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The dynamics generated by non-Hermitian Hamiltonians are often less intuitive than those of
conventional Hermitian systems. Even for models as simple as a complexified harmonic oscillator, the
dynamics for generic initial states shows surprising features. Here we analyze the dynamics of the Husimi
distribution in a semiclassical limit, illuminating the foundations of the full quantum evolution. The
classical Husimi evolution is composed of two factors: (i) the initial Husimi distribution evaluated along
phase-space trajectories and (ii) the final value of the norm corresponding to each phase-space point. Both
factors conspire to lead to intriguing dynamical behaviors. We demonstrate how the full quantum dynamics
unfolds on top of the classical Husimi dynamics for two instructive examples.
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Introduction.—An underlying classical dynamics is cen-
tral in the interpretation of quantum features. The compari-
son between quantum and classical behavior in phase space
is of particular value. Among the quantum phase-space
distributions, the Husimi distribution stands out for being
strictly positive and normalizable [1–4]. The quantum
dynamics of the Husimi distribution is described by a partial
differential equation of potentially infinite order. When
truncated after the first order, inHermitian systems it reduces
to a Liouvillian classical phase-space flow that provides
the “classical bones” for the “quantum flesh” of the full
dynamics generated by the higher-order derivatives [5].
In the present Letter, we consider the phase-space dy-

namics generated by non-Hermitian Hamiltonians, which
have moved into the focus of intense research interest over
the past decade (see, e.g., [6,7] and references therein).
Complex energies provide simple heuristic models of losses
or gains in quantum (and other wave) systems. Quantum
dynamics generated by non-Hermitian Hamiltonians are
also closely related to master equations appearing in
descriptions of open quantum systems [8–12]. The special
class of PT-symmetric Hamiltonians, describing systems
with a certain balance of loss and gain, can lead to intriguing
dynamical features at the intersection of conservative and
dissipative behaviors [13–17]. We are only beginning to
glimpse the rich structure of their quantum-classical corre-
spondence. Phase-space considerations have yielded much
new insight into static properties of non-Hermitian systems
in comparison to their classical counterparts [18–23].

Non-Hermitian systems are often discussed on the
backdrop of complexified classical equations of motion
with complex position and momentum [24]. Alternatively,
the dynamics of Gaussian states in a classical limit leads to
dynamics on a real phase space with a changing metric
structure [25]. For quadratic systems, the two approaches
have an elegant geometric connection [26,27]. The quan-
tum-classical correspondence of dynamics beyond the
Gaussian approximation of the quantum state, however,
has hitherto not been analyzed, constituting a crucial gap in
the understanding of non-Hermitian quantum systems.
Here we provide a new perspective on these dynamics in
terms of a classical phase-space evolution for arbitrary
initial states.
We will show that for non-Hermitian Hamiltonians a

semiclassical approximation leads to a Husimi evolution
governed by two competing factors, the transported initial
distribution along a set of phase-space trajectories and a
factor reflecting the change of the quantum norm as a
function of the initial phase-space point, a “norm land-
scape.” The interaction between these two components
leads to nontrivial dynamics, already in example systems as
simple as a harmonic oscillator with a complex frequency.
We shall demonstrate the correspondence between the full
quantum and the classical Husimi flows for two illustrative
examples, a damped anharmonic oscillator with bistability,
appearing in various physical applications [28,29], and an
anharmonic oscillator with PT symmetry.
For simplicity, we consider time-independent Hamil-

tonians. The ideas can be straightforwardly generalized to
Hamiltonians with explicit time dependence. Throughout
the Letter, we use scaled units with ℏ ¼ 1.
Husimi dynamics in the Harmonic oscillator.—Let us

begin with a brief summary of the dynamics in the standard
quantum harmonic oscillator described by the Hamiltonian
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Ĥ ¼ ω

�
â†âþ 1

2
Î

�
; ð1Þ

where ω ∈ Rþ denotes the frequency of the oscillator.
Coherent states

jzi ¼ D̂ðzÞj0i ¼ ezâ
†−z�âj0i; ð2Þ

with

z ¼ 1ffiffiffi
2

p ðqþ ipÞ; ð3Þ

and p; q ∈ R, remain coherent, with minimal uncertainty,
under the dynamics generated by the Hamiltonian (1).
An initial coherent state jψð0Þi ¼ jzci, localized at zc,
evolves as

jψðtÞi ¼ e−i
ω
2
tjzcðtÞi with zcðtÞ ¼ zce−iωt; ð4Þ

thus following the classical trajectories.
The coherent states are an overcomplete basis of the

