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We introduce a family of entanglement witnesses for continuous variable systems, which rely on the sole
assumption that their dynamics is that of coupled harmonic oscillators at the time of the test. Entanglement
is inferred from the Tsirelson nonclassicality test on one of the normal modes, without any knowledge
about the state of the other mode. In each round, the protocol requires measuring only the sign of one
coordinate (e.g., position) at one among several times. This dynamic-based entanglement witness is more
akin to a Bell inequality than to an uncertainty relation: in particular, it does not admit false positives from
classical theory. Our criterion detects non-Gaussian states, some of which are missed by other criteria.

DOI: 10.1103/PhysRevLett.130.160201

Introduction.—Once troublesome to the founders of
quantum mechanics [1,2], entanglement is now well
established as one of the defining features of quantum
theory. While entanglement in discrete systems has gone
through much scrutiny [3,4], the field of continuous
variable (CV) quantum entanglement has had its challenges
outside the Gaussian regime [5].
Early entanglement criteria for CV systemswere based on

the second-order moments of quadrature distributions [6,7],
which are useful for Gaussian states, but ineffective other-
wise [8]. However, a computation consisting only of
Gaussian states and operations can be simulated efficiently
on a classical computer [9]. Similar no-go theorems also
exist for error correction [10] and entanglement distilla-
tion [11,12], encouraging the development of methods to
detect non-Gaussian CVentanglement. Efforts in this direc-
tion include criteria based on higher-order moments [13–17]
and full probability distribution [18,19] of quadrature mea-
surements. Recent advances include entropic entanglement
criteria based on quasiprobability distributions [20,21] and
measurement-device-independent criteria [22], both of
which require performing some form of partial tomography.
The criteria to be chosen would of course be informed by

the type of CV system used. The obvious test bed for CV
entanglement are opticalmodes [23] and vibrationalmodes of
trapped ions [24], but there has also been significant progress
for massive oscillators [25]. For many of these CV systems,
harmonic dynamics arises naturally in their implementation.
Because of these motivations, we present a criterion to

certify the non-Gaussian entanglement of two CV degrees
of freedom that exploits the knowledge of the dynamics of
the systems. We call it a dynamic-based entanglement
witness (DEW) [26]. Specifically, we consider degrees of
freedom that undergo types of harmonic dynamics, and
build on a nonclassicality test for a single oscillator [28,29].

A priori, our criterion exhibits two elegant features: the
absence of false positives from classical theory, and the
fact that only one observable needs to be measured. These
features, to be defined precisely below, can be appreciated
by contrast with existing entanglement witnesses, based
on generalized uncertainty relations [7,13–17]. Consider
specifically the criterion by Duan et al. [7]. Generalizing
the observables defined in the Einstein-Podolsky-Rosen
(EPR) argument [1], these authors defined the commuting
dimensionless variables u¼jcjx̃1þð1=cÞx̃2 (with x̃j ¼
xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjωj=ℏ

p
) and v ¼ jcjp̃1 − ð1=cÞp̃2 (with p̃j ¼

pj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mjℏωj

p
) for some c ∈ R. The two subsystems are

then entangled if hðΔuÞ2i þ hðΔvÞ2i < c2 þ ð1=c2Þ. This
requires measuring both positions and momenta, and with
a precision set by ℏ. At the precision of (say) human
perception, two springs at equilibrium are described by
x̃j ¼ p̃j ¼ 0, values which would imply entanglement if
plugged naively in the criterion above. Gross though it is,
this example shows the danger of false positives.
A posteriori, we find that our criterion detects states with

negative Wigner functions (thus, non-Gaussian), some of
which are missed by all existing criteria. As mentioned
earlier, Gaussian states have limited usefulness in many
quantum protocols [9–12]. In this context, our DEW
detects resource states for these protocols [30]. Thus,
besides being elegant, our DEW is also a useful addition
to the existing toolbox.
The single-oscillator protocol.—We review the Tsirelson

nonclassicality test [28] following the generalization given
in [29]. The assumption is that the physical quantity A1 is
undergoing a uniform precession at pulsation ω, i.e.,
A1ðtÞ ¼ A1ð0Þ cosωtþ A2ð0Þ sinωt, where A2 is another
physical quantity. For classical systems, A1ðtÞ is the value
of A1 at time t; for quantum systems, it is the corresponding
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observable in the Heisenberg representation. The protocol
for the test (which we call the precession protocol here-
after) goes as follows. In each round, the sign of A1 is
measured at one ofK different times given by tk ¼ ðk=KÞT,
where K > 0, k ¼ 0; 1;…; K − 1, and T is the period of
oscillation. After several rounds, one estimates

