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From an open system perspective non-Markovian effects due to a nearby bath or neighboring qubits are
dynamically equivalent. However, there is a conceptual distinction to account for: neighboring qubits may
be controlled. We combine recent advances in non-Markovian quantum process tomography with the
framework of classical shadows to characterize spatiotemporal quantum correlations. Observables here
constitute operations applied to the system, where the free operation is the maximally depolarizing channel.
Using this as a causal break, we systematically erase causal pathways to narrow down the progenitors of
temporal correlations. We show that one application of this is to filter out the effects of crosstalk and probe
only non-Markovianity from an inaccessible bath. It also provides a lens on spatiotemporally spreading
correlated noise throughout a lattice from common environments. We demonstrate both examples on
synthetic data. Owing to the scaling of classical shadows, we can erase arbitrarily many neighboring qubits
at no extra cost. Our procedure is thus efficient and amenable to systems even with all-to-all interactions.
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Introduction.—In the race to fault tolerant quantum
computing, magnified sensitivity to complex dynamics in
open quantum systems requires increasingly tailored char-
acterization and spectroscopic techniques [1–8]. Correlated
dynamics are one particularly pernicious class of noise,
and can be generated from a variety of sources, including
inhomogeneous magnetic fields, coherent bath defects,
and nearby qubits, see Fig. 1(a) [9,10]. Concerningly, these
effects are often omitted from quantum error correction noise
models despite being ubiquitous in noisy intermediate-scale
quantum (NISQ) hardware [5,6,11–14].
Temporal—or non-Markovian—correlations are ele-

ments of error that are correlated between different points
in time, as mediated by interactions with an external system
[6,15]. A process is said to be non-Markovian if the total
dynamics do not factorize into a product of dynamical maps
[16], a stronger condition than the well-known completely
positive divisibility of dynamics [17]. The specific media-
tor of these effects is both conceptually and experimentally
relevant device information. Is it controllable, or is it part of
the inaccessible bath? Relatedly, if the dynamics of two
nearby qubits do not spatially factorize, this is known as
crosstalk. If one qubit is traced out, then entangling
crosstalk—such as the always-on ZZ interactions in trans-
mon qubits [18]—can generate temporal correlations for
the second qubit. Whether the dynamics look non-
Markovian depends on whether it is feasible or not to
dilate the characterization to multiple qubits and account
for the variables responsible for these correlations.

(a)

(b)

FIG. 1. System of interacting qubits and an inaccessible non-
Markovian environment (E). (a) A target qubit qn may interact
via crosstalk mechanisms with other qubits, fq1; q2; q3; � � �g, in a
quantum device, as well as defects in the bath and fluctuating
classical fields Bþ δB. (b) The non-Markovian correlations for
that system may be separated into different causal pathways by
which the correlations are mediated. Causal breaks (depicted in
gray) erase any temporal correlations from a given pathway,
allowing one to infer the various contributions to total non-
Markovianity from nearby qubits and environment.
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Typically, it is not. Since crosstalk and bath non-
Markovianity can easily be conflated, it is crucial to find
robust methods that can not only account for their behavior,
but distinguish them.
In this Letter, we establish a systematic, concrete, and

efficient approach to the two pragmatic questions: (i) if
non-Markovian dynamics are detected across different
timescales for a qubit, do they come from neighboring
qubits or a nearby bath? And (ii) how can we determine
when two qubits are coupled to a shared bath generating
common cause non-Markovian effects. The solutions here
have highly practical implications. Namely, whether curb-
ing the correlated effects is achievable through control or
fabrication methods [19,20]. Process tensor tomography
(PTT) is a recently developed generalization to quantum
process tomography, and can guarantee an answer to these
questions and more, but the number of experiments
required grows as Oðd2knþNÞ to find correlations across
k steps over N qudits [6].
The basic premise of our Letter is to apply the method of

