate from supernovae, using Cepheid variables as
calibrators, arriving at H0 ¼ 73.04� 1.04 km=s=Mpc
[2,3]. Depending on the specific datasets considered, the
discrepancy between early-Universe and local measure-
ments has reached 4–6σ [4,5], enough to make this
“Hubble tension” one of the most pressing issues in recent
cosmology.
Although one cannot exclude multiple unknown sys-

tematic errors as a reason for the discrepancy [6–16], it may
also hint at new physics, or extensions of the ΛCDM
model. To resolve this Hubble tension, an enormous
number of models have been proposed. Late-time solu-
tions, which include late dark energy, emergent dark
energy, interacting dark energy, and decaying CDM, have
been shown to be less effective [17–26]. This is because
postrecombination solutions do not change the sound
horizon at baryon decoupling, rd, and can therefore not
fit baryonic acoustic oscillation (BAO) data and uncali-
brated type Ia supernovae (SNIa) data while increasing the
Hubble constant (so-called “sound horizon problem”). This

implies that a modification in early-time cosmology is
needed to solve the Hubble tension [22,27–30] (see also
Ref. [31] for a newly proposed quantity in the context ofH0

tension: the age of the Universe, and see Ref. [32] for a
study of the degeneracy of H0 with the CMB monopole
temperature T0). Early-time solutions focus on the reduc-
tion of the sound horizon at recombination, through either
an increase in energy density, e.g., via early dark energy
(EDE) [33–38] or additional dark radiation [39–41], or a
modification of the recombination history itself by, for
example, introducing primordial magnetic fields (PMFs)
[42–44] (see Refs. [45,46] for whether small-scale baryon
clumping due to PMF can resolve the Hubble tension
together with Ref. [47] for a general formalism to estimate
the effect of small-scale baryon perturbations on CMB
anisotropies) or varying fundamental constants [48–51]
(see also Refs. [52,53] for nonstandard recombination).
Reducing the size of the sound horizon at recombination
naturally leads to larger H0 value, in order to keep the
angular size of the sound horizon measured at Oð0.1%Þ
precision with Planck CMB data unaffected [21]. However,
none of the proposed solutions have been robustly detected
in the variety of cosmological data, and, further, the redu-
ction of the Hubble tension is partly due to an incre-
ased uncertainty. See Refs. [30,54] for a recent summary
and comparison of proposed models.
In this Letter, we move beyond the model-by-model

approach as an effort to resolve the Hubble tension, and for
the first time, make use of the Fisher-bias formalism to find
minimal data-driven extensions to the ΛCDM model
producing desired shifts in cosmological parameters (in
this case, an increase inH0), while not worsening the fit to a
given dataset. We cast this question as a well-defined
simple mathematical problem. With this formalism, as
examples, we extract the shape of a time-varying electron
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mass meðzÞ or fine structure constant αðzÞ modifications
that would result in a better agreement of a given early-
Universe dataset with SH0ES. Let us stress that our pri-
mary goal is not to find a compelling physical solution
to the tension, i.e., that can easily be realized via a sim-
ple theoretical model [for modeling of αðzÞ see, e.g.,
Refs. [55,56] ]. Instead, we focus on establishing whether
such solutions exist, which is already a nontrivial question.
Indeed, it could very well be that the relevant observables
are only sensitive to a few integrals of the ionization history,
and that arbitrary modifications of the latter could only
project on a limited subspace of observable variations.
In short, we show that while one can find small time-

varying perturbations to me or α that would entirely solve
the Hubble tension between Planck and SH0ES, once BAO
and uncalibrated SNIa data are included, one can only
lower the Hubble tension down to ∼2.4σ with perturbative
modifications to recombination, not being able to entirely
resolve the tension.
Setting up the problem.—We denote general observables