PK ¼ 1

K

XK−1
k¼0

�
Pr½A1ðtkÞ > 0� þ 1

2
Pr½A1ðtkÞ ¼ 0�

�
; ð1Þ

where the second term in the bracket was introduced in [29]
to avoid singular behaviors for states with noninfinitesimal
concentration on A1 ¼ 0. By inspection [29], the upper
bound PK ≤ Pc

K for a classical theory is easily derived:
Pc
K ¼ 1=2 for K even, and

Pc
K ¼ 1

2

�
1þ 1

K

�
for K odd: ð2Þ

Remarkably, in spite of the fact that the precessing
dynamics is identical to the classical one, there exist
quantum states for which PK > Pc

K for any odd K > 1.
For the remainder of the Letter, we focus on the harmonic

oscillator, i.e., a material point, whose time evolution is
governed by the Hamiltonian H ¼ 1

2mp
2 þ 1

2
mω2x2. The

pair ðA1; A2Þ ¼ ðx̃; p̃Þ clearly precesses at pulsation ω and
thus satisfies the assumption. On a given state ρ, quantum
theory predicts PK ¼ TrðρQKÞ, where

QK ¼ 1

K

XK−1
k¼0

pos½XðtkÞ�; ð3Þ

with posðXÞ defined by posðXÞjxi ¼ 1
2
½1þ sgnðxÞ�jxi.

The maximum quantum score PK ¼ maxjψi hψ jQKjψi
(denoted P∞

K in [29]) is achieved by jPKi, the eigenstate of
QK with the largest eigenvalue. Tsirelson proved that P3 ≳
0.709 > Pc

3 ¼ 2=3 [28]; similar violations are found for all
odd K [29]. The violation can be attributed to having
suitable patterns in the Wigner function, in particular,
suitably distributed negativities. A state with positive
Wigner function cannot give any violation.
Entanglement of two harmonic oscillators.—Now, the

key insight is that x may be the position of an effective
oscillator, built out of two (or more) physical ones. We
focus on the case of two oscillators, with arbitrary masses
and frequencies, and an x-x coupling. The standard
decomposition in normal modes yields

H ¼
X2
j¼1

�
1

2mj
p2
j þ

1

2
mjω

2
jx

2
j

�
−
1

2
gx1x2

¼
X

σ∈fþ;−g

1

2μ
p2
σ þ

1

2
μω2

σx2σ; ð4Þ

where μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
,

xþðtÞ ¼
�
m1

m2

�
1=4

cos θ x1ðtÞ þ
�
m2

m1

�
1=4

sin θ x2ðtÞ

x−ðtÞ ¼
�
m2

m1

�
1=4

cos θ x2ðtÞ −
�
m1

m2

�
1=4

sin θ x1ðtÞ; ð5Þ

with mixing angle θ¼ arctan2½g;μðω2
1−ω2

2Þ�=2, and
normal frequencies ω2

�¼½ðω2
1þω2

2Þ=2��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðω2

1−ω2
2Þ=2�2þðg2=4μ2Þ

p
. The time evolution of the

xσðtÞ is a uniform precession around phase space with
the period Tσ ¼ 2π=ωσ. Therefore, the single-oscillator
protocol can be performed for coupled oscillators with
different frequencies by measuring the normal modes
xσðtk þ t0Þ at times tk ¼ ðk=KÞTσ for k ¼ 0; 1;…; K − 1.
There are many ways to estimate PK for xσ: in each round,
xσ can be formed from x1 and x2 measured separately,
addressed directly (e.g., with motional modes of trapped
ions), or measured with an interferometer (e.g., with spatial
or polarization modes of photons). Notice also that, up to a
multiplicative constant, xσðtÞ has the same form as u
defined in the entanglement criterion by Duan and
co-workers [7].
It is important to stress that H describes the dynamics

during the certification protocol, not the interaction that
prepared the state under study. Thus, all values of the
parameters are allowed. In particular, the certification
protocol can be performed when g ¼ 0 and ω1 ¼ ω2. In
this case, θ can take on any value: indeed, for uncoupled
oscillators precessing at the same frequency, all linear
combinations of x1 and x2 are normal modes at that same
frequency.
Another point to note is that the dynamics are assumed to

be known, in which case only one quadrature xσ needs to be
measured for the protocol. One could of course replace this
assumption by taking the quadratures fxσðtkÞgK−1k¼0 at the
different times to be K different settings of the measure-
ment apparatus.
If PK > Pc