classical shadows [21] to PTT, resolving these problems.
The classical shadow philosophy implements randomized
single-shot measurements to learn properties of a state,
granting access to an exponentially larger pool of observ-
ables at fixed locality. Employing this, instead of recon-
structing the whole multitime process for an entire quantum
register, we can estimate and analyze each of the fixed-
weight process marginals. Marginalizing over a measure-
ment is equivalent to measuring and throwing the outcome
away. To marginalize over a process input is equivalent to
inputting a maximally mixed state. Hence, these are
maximal depolarizing channels at no extra cost, which
act as causal breaks on controllable systems.
When suitably placed, these operations eliminate tem-

poral correlations as mediated on the chosen Hilbert spaces,
thus allowing non-Markovian sources to be causally tested.
We illustrate this idea in Fig. 1(b). The end result is the
simultaneous determination of the bath-mediated non-
Markovianity on all qubits. Our approach hence only
depends on the individual system size (in this Letter,
qubits), and is a physics-independent way for us to test
the relevant hypotheses. We are also able to simultane-
ously compute all spacetime marginals, extending the
randomized measurement toolkit to the spatiotemporal
domain [22].
Spatiotemporal classical shadows.—By virtue of the

state-process equivalence for multitime processes
[15,23–25], quantum operations on different parts of a
system at different times constitute observables on a many-
body quantum state. This allows state-of-the-art charac-
terization techniques to be applied to quantum stochastic
processes. Classical shadow tomography [21,22] is one
such technique, and already has many generalizations and
applications [26–29]. Measuring classical shadows allows
for exponentially greater observables to be determined

about a state, provided sufficiently low weight. But this
restriction means the technique has limitations for the study
of temporal correlations (which are high weight) in contrast
to spatial ones, as discussed in Ref. [12]. Our Letter
expands on this to the multiqubit–multitime case, and
identifies other desirable applications of classical shadows
to multitime processes.
Definitions and notation: Consider a quantum device

with a register of qudits Q ≔ fq1; q2;…; qNg across a
series of times Tk ≔ ft0; t1;…; tkg. We take the whole
quantum device to define the system: HS ≔⊗N

j¼1 Hqj . The
device interacts with an external, inaccessible environment
whose space we denote HE. The k-step open process is
driven by a sequence Ak−1∶0 of control operations on the
whole register, each represented mathematically by com-
pletely positive (CP) maps: Ak−1∶0 ≔ fA0;A1;…;Ak−1g,
after which one obtains a final state ρSkðAk−1∶0Þ conditioned
on this choice of interventions. Note that where we label an
object with time information only, that object is assumed to
concern the entire register. These controlled dynamics have
the form

ρSkðAk−1∶0Þ ¼ TrE½Uk∶k−1Ak−1 � � �U1∶0A0ðρSE0 Þ�; ð1Þ
where Uk∶k−1ð·Þ ¼ uk∶k−1ð·Þu†k∶k−1. Now let the Choi
representations of each Aj be denoted by a caret,

i.e., Âj ¼ Aj ⊗ I ½jΦþihΦþj�¼P
nm Aj½jnihmj�⊗ jnihmj.

Then, the driven process in Eq. (1) for arbitrary Ak−1∶0
uniquely defines a multilinear mapping across the register
Q—called a process tensor, ϒk∶0—via a generalized Born
rule [15,24]:

pS
kðAk−1∶0Þ ¼ Tr½ϒk∶0ðΠk ⊗ Âk−1 ⊗ � � � Â0ÞT�: ð2Þ

At each time tj, the process has an output index oj
(which is measured), and input index ijþ1 (which feeds
back into the process). The details of process tensors can be
found in the Supplemental Material [30], but are not crucial
to understanding this Letter. The two important properties
that we stress are (i) a sequence of operations constitutes an
observable on the process tensor via Eq. (2), generating the
connection to classical shadows, and (ii) a process tensor
forms a collection of possibly correlated completely pos-
itive, trace-preserving (CPTP) maps, and hence may be
marginalized in both time and space to yield the jth CPTP

map describing the dynamics of the ith qubit ÊðqiÞ
j∶j−1. A

process is said to be Markovian if and only if its process
tensor is a product state across time. The measure of
non-Markovianity we use throughout this Letter is that
described in Ref. [16]. Specifically, it is the relative entropy
S½ρkσ� ¼ Tr½ρðlog ρ − log σÞ� between a process tensor
ϒk∶0 and its closest Markov description, the product of
its marginals:

ϒðMarkovÞ
k∶0 ¼ Êk∶k−1 ⊗ � � � ⊗ Ê1∶0 ⊗ ρ0: ð3Þ
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We denote this generalized quantum mutual information
(QMI) for a given process by N ðϒk∶0Þ. Classical shadow
tomography provides access to a small number of low
weight observables, with hIi on the remainder of the
subsystems. The case where hIijþ1

Ioji is evaluated is

equivalent to selecting an Âj ¼ Iijþ1
⊗ Ioj ≡ Iijþ1oj . This

is the Choi state of the maximal depolarizing channel, up to
normalization. When marginalizing across all but a handful
of times or qubits, we will denote the remaining steps or
registers by commas, i.e.,

Ê
ðqi0 ;qi1 Þ
j0∶ j0−1;j1∶j1−1 ≔ Trfqi0 ;qi1g;ftj0 ;tj0−1;tj1 ;tj1−1g½ϒk∶0�;

ϒðqiÞ
k∶0 ¼ Trqi ½ϒk∶0�; ð4Þ

where the overlines denote complement, i.e., every qubit
except qi: Qnfqig, or every time except tj : Tknftjg.
When non-Markovian correlations persist as mediated

by the inaccessible bath, we designate this as bath non-
Markovianity (BNM). When the correlations are mediated
from neighboring qubits, we designate this as register non-
Markovianity (RNM). Naturally, since the bath cannot be
controlled by definition, BNM can be probed without
RNM, but RNM effects cannot be isolated by themselves.
Instead, one might consider the spatial process marginals
alone to measure direct crosstalk [26,32,33].
Procedure: To map these correlations on each qubit,

the classical shadows procedure naturally extends as
follows: at each t ∈ Tk, on each q ∈ Q, apply a unitary
operation randomly selected from the single qubit Clifford
group, followed by a projective measurement in the Z basis.
This defines a POVM on all qubits across all times
fU†

i jxihxjUigqmtj . The measurements considered have four
defining features: the qubit q on which they act, the time t
at which they are implemented, and the basis change U
applied prior to a measurement outcome x. To avoid
notational overload, we omit these final two labels when
writing instruments where the context is clear.
Record both the outcome of the measurement and the

random unitary. Reset the qubit to state j0i and apply a
random Clifford gate, recording this operation as well. The
intended effect of this is to apply a randomized quantum
instrument—i.e., a random measurement with an independ-
ently random postmeasurement state. See Fig. 2 for the
circuit diagram. The application of an instrument in each
chosen location in space and time constitutes a single-shot
piece of information about the process tensor. The single
shot is a projection of the process tensor onto the sequence of
interleaving measurements Π and preparations P:

Π̂Tk
¼ ⊗

k

l¼0
⊗
N

j¼1
ðUj�

ol jxihxjUjT
ol Þ;

P̂Tk
¼ ⊗

k

l¼1
⊗
N

j¼1
ðUj

il
j0ih0jUj†

il
Þ; ð5Þ

with probability given in accordance with Eq. (2). Note that
the Choi state of a POVM element is given by its transpose
[34]: Π̂ ¼ ΠT. Using the tensor product structure, we can
examine each measurement and each preparation at each
time on each qubit separately. The preparations P

qj
l are all

deterministic, and enact the quantum channel

MPðσqjil Þ ¼ EUj
il
∼U ½Uj

il
j0ih0jUj†

il
�; ð6Þ

where EUj
il
∼U is the expectation value taken over the unitary

ensemble. The inverse of this gives the classical shadow on
the process input legs

D̂j
il
≔ M−1

P ðUj
il
j0ih0jUj†

il
Þ ¼ 3Uj

il
j0ih0jUj†

il
− I: ð7Þ

Existence of this inverse is guaranteed by tomographic
completeness of the ensemble [21]. For the measurements
Πqj

l we have the usual single qubit Clifford channel:

MDðσqjol Þ ¼ EUj
ol
∼U;x∼Tr½Πqj

l σ
qj
ol
�½Uj�

ol jxihxjUjT
ol �: ð8Þ

Here, jxi on each qubit at each time is sampled according to
the generalized Born rule in Eq. (2), and depends generally
on the operations that come before it. The inverse of this
channel gives the shadow on the output legs:

Δ̂j
ol ≔ M−1

D ðUj�
ol jxihxjUjT

ol Þ ¼ 3Uj�
ol jxihxjUjT

ol − I: ð9Þ

FIG. 2. Circuit diagram of our proposed procedure. Spatio-
temporal classical shadows can be obtained by applying random
Clifford operations to each qubit, projectively measuring, reset-
ting, and then a random Clifford preparation. By repeating these
instruments across the circuit with chosen wait times, the
appropriate shadow postprocessing may be used to determine
spatiotemporal marginals of the process. Each oj signifies an
index where the state of the system is read out at time tj, and each
ijþ1 signifies the preparation of a new state, also at time tj.
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Hence, for a k-step process on N qubits, the classical
shadow is a reshuffling of

ϒ̂k∶0 ¼ D̂T
Tk

⊗ Δ̂T
Tk
; ð10Þ

to have the o and i legs alternating, and from which
properties can be efficiently determined using the usual
median-of-means estimation described in Ref. [21].
Erasing non-Markovian pathways.—The above pro-

cedure suffices to estimate marginals of a process tensor
with only logarithmic overhead, which we show for
completeness in the Supplemental Material [30]. In short,
we estimate the required observables to uniquely fix the
process marginal, and then employ a maximum likelihood
algorithm to determine a physically consistent process
tensor. We consider two possible applications of spatio-
temporal classical shadows, supplemented by numerical
demonstrations.
Distinguishing between passive crosstalk and bath non-

Markovianity: First, we consider certifying when non-
Markovian correlations originate via an inaccessible bath,
or from neighboring qubits in the register. Certifying bath
non-Markovianity means estimating ϒðqiÞ

k∶0—the marginal
process tensor for a single qubit. This can be simulta-
neously performed for all qi ∈ Q. The Choi state of the
operations on the remainder of the qubits at each time will
be I=d, i.e., a maximally depolarizing channel. Because this
enacts a causal break any information traveling from the
system into the register cannot persist forward in time.

Hence, computing N ðϒðqiÞ
k∶0 Þ will be a measure of correla-

tions from an inaccessible bath alone. We formally show
this in the Supplemental Material [30].
We demonstrate this numerically in Fig. 3. Here, we have

15 qubits and one defect quantum system acting as the
bath in a two-step process, and then compute N ðϒqi

2∶0Þ.
The qubits each experience a random nearest-neighbor
ZZ-coupling crosstalk, and the ones geometrically closest

to the defect are Heisenberg coupled to that system: H ¼
P

i

P
α J

α
i;Eσ

ðiÞ
α σðEÞα for random Jαi;E. Figure 3(a) shows the

standard fare: estimating the process tensor of each qubit
and determining its non-Markovianity while the other
qubits remain idle. However, the results are not so
informative because they do not distinguish between
RNM and BNM effects, and so every qubit experiences
temporal correlations. Figure 3(b) shows the results of a
shadow marginal estimation, and we readily identify only

the qubits coupled to bath defects have a nonzeroN ðϒðqiÞ
2∶0 Þ.

Identifying shared baths: A second important scenario
we consider is where two qubits are correlated via common
cause from a shared bath. For example, this might be
experiencing the same stray magnetic field inhomogene-
ities or through a coupling to a common defect. This is
sometimes referred to as crosstalk, because the joint map

Êðq1;q2Þ
j∶j−1 does not factor to Êðq1Þ

j∶j−1 ⊗ Êðq2Þ
j∶j−1 [32]. However,

(a) (b)

FIG. 3. A numerical simulation demonstrating the proposed
technique to isolate environmental effects. A grid of 15 qubits is
simulated with crosstalk effects and an inaccessible non-
Markovian defect. (a) Determining the non-Markovianity on
each qubit individually (with the remainder idle) is not very
informative, since each qubit looks non-Markovian due to passive

crosstalk. (b) After learning all of the shadow marginalsϒ
ðqjÞ
2∶0 , the

crosstalk is filtered out to reveal which qubits possess temporal
correlations from the environment.

