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Fisher information is a key notion in the whole field of quantum metrology. It allows for a direct
quantification of the maximal achievable precision of the estimation of the parameters encoded in quantum
states using the most general quantum measurement. It fails, however, to quantify the robustness of
quantum estimation schemes against measurement imperfections, which are always present in any practical
implementations. Here, we introduce a new concept of Fisher information measurement noise suscep-
tibility that quantifies the potential loss of Fisher information due to small measurement disturbance. We
derive an explicit formula for the quantity, and demonstrate its usefulness in the analysis of paradigmatic
quantum estimation schemes, including interferometry and superresolution optical imaging.
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Introduction.—Noise, decoherence, and implementation
imperfections are the main factors hindering the transfer of
quantum enhanced technologies (e.g., quantum computing
and communication) from proof-of-principle experiments
to real-life applications [1]. These issues also affect the
development of quantum metrology, whose goal is to
utilize sophisticated properties of light and matter to
enhance sensing instruments [2–5]. Quantum estimation
theory [6,7] laid theoretical grounds for present-day
quantum metrology—one of its greatest achievements is
identification of protocols that perform optimally in the
presence of noise [8–12].
One of the key elements affecting the precision of

metrological protocols is the imperfect realization of the
finalmeasurement step,where information is being extracted
from quantum sensors. In order to assess the effect of
imperfect measurement implementation, the standard route
is to characterize the type of noise present, e.g., detector dark
counts, measurement output crosstalks, etc., and then ana-
lyze its impact on the relevant figures-of-merit [13]. A more
systematic and general study of the effect of readout noise on
the measurement precision is provided in Ref. [14].
Still, from a fundamental point of view, it would be much

more advantageous to be able to determine the noise
robustness of a given measurement scheme without speci-
fying the actual form of the noise. A similar motivation lays
behind measurement robustness considerations that can be
found in the context of other quantum information tasks,
see, e.g., [15,16], but have never been applied to quantum
estimation theory. In this Letter, we focus on the most
common figure of merit in quantum estimation theory—the
Fisher information—and propose a quantity, Fisher infor-
mation measurement noise susceptibility (FI MENOS),
which characterizes the maximal relative decrease of FI due
to small measurement disturbance of the most general type.
This quantity allows us to obtain a deep insight into

fundamental noise-robustness properties of different meas-
urement schemes without assuming any particular noise
form. We illustrate the fruitfulness of this approach by
analyzing paradigmatic quantum enhanced metrological
schemes including interferometry and superresolution
imaging.
Quantum estimation theory preliminaries.—In a para-

digmatic quantum estimation scenario, a continuous
parameter θ is encoded in a state ρθ of a probe system
with associated Hilbert space HS. In order to describe the
process of extraction of information on the parameter θ
from the state in full generality, one considers an external
measuring device whose Hilbert space isHM. The device is
initialized in a pure state j0iM and the generalized meas-
urement of ρθ consists of two stages: (i) interaction between
S and M described by a unitary operation USM and
(ii) projective measurement of the postevolution state of
M, which returns an outcome i ∈ f1; 2;…; Kg with a
probability

pθðiÞ¼TrðρθMiÞ; Mi¼Mh0jU†
SMjiiMhijUSMj0iM ð1Þ

where Mi are effective measurement operators acting on
S—note that scalar products in the above formula are
partial, they act on subsystemM only, leaving part S intact.
A set M ¼ fMigi is called a positive operator-valued
measure (POVM), where Mi satisfy (i)

P
i Mi ¼ 1 and

(ii)Mi ≥ 0. The set of all POVMs will be denoted asM, so
we will write M ∈ M. Different choices of USM lead to
different POVMs, the number of possible outcomes is
K ¼ dimHM. Each POVM can be physically implemented
with the help of an appropriate choice ofHM andUSM. The
projective measurement in a basis jii of HS corresponds to
M with Mi ¼ jiihij.
When N copies of ρθ are measured independently with

the same POVM M this leads to N i.i.d. random variables
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sampled from pθðiÞ. According to the Cramér-Rao bound
(CRB) [6,7], the mean squared error (MSE) of any (locally)
unbiased estimator θ̃, that estimates θ based on this data,
will be lower bounded as