K for xσ, the state of that mode has certainly a
negative Wigner function. We want to study when one can
further infer that the physical subsystems are entangled.
This is not straightforward because, by performing the
protocol on one of the normal modes, we learn nothing
about the state of the other mode: the latter could be very
mixed; or the two normal modes may be even entangled.
We are going to provide the conditions under which
entanglement can indeed be certified.
Results.—For the quantum system, we denote the anni-

hilation operators of the two physical oscillators as
fa1; a2g: they are the subsystems whose entanglement
we want to certify. As hinted, xσðtÞ is the position of an
effective oscillator denoted by the annihilation operator aσ.
Specifically, let faþ; a−g be a new basis of modes, related
to the original by the passive transformation
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�
aþ
a−

�
¼

�
cos θ sin θ

− sin θ cos θ

��
a1
a2

�
ð6Þ

with θ ∈ ½0; π=4� the mixing angle previously defined. We
are going to study the operator QK given by Eq. (3) for the
position operator XσðtÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=2μωσÞ
p ðaσe−iωσ tþa†σeiωσ tÞ,

where QK and Xσ rely implicitly on θ via Eq. (6).
When θ ¼ π=4, we have an analytical proof of existence

of entanglement for any violation PK > PðcÞ
K :

Result.—If the precession protocol is performed with
θ ¼ π=4, all states that violate the classical bound (2) for
aþ (or a−) are entangled in fa1; a2g.
Proof.—We show this for aþ with a proof by contra-

diction. The proof for a− proceeds in a similar way.
Take ρ ¼ P

k pkρ
ðkÞ
1 ⊗ ρðkÞ2 separable in the fa1; a2g

subsystems. Its Wigner function is

Wρðα1; α2Þ ¼
X
k

pkW
ðkÞ
ρ1 ðα1ÞWðkÞ

ρ2 ðα2Þ; ð7Þ

where fα1; α2g are the phase-space coordinates in the
fa1; a2g modes. For θ ¼ π=4 in Eq. (6), the Wigner
function in terms of fαþ; α−g, the phase-space coordinates
in the faþ; a−gmodes, can be found with a straightforward
coordinate transformation:

Wρðαþ;α−Þ¼
X
k

pkW
ðkÞ
ρ1

�
αþ−α−ffiffiffi

2
p

�
WðkÞ

ρ2

�
αþþα−ffiffiffi

2
p

�
: ð8Þ

The measurement outcome in the aþ basis is determined
solely by the reduced Wigner function Wtr−ðρÞðαþÞ ¼R
d2α−Wρðαþ; α−Þ. By converting the passive coordinates

in the arguments into active transformations of the states,
we find

Wtr−ðρÞðαþÞ ¼ 2
X
k

pk

Z
d2γWðkÞ

ρ̃1ðαþÞðγÞW
ðkÞ
ρ̃2ðαþÞðγÞ

¼ 2

π

X
k

pk trðρ̃ðkÞ1 ðαþÞρ̃ðkÞ2 ðαþÞÞ; ð9Þ

where

ρ̃ðkÞ1 ðαþÞ ¼ D

�
1ffiffiffi
2

p αþ

�
e−iπa

†aρðkÞ1 eiπa
†aD†

�
1ffiffiffi
2

p αþ

�

ρ̃ðkÞ2 ðαþÞ ¼ D
�
−

1ffiffiffi
2

p αþ

�
ρðkÞ2 D†

�
−

1ffiffiffi
2

p αþ

�
:

and DðαÞ is the usual displacement operator. Thus
Wtr−ðρÞ ≥ 0, since it is a convex sum of inner products
between density operators [31]. However, negativity in the
Wigner function of aþ is necessary for a violation of the
classical bound of the precession protocol [29]. Therefore,

when θ ¼ π=4, any violation of the classical bound wit-
nesses entanglement of the fa1; a2g subsystems. ▪
Next, we are going to study in detail the protocol with

K ¼ 3. For any value of θ and of P3 > Pc
3 ¼ 2=3, we are

going to compute a numerical lower bound on the amount
of certifiable entanglement of fa1; a2g. We choose the
logarithmic negativity SNðρÞ ¼ log trjρΓ2 j as the quantifier
of entanglement. Since minρ SNðρÞ ¼ log minρ trjρΓ2 j, and

min
ρ

trjρΓ2 j

subject to tr½ρQ3ðθÞ� ¼ P3 ð10Þ

is a minimization of the trace norm under convex con-
straints, it can be cast as a standard semidefinite program
(SDP) when ρ is truncated in the basis of the excitations of
aþ and a− [36].
We run the SDP for truncation 0 ≤ nþ; n− ≤ n ¼ 11.

