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In this Letter, we show that by combining quantum metrology and networking tools, it is possible to
extend the baseline of an interferometric optical telescope and thus improve diffraction-limited imaging of
point source positions. The quantum interferometer is based on single-photon sources, linear optical
circuits, and efficient photon number counters. Surprisingly, with thermal (stellar) sources of low photon
number per mode and high transmission losses across the baseline, the detected photon probability
distribution still retains a large amount of Fisher information about the source position, allowing for a
significant improvement in the resolution of positioning point sources, on the order of 10 μas. Our proposal
can be implemented with current technology. In particular, our proposal does not require experimental
optical quantum memories.
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Telescopes can be improved in several ways: improving
the signal-to-noise ratio [1,2], employing (quantum)
designs to achieve superresolution [3–9], or extending
the baseline to create larger apertures [10–14]. The resolv-
ing power of an optical imaging system can be defined
in terms of the minimum resolvable angle θmin, which
depends on the source’s wavelength λ and on the tele-
scope’s aperture size. Larger aperture sizes give better
resolving power. In astronomy, large baseline interfero-
metric telescopes have become an established technique to
create highly resolved images. One of the most notable
results achieved with this technique is the first-ever radio
image of a black hole [11], produced by a combination of
many telescopes that formed a single imaging system with
an aperture the size of the Earth. The receivers measured
the phase and amplitude of the radio signals, and combined
them into an interferometric image.
For optical signals, the frequency is too high to measure

the phase and amplitude of the incoming light directly, and
the incoming signals must be made to interfere physically.
This places a limit on how far receivers can be placed apart,
since the transmission of the signal in optical fibers or light
tunnels is lossy [15]. A solution involving teleporting
photons from the receiver to the interferometric setup
demonstrates how quantum information technology can
overcome this limitation using optical quantum memories
[16,17]. Recently, a large-baseline quantum telescope was
proposed that makes use of photonic quantum memories

and error correction to protect the weak optical signal from
transmission losses [18].
While future quantum technologies can deliver major

improvements to large baseline optical telescopes, near-
future telescopes must rely on more readily available
technologies. Here, we propose a large-baseline optical
telescope that employs single-photon sources [19–22], low-
loss optical fibers, linear optical interferometry [23,24], and
high-efficiency photon number counters [25,26]. Our
proposal uses multiple single-photon sources and optical
quantum Fourier transform (QFT) circuits, shown in Fig. 1,
which are linear optical circuits where a photon entering
any input mode is equally likely to appear in any output
mode. Here, we demonstrate that establishing coherence
across the baseline using multiple single-photon sources
and beam splitters improves the resolution of the telescope,
even when the transmission losses along the baseline
are high.
Our setup is as follows: a simple interferometric tele-

scope employs two receivers, A and B, a distance L apart.
A distant star source emits incoherent light that can be
described as a single mode with large transverse coherence
reaching the telescope at an angle θ. At any given optical
frequency, the distant star emits a weak incoherent signal
such that we can assume at most single-photon events with
probability ϵ. The state of a single photon entering the two
receivers is given by

jψi1 ¼
j1iAj0iB þ eiϕj0iAj1iBffiffiffi

2
p ; ð1Þ

where j0iL;R and j1iL;R indicate the zero and one photon
state at each receiver, and ϕ is the relative phase shift
between the two receivers. It arises from the additional

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 130, 160801 (2023)

0031-9007=23=130(16)=160801(6) 160801-1 Published by the American Physical Society

https://orcid.org/0000-0001-5815-1547
https://orcid.org/0000-0002-6608-330X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.160801&domain=pdf&date_stamp=2023-04-20
https://doi.org/10.1103/PhysRevLett.130.160801
https://doi.org/10.1103/PhysRevLett.130.160801
https://doi.org/10.1103/PhysRevLett.130.160801
https://doi.org/10.1103/PhysRevLett.130.160801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


distance l ¼ L sin θ in the light path at one of the receivers,
and ϕ ¼ kl, where k is the wave number of the source. For
distant star sources, a very good approximation is ϕ ¼ kLθ.
The quantum Fisher information for ϕ in the state jψi1 is 1
(see Supplemental Material [27]).
In an ideal scenario there is no loss, and the interfero-