Δ2θ̃ ≥
1

NFC
; FC ¼

X

i

pil2i ð2Þ

where FC is the classical Fisher information (CFI),
pi ¼ pθðiÞ, and li ¼ ∂θ logpθðiÞ is the logarithmic deriva-
tive of pθðiÞ. Intuitively, the CFI quantifies how sensitive
pθðiÞ is to the change of θ—the larger l2i , the greater the
CFI. The CRB is tight—it is always possible to find a
locally unbiased estimator whose MSE saturates (2), and
for N → ∞ one can construct a globally unbiased CRB-
saturating estimator [17].
For a fixed quantum state ρθ, the CFI depends only on

the measurement M, and in order to highlight this we will
denote it as FC½M�. Combining (2) with (1) the explicit
form of the CFI reads

FC½M� ¼
X

i

TrðρθMiÞl2i ; li ¼
Trð_ρθMiÞ
TrðρθMiÞ

; ð3Þ

where the dot denotes the derivative over θ. It is natural to
ask what the greatest possible CFI is for a given ρθ—
the answer is given by the quantum Fisher information
(QFI) [6,7], which is the maximum of the CFI over all
POVMs M, and can be computed as

FQ ¼ max
M∈M

FC½M� ¼ TrðρθΛ2
θÞ; ð4Þ

where Λθ is the symmetric logarithmic derivative matrix
defined by the equation ∂θρθ ¼ 1

2
ðρθΛθ þ ΛθρθÞ. For a

given ρθ, and arbitraryM, the MSE of any locally unbiased
estimator of θ is lower-bounded by the quantum Cramér-
Rao bound (QCRB), which is similar to (2), but FC is
replaced with FQ. The projective measurement on eigen-
states of Λθ is always QCRB saturating (its CFI is equal to
QFI), but sometimes there are many different QCRB sat.
measurements, see Refs. [18] and [19] Section D for a
detailed discussion.
Fisher information measurement noise susceptibility.—

Let us assume, that due to a small disturbance, M changes
to M̃ ¼ ð1 − ϵÞM þ ϵN (summation of two POVMs is
done elementwise), which can be viewed as the replace-
ment of desired POVM M with an unwanted one N with a
probability ϵ ≪ 1. This type of noise may be caused by
inaccurate initialization of a measuring deviceM in a mixed
state ð1 − ϵÞj0ih0j þ ϵρ0M instead of j0ih0j, or it may be the
result of other small imperfections, such as signal losses,
dark counts, crosstalks etc. (see Ref. [19] Sections A
and B).

The measurement noise affects the CFI, the effect of
which we quantify using

χ½M;N� ¼ lim
ϵ→0

FC½M� − FC½ð1 − ϵÞM þ ϵN�
ϵFC½M� ; ð5Þ

which can be understood as the relative decrease of the
CFI under infinitesimally added noise N—the effect of ϵ
noise results in FC in the CRB, Eq. (2), being replaced with
FC½M�ð1 − ϵχ½M;N�Þ. After inserting (3) into (5), we
obtain, after straightforward calculations,

χ½M;N� ¼ 1þ FC½M�−1G½N�; ð6Þ

where

G½N� ¼
X

i

TrðAiNiÞ; Ai ¼ l2i ρθ − 2li _ρθ: ð7Þ

To get an intuition regarding this quantity, consider a
simple example where M ¼ ð0;M2;…;MKÞ and N ¼
ð1; 0;…; 0Þ, so noise only activates a noninformative
measurement outcome 1. Then, G½N� ¼ 0 and hence
χ½M;N� ¼ 1, which means that the relative decrease of
the CFI is equal to the probability of obtaining a useless,
noisy result. Clearly, the decrease of CFI will be more
substantial, when the disturbance affects the statistics of
informative outcomes, and noise cannot be separated from
the signal easily. Our goal is to figure out, what is the
maximal shrinkage rate of the CFI caused by an infini-
tesimal measurement noise described by an arbitrary
POVM N. The answer is given by a quantity

χ½M� ¼ max
N∈M

χ½M;N�; ð8Þ

which we call FI MENOS because it tells us how suscep-
tible CFI is to small disturbances of the measurement. Note
that the larger χ implies potentially stronger decrease of CFI
as a result of measurement disturbance, so strictly speaking
this is a negative susceptibility (cf. “menos” in Spanish).
Notably, it does not depend on N—this allows us to
compare the robustness against noise of different measure-
ments without invoking any specific noise model.
Explicit formula for FI MENOS.—We now present an

explicit solution to the maximization problem from (8),
which, according to (6), boils down to finding the maximum
of G½N�. Without loss of generality, we can relabel the
elements of POVM M such that logarithmic derivatives
satisfy l1 ≤ l2 ≤…≤ lK. LetN ¼ ðN1;…; Ni;…; NKÞ be an
arbitrary POVM while Γ1

i ðNÞ ¼ ðN1 þ Ni;…; 0;…; NKÞ
and ΓK

i ðNÞ ¼ ðN1;…; 0;…; NK þ NiÞ be two POVMs
constructed from N with zeros at ith positions,
i ∈ f2;…; K − 1g. Using (7), we obtain