Both the form of the SDP and the choice of the truncation
are described in [37], and the script used to perform the
SDP is available at [45]. The results are plotted in Fig. 1.
We do not fully understand the dependence of the loga-
rithmic negativity on θ and P3 due to the complexity of the
states involved. Broadly speaking, what we do observe
from Fig. 1(b) is that the certifiable SN increases with θ and
P3, as shown more explicitly by the line cuts. For fixed
values of P3 ∼ P3, where P3 is the maximum quantum
score under the truncation n, the certifiable SN increases
with θ until a peak around θ ≳ 3π=16. Afterwards, the
entanglement decreases for larger values of θ, although
only slightly. In practice, θ is determined by the system, and
one would refer to the corresponding line cut in Fig. 1(c).
There, for fixed values of θ, we find that the entanglement
monotonically increases with P3.
We already knew that every P3 certifies entanglement

when θ ¼ π=4, and the graph indicates that this remains
true down to θ ≃ π=8. Below this value, one needs a
sufficiently large P3, a low violation of the classical bound
being compatible with separable states. When θ ¼ 0, the
precession protocol is performed on the first oscillator, and
so no amount of violation detects entanglement.
Comparison with other witnesses.—Now we put our

DEW in the context of entanglement witnesses for con-
tinuous variables (CVs), by comparing it to other criteria.
First of all, our DEW uses quadrature measurements in

the terminology of quantum optics. Other measurements
than quadratures can be used to witness CV entanglement:
for instance, one witness in Zhang et al. [13] uses local
measurements of the generators of SUðNÞ. In fact, any CV
entanglement can, in principle, be witnessed by projecting
the state into a finite dimensional subspace, then applying
techniques to witness entanglement of qudits [46].
Quadrature measurements have the appeal of having a
classical analog, are practical in many platforms, and in
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some setups may be even the only available ones at this
time (e.g., optomechanical systems with large masses).
As already mentioned in the introduction, the other

entanglement witnesses we are aware of are open to false
positives from classical theory [7,13,14,16,17]. By contrast,
in the case of our DEW, poor precision or wrong calibration
may prevent the detection of entanglement, but will not
lead to false positives. This is similar to what happens with
Bell inequalities, where noise and lack of precision may
decrease or cancel the violation, but not fake it.
Having mentioned this, it is natural to move on to the

comparison in terms of characterization of the devices. Fully
device-independent entanglement witnesses (Bell inequal-
ities) that use only quadrature measurements have been hard
to find: the few known examples are very specific [47–49].
Recently, a measurement-device-independent criterion was
introduced, under the assumption that a trusted source of
coherent states is available [22]. Meanwhile, our DEW is
semi-device-independent: it works under the assumptions
that the dynamics is a uniform precession, and that the
same quadrature is measured whatever time is picked.
Both assumptions are well defined both in classical and
in quantum theory. In fact, the notions of “position” and
“uniform precession” are operational, and their meaning
immediate by everyday experience (what may not be
immediate is the identification of a normal mode).
Lastly, let us compare the states that are detected by the

existing criteria against those detected by our DEW. Many
existing criteria can detect entangled Gaussian states, like
the two-mode squeezed state and its limiting case, the EPR

state; our DEW misses these states, since their Wigner
function is positive. Our DEW is also unsuitable for states
with even rotational symmetry, like photon-subtracted or
added squeezed number states [50,51] and spin coherent
states [15], because they commute with the total parity
operator (details in [37]). Conversely, for any K ≥ 3 odd,
consider the states

jfψngni ¼
XnK
j¼0

jΨji1 ⊗ jji2

¼
�Xn

n¼0

ψnjnKiþ
�
⊗ j0i− ≡ jΨniþ ⊗ j0i− ð11Þ

with

jΨji ¼
Xn

n¼⌈j=K⌉

ψn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
nK

j

�s
ðcos θÞnK−jðsin θÞjjnK − ji;

where n can go to infinity, and the pairs of modes are
related by Eq. (6). These states exhibit odd rotational
symmetry—making them candidates for a type of bosonic
error correcting codes [52]—and are entangled as long as
θmod π=2 ≠ 0 and jψnj ≠ δn;n0 for one value n0. All are
missed by [7,13,22], and some also by [14,15] (see
Ref. [37] for details). Clearly our DEW detects the
entanglement of all the states (11) such that jΨni violates
the original precession protocol with K possible probing
times. In particular, the eigenstates of QK with maximal