by X, a vector which may contain multiple observables,
such as CMB angular power spectra, BAO measurements,
or any other. Specifically, we denote the observed data by
Xobs and the corresponding theoretical prediction by XðΩ⃗Þ,
where Ω⃗≡ fωc;ωb;H0; τ; lnð1010AsÞ; nsg is a set of
cosmological parameters. One can obtain the best-fit
parameters by maximizing the likelihood of the data
L½XðΩ⃗Þ;Xobs�, or equivalently minimizing χ2 ≡ −2 lnL.
Importantly, the best-fit parameters Ω⃗BF and best-fit chi-
squared χ2BF ≡ χ2½XðΩ⃗BFÞ;Xobs� both depend on the under-
lying theoretical model XðΩ⃗Þ. In particular, if we consider a
model X0ðΩ⃗Þ ¼ XðΩ⃗Þ þ ΔXðΩ⃗Þ that differs from the stan-
dard model XðΩ⃗Þ by a small amount ΔXðΩ⃗Þ, the resulting
best-fit parameters and chi-squared are shifted.
More specifically, we will consider changes in the

theoretical model resulting from perturbations to a smooth
function fðzÞ on which it depends. The resulting changes to
the best-fit parameters ΔΩ⃗BF½ΔfðzÞ� and chi-squared
Δχ2BF½ΔfðzÞ� are both functionals of ΔfðzÞ. Our general
goal, then, is to find the smallest possible perturbations
ΔfðzÞ allowing to shift the best-fit parameters to a target
value Ω⃗target, while not worsening the quality of fit [57]. In
other words, we want to solve the following constrained
optimization problem, for different datasets and different
functions fðzÞ:

minimizeðkΔfk2Þwith
�
Ω⃗BF½ΔfðzÞ� ¼ Ω⃗target;

Δχ2BF½ΔfðzÞ� ≤ 0;
ð1Þ

where k � � � k is the L2 norm, kΔfk2 ≡ R
dz½ΔfðzÞ�2. In

principle, this optimization problem can be solved ex-
actly if combined with Markov Chain Monte Carlo

(MCMC) analysis (or a minimization process) to estimate
Ω⃗BF½ΔfðzÞ� and Δχ2BF½ΔfðzÞ� for each given ΔfðzÞ.
However, this exact method would be heavily computa-
tionally expensive. Hence, to keep the optimization prob-
lem tractable, we will first derive simple approximations for
Ω⃗BF and χ2BF, relying on the Fisher approximation (e.g.,
Ref. [58]). We approximate the data as Gaussian distrib-
uted, with inverse-covariance matrix M ¼ Σ−1. In general,
this matrix depends on XðΩ⃗Þ itself; we will denoteMðΩ⃗Þ≡
M½XðΩ⃗Þ� for short. We define the chi-squared of a given
cosmology Ω⃗ as

χ2ðΩ⃗Þ≡ ½XðΩ⃗Þ − Xobs� ·MðΩ⃗Þ · ½XðΩ⃗Þ − Xobs�: ð2Þ

By Taylor expanding the chi-squared to second order
around a fiducial cosmology Ω⃗fid, which we assume to
be reasonably close to the best-fit, and minimizing it, we
find the (approximate) best-fit cosmology Ω⃗BF,

Ωi
BF ¼ Ωi

fid −
1

2
ðF−1Þij

∂χ2

∂Ωj

����
fid
; ð3Þ

where F is the Fisher matrix defined and approximated as

Fij ≡ 1

2

∂
2χ2

∂Ωi
∂Ωj

����
fid

≈
�
∂X
∂Ωi ·M ·

∂X
∂Ωj

�����
fid
: ð4Þ

Provided that the fiducial model is sufficiently close to the
observations, we can approximate ∂χ2=∂Ωi to include only
the leading contribution, which then implies

Ωi
BF≈Ωi

fid−ðF−1Þij
∂X
∂Ωj

����
fid
·MðΩ⃗fidÞ · ½XðΩ⃗fidÞ−Xobs�: ð5Þ

Inserting this solution into the Taylor-expanded chi-squared
we find the approximate best-fit chi-squared

χ2ðΩ⃗BFÞ ≈ ½XðΩ⃗fidÞ − Xobs� · M̃ · ½XðΩ⃗fidÞ − Xobs�; ð6Þ

where M̃ is defined as

M̃αβ ≡Mαβ −Mαγ
∂Xγ

∂Ωi ðF−1Þij
∂Xσ

∂Ωj Mσβ; ð7Þ

where M and ∂X=∂Ωi are evaluated at the fiducial cosmol-
ogy, and repeated indices are to be summed over. A simple
property of the matrix M̃ is that it admits ∂X=∂Ωi as null
eigenvectors. We can thus think of M̃ as the inverse-
covariance matrix of the data after marginalization over
shifts in standard cosmological parameters.
Introducing new physics.—Our main results so far,