G½Γ1
i ðNÞ� −G½N� ¼ fiðl1Þ − fiðliÞ; ð9Þ
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G½ΓK
i ðNÞ� −G½N� ¼ fiðlkÞ − fiðliÞ; ð10Þ

where fiðxÞ ¼ x2TrðρθNiÞ − 2xTrð_ρθNiÞ is a convex quad-
ratic function, and thereforefiðl1Þ ≥ fiðliÞ∨fiðlKÞ ≥ fiðliÞ,
so from (9) and (10),G½Γ1

i ðNÞ� ≥ G½N�∨G½ΓK
i ðNÞ� ≥ G½N�.

Therefore, for each N and i, there is ji ∈ f1; Kg such that
G½Γji

i ðNÞ� ≥ G½N�, so we can choose i2;…; iK−1 ∈ f1; Kg
such that Ñ ¼ Γj2

2 ∘…∘ΓjK−1
K−1ðNÞ satisfies G½Ñ� ≥ G½N�, and

from the construction of Ñ, Ñi ¼ 0 for i ∈ f2;…; K − 1g. It
means, that for arbitrary N, it is possible to construct Ñ ¼
ðÑ1; 0;…; 0; 1 − Ñ1Þ satisfying χ½M; Ñ� ≥ χ½M;N�. Hence,
the worst-case scenario noise will affect only the outcomes
with the smallest and the largest logarithmic derivatives. This
observation allows us to perform the maximization from (8)
analytically, (see Ref. [19] Section C), and obtain the general
expression for the FI MENOS:

χ½M� ¼ 1þ 1

2FC½M� ðl
2
1 þ l2K þ kA1 − AKk1Þ; ð11Þ

where kAk1 ¼ Tr
ffiffiffiffiffiffiffiffiffi
AA†

p
is the trace norm. Notice, that χ

depends on FC, ρθ, _ρθ, and the extremal logarithmic
derivatives only. When an outcome i has a vanishing
probability, pi → 0 but its contribution to the CFI, pil2i ,
remains finite and nonzero, then l2i → ∞, which implies that
either l21 or l2k diverges, and hence, χ diverges as well
according to (11). This reflects the fact, that the contribution
to the CFI resulting from an outcome with a very low
probability may be completely washed out by a very small
measurement noise, and the chosen measurement is not
likely to be practical.
When there are many measurements which lead to

the same CFI, the FI MENOS may help to judge which
one is more robust and hence more suitable for
practical purposes—the one with lower χ. It is especially
interesting to find the minimum of χ½M� over all QCRB
sat. measurements,

χQ ¼ min
fM∈M;FC½M�¼FQg

χ½M�; ð12Þ

since the corresponding measurement M should be
regarded as the most robust among the most informative
measurements. This task is tractable thanks to the exact
formula (11)—we demonstrate exemplary solutions to this
problem in the next two paragraphs.
Pure state models.—Let us start with a simple, yet

important case when ρθ is pure, ρθ ¼ jψθihψθj. We focus
on the local estimation paradigm and assume θ is close
to some known parameter value θ0. For any θ0 it is possible
to fix orthonormal vectors j0i; j1i ∈ spanðjψθ0i; j _ψθ0iÞ
such that ρθ0 ¼ jþihþj, _ρθ0 ¼ 1

2

ffiffiffiffiffiffiffi
FQ

p
σy, where jþi ¼

ð1= ffiffiffi
2

p Þðj0i þ j1iÞ, σy is a Pauli matrix, FQ is the QFI.
Then, the measurementM is QCRB sat. if and only if all its
elements are of the form Mi ¼ λijϕiihϕij, where jϕii ¼
ð1= ffiffiffi

2
p Þðj0i þ eiφi j1iÞ (see Ref. [19] Section E1). As we

prove in [19] Section E1, χ½M� ≥ 4FQ for all such
measurements, and the inequality is only saturated for
the projective measurement on the eigenstates of σy.
Notice, that we used a qubit subspace to describe the
evolution of any pure state locally even though HS can be
arbitrarily large.
This parametrization allows us to represent any pure state

problem as a phase estimation in a Mach-Zender interfer-
ometerwith a single photon input.When the phase θ between
the upper (j0i) and lower (j1i) arm is acquired, then the
photon state is jψθi ¼ ð1= ffiffiffi