metric measurement can be simply performed by recom-
bining the photon through a beam splitter. However, a
major challenge is the physical transportation of the photon
from one site to the other. In a realistic dissipative scenario
the photon loss thus limits the baseline L. In our proposal,
the star photon (S1) does not travel a large distance from the
receiver, and incurs minimal loss. Instead, single photons
generated in ground-based sources Sj (j ¼ 2…N) are sent
to the two receivers, A and B, in the single-photon Bell state

jψ ji ¼
j1iAj0iB þ j0iAj1iBffiffiffi

2
p ; ð2Þ

which can be produced using a 50∶50 beam splitter. At
each receiver, we let these photons interfere with the optical
mode from the starlight in a QFT circuit, and the output
modes are measured in highly efficient photon counting
detectors [28–32]. The information of the signal we intend
to measure is contained in the correlations between the
detectors at the receivers. By using multiple ground-based
photon sources, we aim to overcome the large transmission
losses between the receivers.

We treat the imaging protocol above as a quantum
parameter estimation problem for ϕ [33–37], which is
directly related to θ. The ultimate precision with which it is
possible to measure ϕ is given by the Cramér-Rao bound
[38], which represents a lower bound to the variance ðδϕÞ2
of an estimator of ϕ, given the knowledge of the quantum
mechanical state ρðϕÞ. For unbiased estimators, the bound
is given by the inverse of the Fisher information FðϕÞ
associated with the state

ðδϕÞ2 ≥ 1

MFðϕÞ ; ð3Þ

where M is the number of independent measurements. The
Fisher information

FðϕÞ ¼
Z

dxpðxjϕÞ
�
∂ lnpðxjϕÞ

∂ϕ

�
2

; ð4Þ

is given in terms of the probabilities pðxjϕÞ of measuring
the outcome x when the parameter has fixed value ϕ.
First, we consider a single ground-based photon and a

single star photon. If both photons are detected by the same
receiver, then ϕ is at most a global phase in the quantum
state, and the measurements will not reveal any information
about ϕ. Only when the two photons are detected at
different receivers do we gain information about ϕ. This
limits the Fisher information to F2ðϕÞ ¼ 1

2
. To increase the

Fisher information, we can increase the number of ground-
based photons to N − 1, which means that the probability
of measuring all photons at the same receiver becomes
1=N, and the resulting Fisher information is bounded by

FN ≤ 1 −
1

N
: ð5Þ

At this point, we have assumed no losses in the trans-
mission, and we did not make assumptions about the
precise interferometer at both receivers.
Next, we introduce the model for describing the quantum

telescope with N − 1 ground-based photons. We will
describe the lossless case first. The total initial state is

jψiintot ¼ jψ1i ⊗ jψ2i…j ⊗ jψNi; ð6Þ

where the first photon comes from the star source S1 and its
initial state jψ1i is given by Eq. (1), and the other N − 1
photons are in the state jψ ji, given in Eq. (2). In terms of
creation and annihilation operators fa†n; ang and fb†n; bng
for each photon mode, the state becomes

jψiintot ¼
�
1

2

�N
2 YN
n¼1

ða†n þ eiϕδn;1b†nÞj0i; ð7Þ

where δn;1 is the Kronecher delta indicating that the relative
phase shift enters just in the mode of the star source S1, and

FIG. 1. Interferometric telescope consisting of two receivers
separated by a distance L. The light from the faraway star arrives
at both sites in modes a1 and b1 with a relative phase shift ϕ ¼ kl,
determined by the path length difference l and wave number k. A
quantum network of single-photon sources Sj (j ¼ 2…N), linear
optical circuits U, and photon counting is used to perform
interferometric measurements at each site.

PHYSICAL REVIEW LETTERS 130, 160801 (2023)

160801-2



j0i is the vacuum state for all the modes. For the
interferometry between the star photon and the lab photons
we choose a linear transformation U that implements a QFT
[39]. For each of the N input modes an on the right

a†n ¼ 1ffiffiffiffi
N

p
XN
k¼1

ωnka†k; ð8Þ

and analogously for the N input modes bn on the left. The
output state jψiouttot is then

jψiouttot ¼
�

1

2N

�N
2
YN
n¼1

XN
k¼1

ωnkða†k þ eiϕδn;1b†kÞj0i: ð9Þ

The probability of measuring a given configuration d of N
photons across the 2N detectors is

PdðϕÞ ¼ jhdjψiouttot j2; ð10Þ

where jdi ¼ jd1; d2;…; dj;…; d2Ni is the measured state
with di ∈ f1; Ng photons at the detector i. We recast the
Fisher information in terms of these probabilities as