Eqs. (5) and (6), apply to an arbitrary theoretical model,
provided that it gives a reasonable fit to the data for the
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chosen fiducial cosmological parameters Ω⃗fid. The best-fit
parameters and chi-squared of a new theoretical model
X0ðΩ⃗Þ ¼ XðΩ⃗Þ þ ΔXðΩ⃗Þ differ from those of the standard
model XðΩ⃗Þ by small amounts ΔΩi

BF and Δχ2BF, respec-
tively. Assuming ΔXðΩ⃗fidÞ and XðΩ⃗fidÞ − Xobs are approx-
imately of the same order of magnitude, and by writing a
change in the theoretical model due to changes in a smooth
function fðzÞ as

ΔX ¼
Z

dz
δX

δfðzÞΔfðzÞ; ð8Þ

we obtain the resulting changes in the best-fit parameters
and chi-squared

ΔΩi
BF ¼

Z
dz

δΩi
BF

δfðzÞΔfðzÞ; ð9Þ

Δχ2BF ¼
Z

dz
δχ2BF
δfðzÞΔfðzÞ

þ 1

2

ZZ
dz dz0

δ2χ2BF
δfðzÞδfðz0ÞΔfðzÞΔfðz

0Þ; ð10Þ

where

δΩi
BF

δfðzÞ ¼ −ðF−1Þij
∂X
∂Ωj ·M ·

δX
δfðzÞ ; ð11Þ

δχ2BF
∂fðzÞ ¼ 2½XðΩ⃗fidÞ − Xobs� · M̃ ·

δX
δfðzÞ ; ð12Þ

δ2χ2BF
δfðzÞδfðz0Þ ¼ 2

δX
δfðzÞ · M̃ ·

δX
δfðz0Þ ; ð13Þ

where Fij, M, M̃, ∂X=∂Ωi, and δX=δfðzÞ are all to be
evaluated at the fiducial cosmology and in the standard
model. With the simplified expressions of Eqs. (9)–(13),
the optimization problem of Eq. (1) becomes tractable. The
equations above are known as the Fisher-bias formalism
[59–63], used in Refs. [64,65] to constrain arbitrary
functions. While the formalism is well known, the appli-
cation we make of it is completely novel.
While our formalism is general and could be applied to

any function fðzÞ on which observables depend, in this
Letter, we will consider modifications to the cosmo-
logical ionization history. Specifically, we will consider
time-dependent relative variations of the electron mass
[fðzÞ ¼ lnmeðzÞ] in the main text, generalizing the con-
stant change to the electron mass which has been shown to
be a promising solution [49,50,54]. We also consider
time-dependent variations of the fine structure constant
[fðzÞ ¼ ln αðzÞ], in Appendix H of the Supplemental
Material [66] [90].

The functional derivatives δX=δfðzÞ are obtained
numerically by adding narrow (Dirac-delta-like) changes
to the smooth function fðzÞ, at different redshifts. This is
done by modifying the recombination code HYREC-2 [91–
93] implemented in CLASS [94] (see Appendix B of the
Supplemental Material [66] for details). This part of the
calculation is similar to what has been done in principal
component analyses (PCAs) of recombination perturba-
tions [95,96]. Despite this technical similarity, the math-
ematical problem we solve is very different from the one
considered in PCAs, which search the eigenmodes of the
(discretized) matrix δ2χ2=δfðzÞδfðz0Þ with the largest
eigenvalues. In words, PCAs look for perturbations to
recombination to which the data is most sensitive, while in
contrast, our goal is to find the smallest perturbations
producing a desired shift in best-fit cosmological param-
eters while not increasing the best-fit χ2. See Appendix D
of the Supplemental Material [66] for the differences in two
analyses.
We will now apply this general formalism to Planck