(a)

(b)

FIG. 4. A numerical simulation demonstrating the proposed
technique to determine qubits with shared baths. A grid of 14
qubits is simulated with crosstalk effects and two inaccessible
non-Markovian defects. (a) Shadow filtering may be used to find
qubits coupled to an inaccessible bath as before. (b) By looking at

the correlations between map ÊðqmÞ
1∶0 with ÊðqnÞ

2∶1 , we can infer which
qubits share common baths and the extent to which the defects
redistribute quantum information. Note, the relationship lines
between qubits are not direct crosstalk interactions, but bath-
mediated spatiotemporal correlation.
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we consider this a coarse description because neither
system acts as a direct cause for each other’s dynamics.
Instead, they are subject to spatiotemporal correlations as
mediated by the same non-Markovian bath. The key,
therefore, is to measure the relationship between the maps

Êðq1Þ
j∶j−1 and Êðq2Þ

jþ1∶j.
We demonstrate this numerically in Fig. 4. We have a

similar setup to before, except this time with two bath
defects. Performing a shadow filtering [Fig. 4(a)] again
reveals which qubits are coupled to the defects. However, in
Fig. 4(b), we look at the spacetime marginals estimated
from the shadow data. This fine-grained data indicate
which qubits are commonly coupled to bath defects, versus
independently coupled. The arrows from qubit qi to qubit
qj indicate the QMI in the process with marginals

Ê
ðqjÞ
2∶1 ⊗ ϒðqiÞ

1∶0 , where ϒ1∶0 also includes initial correlations.
The erasure of qj in the first step and qi in the second step
eliminates the possibility of direct-cause correlations
between the two qubits, leaving only the possibility of
common cause. In other words, nonzero values are a
measure of non-Markovian correlations distributed by a
shared bath between two qubits. This generates a more
informative view of the connected interplay between qubits
and their environment.
Discussion.—We have introduced a scalable and con-

ceptually simple method to distinguish between non-
Markovian dynamics generated by nearby qubits in a
quantum device, and those from an inaccessible bath.
This contributes to the growing zoo of quantum bench-
marking techniques, and yet satisfies a unique niche.
Geometrically isolating non-Markovian sources across a
device can inform various facets of the development
process: the signals can warrant further investigation and
inform the fabrication process; flag qubits to be given extra
control attention; and be fed forward to error-correction
decoders.
This also extends the capabilities of the randomized

measurement toolbox to the multitime and multiqubit
domain, and we have identified an important use case in
efficient casual testing. We anticipate that there exist many
alternate applications of classical shadows to spatiotempo-
ral quantum states beyond what we have discussed here.
Notably, classical shadows have seen extensive recent
generalization and application to quantum speed-up in
the determination of quantum properties [22,28,35,36].
Dynamic sampling of small systems, meanwhile, has
been shown to be complex in the multitime sampling
setting [37]. We provide a template by which a similar
approach may be applied to quantum stochastic processes.
The learning of spatiotemporal correlations constitutes the
most general platform for this task, combining many-body
states with multitime processes.
Further research is needed to explore alternative ensem-

bles suitable for multitime processes. Specifically, whether

it is tractable to efficiently learn global observables;
which properties provide useful information about the
non-Markovian interactions; and whether causality con-
ditions imply a learnability gap between quantum states
and quantum processes.
We note also that we have introduced our filter in full

generality with respect to PTT, but the techniques are
generic: the only important point is that causal breaks are
applied to neighboring qubits between each step. The same
principles will broadly apply to other approaches to
learning non-Markovian dynamics [3,38–40].
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