FNðϕÞ ¼
XσN
d

PdðϕÞ
�
∂ lnPdðϕÞ

∂ϕ

�
2

; ð11Þ

where the sum runs over all the possible configurations σN
of N photons distributed across 2N detectors. For the
lossless case, FNðϕÞ is shown in the Supplemental Material
[27] (see Fig. 1).
The ground-based photons are subject to transmission

losses, which can be modeled using a beam splitter in the
transmission line. This is shown in Fig. 2. The transmission
probability amplitude of a photon in an optical fiber is
given by η ¼ e−L=4L0, where we use that each photon
travels over a length L=2, and L0 is the fiber attenuation
length—assumed identical for all transmission lines. The
transformation for the j-photon mode operators is thus

a†j ¼ ηa†j þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
c†j

b†j ¼ ηb†j þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
d†j ; ð12Þ

where fc†j ; cjg and fd†j ; djg are the creation and annihila-
tion operators for the vacuum fields respectively on the left
and right side.
For now, we consider the presence of exactly one star

photon. The state of the optical modes in Eq. (7) at the QFT
circuits in the presence of loss becomes

�
1

2

�
N=2

ða†1 þ eiϕb†1Þ

⊗
YN
n¼2

½
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
ða†n þ b†nÞ þ ffiffiffiffi

p
p ðc†n þ d†nÞ�j0i; ð13Þ

where p ¼ 1 − η2 is the probability of losing a single
photon.
The number of detected photons d is no longer equal to

N; it runs in the interval ½1; N�. The Fisher information will
be modified, since it will include the probabilities for partial
photon detection. In the Supplemental Material [27] we
show that this can be rewritten as the weighted sum of
Fisher information contributions corresponding to partial
photon detection

Floss
N ¼

XN−1

k¼0

ð1 − pÞN−1−kðpÞk
�
N − 1

k

�
F0
N−k; ð14Þ

where F0
N−k is the Fisher information for D ¼ N − k

photon detected, k is the number of photons lost.
Next, we consider the case where the starlight is in a

thermal state at an optical frequency with a rate of photon
emission ϵmuch smaller than 1 [40]. Therefore, the density
operator for the initial state of the star light can be well
approximated as ρS ¼ ð1 − ϵÞρ0 þ ϵρ1, where ρ1 is the
one-photon state from Eq. (6), and ρ0 ¼ j0ih0j is the zero-
photon state. The probability of detecting d photons is
given by the sum of two probabilities as

PTðdÞ ¼ ð1 − ϵÞPAðdÞ þ ϵPBðdÞ; ð15Þ

where PAðdÞ and PBðdÞ are the probability distributions
for having no star photon and having a star photon,

FIG. 2. The presence of transmission loss in the ground-based
photons can be modeled with beam splitters with transmissivity η.
These will mix the input modes fa†j ; b†jg, for the ground-based
photons, with vacuum input modes, represented by the dashed
blue lines, which are subsequently traced over. Each photon mode
will be subject to loss with probability p ¼ 1 − η2. The star
photon coming from source S1 is represented by mode operators
fa†1; b†1g. A phase shift φ is included in mode a1 to allow
measurements at optimal phase differences.
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respectively. This means that when detecting d < N pho-
tons, there will be two contributions to the total probability
distribution, arising from the fact that we cannot distinguish
whether the reduced photon number is due to lossy trans-
mission of the ground-based photons or an absence of the
star photon.
The Fisher information must be modified as follows (see

Supplemental Material [27]):

FðϕÞ ¼
XσD
d

1

PTðdÞ
�
∂PTðdÞ
∂ϕ

�
2

; ð16Þ

and by using Eq. (15) we obtain

FðϕÞ ¼
XσD
d

ϵ2

ð1 − ϵÞPAðdÞ þ ϵPBðdÞ
�
∂PBðdÞ
∂ϕ

�
2

: ð17Þ

Here, we used that in the absence of a star photon the
probability distribution PAðdÞ does not depend on ϕ, and
the contribution to the derivative is zero. We calculated the
Fisher information for the cases N ¼ 2, 3, 4, 5, but these
expressions are too large to include here.
The total Fisher information is modified by the ϵ factor,

which is usually very small. A Fisher information FðϕÞ
scaling linearly in ϵ reflects the reduced rate ϵ of gaining
information about ϕ. However, when FðϕÞ scales with ϵ2,
this would indicate that the transmission losses obscure the
absence of a star photon, leading to a much deteriorated
metrology protocol and a very large estimation error.
Surprisingly, we find that for the cases we examined
(N ¼ 2, 3, 4, 5), the Fisher information scales linearly
in ϵ, as shown in Fig. 3. This can be understood by
considering that the transmission loss and the absence of a
star photon occur in orthogonal optical modes, rendering
PAðdÞ and PBðdÞ quite different. Consequently, our

protocol is still able to provide an improvement in the
resolution of ϕ (and therefore θ).
Finally, we study the resolution of the telescope in terms

of the error δθ in the geometrical angle θ ¼ ϕ=kL under the
small angle approximation. The mean square error is given
by