CMB anisotropy data and then to the combined
Planckþ BAO, Planckþ BAOþ PantheonPlus [97] data-
set, with the goal of finding data-driven solutions to the
Hubble tension. Note that by BAO we denote BOSS DR12
anisotropic BAO measurements [98].
Result I: Application to Planck CMB data.—Here, the

vector X consists of the binned lensed temperature and
polarization power spectra, X ≡ fDTT

l ; DTE
l ; DEE

l g. For
l ≥ 30, we use the Planck-lite foreground-marginalized
binned spectra and covariance matrix. For l < 30, we
adopt the compressed log-normal likelihood of Prince and
Dunkley [99], which has been shown to give virtually the
same constraints as the exact low-l Planck likelihood (and
therefore we use X ≡ flnDTT

l ; lnDTE
l ; lnDEE

l g for l < 30).
We set our fiducial cosmology to the Planck best-fit ΛCDM
parameters [1].
Using our formalism, we find variations of the time-

varying electron mass meðzÞ that cause the value inferred
from Planck CMB anisotropies to be equal to a given target
Hubble constant HBF

0 while not deteriorating the best fit
chi-squared Δχ2BF ≤ 0. These deviations of meðzÞ from its
standard value are shown in Fig. 1 with a range of HBF

0

values whose upper bound is the recent SH0ES best-fit [2].
It is striking that our solution exhibits three large oscil-
lations offset from zero between z ≃ 700–1500. This
behavior is significantly different than what has been
modeled in past literature, namely, either a constant shift
in me or a power-law dependence on redshift [48,49,54],
explaining why these studies did not find as good a solution
as we do, and illustrating the power of our formalism which
can further be used to guide model-building (e.g., [56]). In
particular, such a solution would also avoid big bang
nucleosynthesis (BBN) constraints [100]. We keep it for
future work to investigate possible physical mechanisms
that may generate the required oscillations. We confirm that
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the obtained meðzÞ does indeed result in the expected
parameter shifts by performing a MCMC analysis using
MontePythonv3.0 [101,102] with the full Planck TT, TE, EEþ
lowEþ lensing likelihood (see Appendix E of the
Supplemental Material [66] for this validation test). This
also attests that our use of the high-l Planck-lite Gaussian
likelihood combined with the low-l compressed likelihood
of Ref. [99], as well as our noninclusion of the lensing
potential likelihood, is accurate enough to derive a solution
meðzÞ. In Appendix G of the Supplemental Material [66],
we further quantify the accuracy of the other two approx-
imations we make to derive the meðzÞ solution, namely, the
Taylor expansion of χ2 around a fiducial cosmology, and
the linearity of observables in ΔfðzÞ.
Our main result is shown in the top panel of Fig. 2,

which displays the posterior distributions for H0. In short,
the ΛCDM model with a time-varying meðzÞ given by
the black curve in Fig. 1 is a solution to the Hubble ten-
sion between Planck CMB and SH0ES data. It lowers
the discrepancy to 0.29σ resulting in H0 ¼ 72.70�
0.57 km s−1 Mpc−1, and Δχ2 ¼ −1.15 compared to the
ΛCDM model [103]. Interestingly, this solution tailored
to solve the H0 tension also happens to mostly solve
another infamous tension in cosmology, the so-called S8
tension (S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
), which is a discrepancy in

measurements of the amplitude of matter clustering at
the scale of 8 Mpc=h between weak lensing probes and
the value inferred from CMB anisotropies [104–106].
Indeed, the ΛCDMþmeðzÞ model brings the Planck
best-fit S8 value to 1.1σ from the recent DES-Y3 con-
straint S8 ¼ 0.776� 0.017 [107] and within ∼1.4σ from

KiDS-450 (S8 ¼ 0.745� 0.039) [108] and KiDS-1000
(S8 ¼ 0.766þ0.020

−0.014 ) [109], down from the 2 − 2.6σ tension
in ΛCDM, as shown in the middle panel of Fig. 2.
However, this extension to the ΛCDM model is less

consistent with two other crucial cosmological data, BAO
[98] and PantheonPlus [97]. The bottom panel of Fig. 2
shows that this model is inconsistent with the PantheonPlus
result for Ωm with ∼3σ tension. This is fundamentally due
to the well-known dependence of θs on Ωmh3, which
requires the best-fit h and Ωm to change in opposite ways,
as we describe in further detail in Appendix C of the
Supplemental Material [66]. In addition, the agreement
with BOSS DR12 BAO data is worsened resulting in an
increase of the chi-squared of BOSS DR12 anisotropic
measurements, Δχ2BAO ¼ þ5.37 (see also Ref. [110] for a
similar result [111]).
Result II: Application to Planck CMBþ BAO or Planck