2
p Þðj0i þ eiθj1iÞ. After fixing

θ0 ¼ 0, our problem reduces to the one already defined with
FQ ¼ 1. All QCRB sat. projective measurements can be
implemented with the help of two single-photon detectors
followed by a beam-splitter, and a well-controlled phase
difference between two arms, φ (see Fig. 1). The upper and
lower detectors click with probabilities pþ and p−, respec-
tively, where p� ¼ 1

2
½1� cosðθ þ φÞ�. Straightforward cal-

culations confirm, thatFC½p�� ¼ 1 independently of φ [23].
However, the FI MENOS depends on φ, and for θ0 ¼ 0
we have

χðφÞ ¼ 1þ cos−2ðφ=2Þ þ tan−2ðφ=2Þ; ð13Þ

FIG. 1. Phase θ is measured using a Mach-Zender interferometer; φ is an extra, well-controlled phase. The resulting CFI (FC) does not
depend on φ when v ¼ 1, which is never achieved in practice. For any smaller visibility (e.g., v ¼ 0.98), the CFI is
maximal for θ þ φ ¼ π=2, and vanishes for θ þ φ ∈ f0; πg. We can deduce that θ þ φ ¼ π=2 is the optimal working point without
assuming nonunit visibility because FI MENOS (χ) is minimal there, so the precision of the estimation of θ is the least vulnerable to a
general measurement noise.
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which means that the optimal working point is at φ ¼ π=2
(balanced interferometer), while our scheme is extremely
sensitive to a measurement noise for φ → 0 and φ → π
(unbalanced interferometer) as in this case χðφÞ → ∞,
see Fig. 1.
Similar conclusions follow from a standard analysis of

the nonunit visibility (v < 1) interferometer model, where
the detection probabilities are p� ¼ 1

2
½1� v cosðθÞ�. Then,

the CFI is maximal for φ ¼ π=2, and reaches 0 for φ ∈
f0; πg even for v very close to 1, see Fig. 1. The advantage
of the approach based on FI MENOS, is that one does not
need to consider any particular noise model, and it is
guaranteed that the worst case scenario has been taken
into account.
Superresolution optical imaging.—Quantum estimation

theory allows for a rigorous study of fundamental limits in
optical microscopy, and serves as a tool for a systematic
search for the most precise imaging schemes [24–30]. In
the elementary scenario, two equally bright incoherent
weak point sources are imaged using a translationally
invariant system [25] (see discussion of limitations of this
approximation in [31]). The state of a single photon in the
image plane is

ρθ ¼
1

2
ðjuþ;θihuþ;θj þ ju−;θihu−;θjÞ; ð14Þ

where hxju�;θi ¼ uðx� θ=2Þ, fjxig is the position basis,
juðxÞj2 ¼ ð2πσ2Þ−1=2e−x2=2σ2 is the system point spread
function. The only unknown parameter is the separation
between two sources, θ, the centroid of two points is
known a priori. Intuitively, it should be hard to estimate θ
when θ ≪ σ because then images of two points overlap
significantly. This is true for a standard measurement in
the position basis jxi because FC½fjxihxjg� → 0 when
θ → 0. Surprisingly, the QFI does not depend on θ at
all, FQ½ρθ� ¼ 1=4σ2 [25]. Therefore, it seems to be no
fundamental difference between small and large separa-
tions θ, when all quantum measurements are allowed.
Unfortunately, this is a highly idealized statement since
the estimation precision for small θ is highly affected by
detection noise, system misalignment, crosstalk noise, and

other imperfections [28–30]—in fact, even for the most
clever choice of the measurement, the CFI vanishes with
θ → 0 for all practical scenarios.
At this point, we want to demonstrate the fundamental

difficulty of resolving two sources whose images overlap,
without referring to any specific noise model, but rather
employing the newly introduced FI MENOS figure of
merit. In the most commonly studied superresolution
protocol, the state in the image plane is measured in the
basis of orthogonal Hermite-Gaussian modes jϕqi whose
center lies in the centroid of two observed sources [25]—
see Ref. [27] for an overview of implementations of this
measurement based on holography, interferometry, etc. In
most of these implementations, we can extract and separate
first K − 1 modes, and the rest of the signal is collected in
the Kth outcome, such that our POVM consists of elements
Mi ¼ jϕiihϕij for i ∈ f1;…; K − 1g,MK ¼ 1 −

P
K−1
i¼1 Mi.