ðδθÞ2 ¼ ðδϕÞ2
k2L2

; ð18Þ

where ðδϕÞ2 is the variance associated with the relative
phase shift, lower bounded by the Fisher information.
Therefore, the minimum error on the resolution is given by

ðδθÞ2 ¼
�

1

kL

�
2 1

FNðϕÞ
: ð19Þ

The resolution δθ will be better for higher values of the
Fisher information and for large distances between the
telescopes, in accordance with the Rayleigh criterion.
The resolution of the telescope will improve when we

increase the distance between the receivers, but increased
transmission photon loss will deteriorate the resolution.
Therefore, we must find the optimal distance between
receivers for photon-assisted interferometric imaging. This
is shown in Fig. 4. For light with a wavelength λ¼ 628 nm
and fiber attenuation length L0¼ 10 km, an angular reso-
lution of 19.80 μ as (microarcseconds) is achievable
with a single ground-based photon (N ¼ 2), while four

FIG. 3. The Fisher information in presence of loss scales
linearly with the star emission rate ϵ. The curves have been
obtained for the optimal values of relative phase shift φopt and
baseline length αopt reported in Table I.

FIG. 4. The resolution angle δθ in microarcseconds, as a
function of α ¼ L=L0, the baseline length in units of the
attenuation length L0. The curves have been obtained for optical
wavelengths λ ¼ 628 nm, star emission rate ϵ ¼ 0.01, and
typical attenuation length value L0 ¼ 10 km. Different colors
correspond to a different total photon number N. At short
distances, the resolution angle decreases as we increase the
baseline; it reaches a minimum value and then increases due to
losses becoming predominant over longer distances. We make
two observations: (i) the more ground-based photons are em-
ployed the lower the minimum of the resolution and (ii) the
minimum is shifted toward larger and larger distance as we
increase N, allowing for an extension of the baseline.
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ground-based photons (N ¼ 5) yield an angular resolution
of 10.93 μas. For increasing N, the best resolution is
obtained for larger distances, indicating that the extra
ground-based photons help increase the baseline, and hence
the resolution. We summarize the optimal distances and the
achievable resolution in Table I. Moreover, the correspond-
ing optimal relative phase shift ϕopt is determined by the
orientation of the baseline, and can be set by including an
adjustable phase shift at one of the receivers.
Conclusions.—We addressed the challenge of increasing

the resolution of positioning incoherent point sources in
interferometric telescopes at optical frequencies by extend-
ing the baseline of the telescope. We showed that a dramatic
imaging resolution improvement can be obtained with a
setup that relies solely on current technology (multiple
single-photon sources, optical fibers, linear optical cir-
cuits, and photon number counting detectors), without the
need for quantum memories or full-scale quantum repeater
networks. This is an example of a useful near- to medium-
term quantum technology application beyond quantum key
distribution.
Transmitting multiple single photons across the baseline

with high transmission losses extends the numerical aper-
ture to tens of kilometers for optical frequencies, leading to
a resolution on the order of 10 μas. One may expect that
losing photons in an interferometric measurement will
drastically reduce the Fisher information, since we cannot
distinguish between photons that are lost in transmission
or that were not emitted by the source in the first place.
However, the Fisher information scales linearly rather than
quadratically in ϵ ≪ 1, which accounts for this unexpected
good performance. Our results are important for our
theoretical understanding of optical interferometers in
metrology applications, since they point toward a pathway
for loss-tolerant optical quantum metrology where signal
photons and auxiliary optical states interfere. It may help
extend the range of optical communication without full
quantum repeaters.
Finally, our analysis is not limited to ground-based

telescopes and applies equally to satellite-based receivers
where the single photon sources are distributed through free
space. The beam divergence is the main loss mechanism,

leading to much larger baselines on the order of 1000 km or
a resolution of 50 nas.
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