Hilbert space, and their overlaps with a state jψi can be
used to define the Husimi representation QðzÞ [1,30] of the
state as

QðzÞ ¼ hzjψihψ jzi: ð5Þ

In the harmonic oscillator for an arbitrary initial state, an
initial Husimi distribution is rotated rigidly in time with
frequency ω, just as a classical phase-space density
would be.
A complex harmonic oscillator.—Let us now consider a

complexified version of the harmonic oscillator described
by the non-Hermitian Hamiltonian

K̂ ¼ ðω − iγÞ
�
â†âþ 1

2
Î

�
; ð6Þ

where γ;ω ∈ Rþ. Here γ represents an effective damp-
ing. The eigenstates are the usual harmonic oscillator
states jni, with corresponding complex eigenenergies
λn ¼ ðω − iγÞðnþ 1

2
Þ.

Just as in the Hermitian limit, the complex harmonic
oscillator leaves coherent states coherent [31]. For an initial
coherent state jψð0Þi ¼ jzci, the solution to the time-
dependent Schrödinger equation is given by

jψðtÞi ¼ e−i
ω−iγ
2
te−

jzc j2
2
ð1−e−2γtÞjzcðtÞi; ð7Þ

with

zcðtÞ ¼ zce−iðω−iγÞt: ð8Þ

In contrast to the Hermitian case, the dynamics for more
general initial states are not simply transported along the
same trajectories as the coherent-state motion. From the
direct solution of the time-dependent Schrödinger equation,
we find the time-evolved Husimi function for an arbi-
trary initial state jψð0Þi with Husimi distribution Q0ðzÞ is
given by

Qðz; tÞ ¼ Q0ðζ0ðz; tÞÞe−γte−jzj2ð1−e−2γtÞ; ð9Þ

where ζ0ðz; tÞ denotes the functional dependence of the
initial condition ζ0 of the trajectory

ζðtÞ ¼ ζ0e−iðωþiγÞt; ð10Þ

on z, t, such that ζðtÞ ¼ z. That is, the time-dependent
Husimi distribution consists of two factors: the initial
distribution transported along the trajectories (10) and a
phase-space distribution

wðz; tÞ ≔ e−γte−jzj2ð1−e−2γtÞ; ð11Þ

reflecting the structure of growth and decay on phase space.
Importantly, for a nonvanishing imaginary part, the tra-
jectories (10) do not agree with the trajectories of a coherent
state given by (8). Instead, the interplay between the
transported initial distribution and the distribution reflect-
ing the different norm dynamics across phase space (11)
returns the coherent-state trajectory for an initial coher-
ent state.
For an initial harmonic oscillator state jni (which is not a

minimum uncertainty state for n ≠ 0) displaced to zc, with
Husimi distribution

Q0ðzÞ ¼
jz − zcj2n

n!
e−jz−zcj2 ; ð12Þ

the time-evolved Husimi function is given by

Qðz;tÞ¼e−2γðnþ1
2
Þt−jz−zce−iðω−iγÞtj2 jz−zce−iðωþiγÞtj2n

n!
: ð13Þ

For n ¼ 0, this reduces to

Qðz; tÞ ¼ e−γte−jz−zcðtÞj2 ; ð14Þ

with zcðtÞ ¼ zce−iðω−iγÞt, confirming the previous observa-
tion that a coherent state remains coherent under the
dynamics, following the trajectory (8). For n ≠ 0, the
initial ring-shaped distribution transported along the out-
ward spiraling trajectories conspires with the Gaussian
distribution that grows around the center of phase space. In
stark contrast to the Hermitian case, this leads to a
deformation of the overall state following a different
trajectory from the coherent state. This is illustrated in
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Fig. 1, where snapshots of the Husimi distribution at
different times for n ¼ 0 and n ¼ 2 are displayed.
Semiclassical dynamics of Husimi distributions.—For

general non-Hermitian systems with Hamiltonian K̂, it
follows from the Schrödinger equation that

i
∂Q
∂t

¼ hzjK̂jψihψ jzi − hzjψihψ jK̂†jzi: ð15Þ

For simplicity, we assume that the Hamiltonian is an
analytic function of creation and annihilation operators,
expanded in a normal-ordered power series as