(a) (b)

(c)

FIG. 1. (a) Heat map of logarithmic negativity as a function of the mixing angle θ and the score P3. Only the range 0 ≤ θ ≤ π=4 is
shown: other values of θ corresponds to this range with a sign change of x1 and x2, which can be effected with a local unitary on the
fa1; a2g basis and hence does not affect the amount of entanglement. The dimension of the Hilbert space is truncated at n ¼ 11 for both
modes aþ and a−, and P3 is the maximum quantum score under this truncation. The dotted line separates the states with SN > 0 (such
that SN − ε > 0, where ε ≲ 10−4 is the dual gap of the SDP) and those with SN ¼ 0. (b) Horizontal line cuts of the heat map. For fixed
P3, SN increases with θ. (c) Vertical line cuts of the heat map. For fixed θ, SN increases with P3.
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eigenvalue are of the form jΨni, and so the corresponding
jfψngni is optimally detected by our DEW. As another
example: for K ¼ 3, θ ¼ π=4 and a suitable choice of the
ψn (see Ref. [37]), the state (11) is the entangled three-level
cat state

jΨðαÞi ∝
X1
k¼−1

jαei2πk=3i1 ⊗ jαei2πk=3i2:

This state is detected by our DEW for 0.88≲ jαj ≲ 1.23,
while for 1.23≲ jαj ≲ 1.82 it is detected by the criteria
of [14,15]. Finally, let us notice that one does not need very
high excitations: our DEW with K ¼ 3 detects the state
with ðψ0;ψ1;ψ2Þ ≃ ð0.6172;−0.7017; 0.3450Þ, which is a
superposition of 0, 3, and 6 excitations in aþ.
More generally, our DEW is not a subset of any member

of the family of uncertainty-based entanglement wit-
nesses defined by Shchukin and Vogel [16] and Nha and
Zubairy [17], which include [7,14,15] as special cases.
Conclusion.—We have introduced a dynamic-based

entanglement witness for two harmonic oscillators. It
consists of certifying the quantumness of a normal mode
using the Tsirelon protocol [28,29]: the entanglement of the
physical oscillators can then be inferred, without having
any information about the other normal mode (obviously,
having also some information about it can only tighten the
lower bounds that we have obtained).
Our criterion detects a different set of states than those

captured by previous ones. Also, it does not rely on other
features of quantum theory (e.g., some form of uncertainty
relations): it only assumes the form of the dynamics. As
only straightforward coordinate measurements are used, and
false positives from classical theory are excluded, our
criterion is useful for objects which are too massive to be
fully tomographed. It is timely, as recent advances in
optomechanics have allowed for quantum control of objects
with masses in the mesoscopic and macroscopic scales [25].
The ability to generate and detect quantum effects in such
systems has proven useful in technologies that aim to
exploit the effects of quantum mechanics, in particular,
quantum sensing [53,54] and metrology [55]. Moreover, it
is also important in experimental studies of fundamental
physics, in tests of collapse theories [56] and quantum-
classical transitions [57].
In order to focus on the essentials of the idea, in this Letter

we have kept to the simplest form of dynamics, that of two
coupled harmonic oscillators. The underlying Tsirelson
protocol can be extended to a wide class of Hamiltonians,
possibly with an additional energy constraint [58].
Dynamic-based entanglement certification can also be
extended to dissipative dynamics: leaving quantitative esti-
mates for future work, it is clear that one will still be able to
certify entanglement provided the relaxation time is long
enough. We have also only focused on the bipartite scenario
here, but an obvious future direction would be to extend our

protocol for the multipartite case. As an early example, we
show in [37] that by performing the precession protocol in
the ∝ a1 þ a2 þ a3 mode, our DEW can detect genuine
tripartite entanglement [59].
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