The CFI increases with K, but for θ ¼ 0, it approaches the
QFI already for K ¼ 2. The QCRB is saturated in the full
range of θ only for K → ∞, but the precision is close to
optimal for a wide range of θ already for K ¼ 4—see
Fig. 2. In the figure we also plot χðθÞ for different values of
K. Unfortunately, χ → ∞ for θ → 0 in all cases.
Consequently, for θ ≪ σ, it is impossible to achieve the
high CFI in the presence of noise using the family of
measurements considered so far.
However, there are many other ways to saturate QCRB

locally for any fixed value of θ, and some of them may
be less susceptible to noise. As for the pure states model,
we systematically study all QCRB sat. measurements
to find χQðθÞ. Following the technique from [25], we
reduce the problem to four-dimensional Hilbert space
HðθÞ ¼ spanfju�;θi; ∂θju�;θig, which is a direct sum of
two orthogonal two-dimensional subspaces Hs and Ha,
containing symmetric and antisymmetric modes, respec-
tively. We construct the orthonormal basis of both sub-
spaces, j0is, j1is and j0ia, j1ia respectively, such that

ρθ ¼
1þ δ

2
j0ish0j þ

1 − δ

2
j0iah0j; ð15Þ

_ρθ ¼ αj0ish0j þ βsσ
ðsÞ
x − αj0iah0j þ βaσ

ðaÞ
x ; ð16Þ

...

FIG. 2. The single photon state (ρθ) in an image plane is themixture of twoGaussianwave functions ofwidth σ. Their separation θ can be
estimated accurately even when θ ≪ σ by measuring ρθ in the basis of Hermite-Gaussian modes jϕii—in practice, it is enough to extract
the first few (K − 1) of these modes. Unfortunately, the presented strategy is very sensitive to measurement noise for small θ, which is
reflected by diverging FIMENOS (χ) for θ=σ → 0. NoQCRB sat. measurement is free of this issue because χQ diverges as well for θ → 0.
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where δ ¼ huþ;θju−;θi, real constants α, βa, βs are specified
together with the exact construction of the basis in [19]
Section E2. Matrices ρθ and _ρθ are both block diagonal with
respect to Hs and Ha. This means, that the QCRB
sat. minimal susceptibility POVM contains only elements
acting on Hs or Ha (see Ref. [19] Section D for proof).
Consider the family of QCRB sat. POVMs

Mφs;φa
¼ fPðsÞ

φs ; P
ðsÞ
φsþπ; P

ðaÞ
φa ; P

ðaÞ
φaþπg; ð17Þ

where Ps=a
φ is a projector on cosðφ=2Þj0is=aþ

sinðφ=2Þj1is=a. We prove ([19] Section E2) that the
minimal susceptibility QCRB sat. measurement is of the
form Mφs;φa

. Then, we obtain χQ by minimizing numeri-
cally χ½Mφs;φa

� over φs and φa, the results are shown in
Fig. 2. We observe, that χQ → ∞ when θ → 0, which
means, that no QCRB sat. measurement is robust against
noise in the region θ ≪ σ. Surprisingly, χQ does not
decrease with θ everywhere—for example, a minimum
χ ¼ 4 is achieved in θ ¼ 2

ffiffiffi
2

p
σ. For θ → ∞, χQ → 4 again,

and then the problem is equivalent to a single source
localization both from the point of view of FQ and χQ.
Interestingly, it is possible to achieve noise susceptibility
smaller than χQ, when correlations between subsequent
photons are present—see Ref. [19] Section F for a
discussion.
Outlook.—Computation of the FI MENOS should be

regarded as a natural sanity check whenever any idealized
quantum metrological protocol is proposed. If this quantity
is large (or divergent) this should ring a bell that the
performance of the proposed protocol will be significantly
reduced by even a small imperfection in the measurement
design. On the contrary, small values indicate that the
measurement scheme is robust. The importance of this
quantity stems also from the fact, that the FI is a local
quantity (computed at single value of parameter) and
therefore prone to reveal ephemeral effects that vanish in
the presence of even infinitesimal noise—a property that
haunts quantum metrology literature a lot. We envisage that
our approach may be naturally extended to a multipara-
meter estimation framework as well as generalized to cover
the Bayesian analysis as well. Still, we expect that in these
cases it may be much harder or even impossible to obtain
the explicit formula for FI MENOS analogous to (11).
Moreover, we expect that the role of small measurement
disturbances should be less substantial in the Bayesian
approach, since such an approach is by construction
applicable to more realistic scenarios, when the number
of collected data samples is finite, and the protocols are
expected to perform well beyond the “local estimation
approach”.
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