CMBþ BAOþ PatheonPlus.—We include either BAO or
BAOþ PantheonPlus data in our data vector X, in order to
see if we can obtain solutions to the Hubble tension that
do not violate the agreement with these data that is pre-
sent in the ΛCDM model. For BAO, we include BOSS
DR12 anisotropic measurements at three effective red-
shifts zeff ¼ 0.38, 0.51, 0.61 [98], f½DMðzeffÞrfidd =rd�;
½HðzeffÞrd=rfidd �g ⊂ X, and for PantheonPlus [97] we in-
clude its constraint on the fractional energy density of the
total matter fΩmg ⊂ X. We find that, in order to
solve the Hubble tension either together with BAO or
BAOþ PantheonPlus, variations of meðzÞ with larger
amplitude are required together with larger shifts in best-
fit cosmology. We note that these required more radical
changes in recombination history and best-fit cosmology
induce larger errors from the approximations taken in our
formalism, preventing us from finding a self-consistent

FIG. 1. Solutions for ðΔme=meÞðzÞ given target values of the
CMB-only best-fit Hubble constant H0, using Planck data [1]
alone. All solutions are constructed to keep the Planck best-fit
chi-squared unaffected. The solution with a best-fit consistent
with SH0ES [2] HBF

0 ¼ HSH0ES
0 ≡ 73.04 km s−1 Mpc−1 (black

curve), is denoted as ΛCDMþmeðzÞ model in the text.

FIG. 2. Posteriors of H0 (top), S8 (middle), and Ωm (bottom)
inferred from Planck full likelihood, together with SH0ES,
KiDS-1000, and PantheonPlus results, shown as gray bands.
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solution with a target HBF
0 ¼ 73.04 km s−1Mpc−1. Yet, we

find that one can still partially ease the Hubble tension with
our current method while remaining within the regime of
validity of our perturbative treatment. Explicitly, we find
that one could lower the Hubble tension down to ∼1.3σ
with BAO data included, while satisfying Δχ2 < 1

and jΩformalism
BF − ΩMCMC

BF j=σ < 1 for all six cosmological
parameter Ω’s. However, the reconstructed Ωm ≃ 0.287 is
again less consistent with PantheonPlus compared to the
standard ΛCDM model. Further, when PantheonPlus data
are added along with CMB and BAO, we find that one
could lower the tension down to at most ∼2.4σ while
remaining within the region of validity of the formalism. As
such, even with arbitrary perturbative modifications to αðzÞ
or meðzÞ around the time of recombination, the Hubble
tension can only be partially eased once BAO and super-
novae data are accounted for.
Conclusions.—We have built on the Fisher bias formal-

ism to systematically search for data-driven solutions to any
tension between any given datasets, by looking for the
smallest possible change to an arbitrary function leading to
a desired small shift in cosmological parameters [112]. We
applied our formalism to find a time-dependent function for
the electron mass (and for the fine structure constant in
Appendix F of the Supplemental Material [66]) leading to a
Hubble constant consistent with SH0ES while providing an
equally good fit to Planck CMB data. We show that as a
remarkable byproduct it happens to also solve the S8
tension. However, this extended model is less consistent
with BAO [98] and PantheonPlus [97].
Once BAO and PantheonPlus data are included in the

formalism, we find that larger changes in recombination
history are required to achieve the same target value ofHBF

0 ,
making the assumed linearity of observables, and the
validity of Taylor expansion of χ2, break down. We note
that these limitations can in principle be removed if one
approaches the optimization problem with an exact method,
which we defer to future work. In practice, we find that
small perturbations to recombination through a time-
varying electron mass can only reduce the tension down
to 2.4σ, and decreasing it further would likely require
nonperturbative changes to recombination.
While we focus on perturbations to recombination in this

Letter, our formalism can be applied more generally to any
quantity impacting the prediction of a cosmological observ-
able, e.g., the Hubble rate HðzÞ. We trust that the
phenomenological framework we laid out, and the specific
examples we provide here in terms of a modified recombi-
nation, will inspire a model-building effort from the
cosmology and particle physics community with potential
implications well beyond the mere study of cosmological
tensions.
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