K̂ ¼
X
m;n¼0

Kmnâ†mân; ð16Þ

where Kmn are complex coefficients. The equation of
motion (15) of the Husimi distribution then takes the form

i
∂Q
∂t

¼
X
m;n¼0

Kmnz�mhzjânjψihψ jzi

− K�
mnzmhzjψihψ jâ†njzi; ð17Þ

where we have used that ânjzi ¼ znjzi. Further, using that
[1,32]

hzjψihψ jâ†njzi ¼ e−jzj2
∂
n

∂zn
½QðzÞejzj2 � ð18Þ

hzjânjψihψ jzi ¼ e−jzj2
∂
n

∂z�n
½QðzÞejzj2 �; ð19Þ

we recognize Eq. (17) as a higher-order differential
equation for Qðz; tÞ. While z and z� are regarded as

independent variables here, for brevity, we omit the explicit
dependence on z� in the notation.
The classical dynamics of the Husimi distribution,

resulting from the leading orders in the semiclassical
parameter jzj−2 [1] is given by

∂Q
∂t

þ i
∂K
∂z

∂Q
∂z�

− i
∂K�

∂z�
∂Q
∂z

− 2ΓQ ¼ 0: ð20Þ

Here K denotes the classical phase-space function

K ¼
X
m;n¼0

Kmnz�mzn; ð21Þ

and Γ ¼ 1
2i ðK − K�Þ is the classical counterpart of the anti-

Hermitian part of the Hamiltonian.
For a given initial Husimi distribution Q0ðzÞ, we solve

Eq. (20) using the method of characteristics [33] to find

Qðz; tÞ ¼ Q0ðζ0ðz; tÞÞwðz; tÞ; ð22Þ

where ζ0ðz; tÞ denotes the initial condition of the
trajectories

_ζ ¼ −i
∂K�

∂ζ�
; ð23Þ

such that ζðtÞ ¼ z. In terms of real phase-space coordinates
p and q the equations of motion (23) become

_p ¼ −
∂H
∂q

þ ∂Γ
∂p

and _q ¼ ∂H
∂p

þ ∂Γ
∂q

; ð24Þ

where H ¼ 1
2
ðK þ K�Þ denotes the classical counterpart of

the Hermitian part of the Hamiltonian. The function wðz; tÞ
is given as the solution of the differential equation

_wðz; tÞ ¼ 2Γðζ0ðz; tÞÞwðz; tÞ; ð25Þ

with the initial condition wðz; 0Þ ¼ 1. To obtain wðz; tÞ,
every individual phase-space point is transported backward
along a trajectory ζðtÞ of (23), and the corresponding value
of wðz; tÞ changes by locally decaying or growing expo-
nentially with a rate proportional to the current value of
Γ along the trajectory. This reflects the influence of the
change of norm of the quantum system, and we will refer to
the distribution of final values wðz; tÞ at a given time as the
norm landscape.
Equation (22) is the central result of this Letter. For a

Hermitian system, the time-evolved classical Husimi dis-
tribution is simply given by the initial Husimi distribution
transported along the classical trajectories. In contrast to
this, in the non-Hermitian case, the time-evolved Husimi
function consists of a product of the initial Husimi function
transported along the trajectories ζðtÞ (the solution of

FIG. 1. Renormalized Husimi distributions at times t ¼ 0 (left),
t ¼ ð2π=3Þ (middle), and t ¼ ð4π=3Þ (right) for a complex
harmonic oscillator (6) with ω ¼ 1 and γ ¼ 0.15. The top and
bottom rows depict the renormalized Husimi distributions for an
initial harmonic oscillator state jni displaced to zc ¼ ð1= ffiffiffi

2
p Þð4þ

2iÞ for n ¼ 0 (top) and n ¼ 2 (bottom). The white lines depict the
trajectories of the expectation values up to the specified times.
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Hamilton’s equations with Hamiltonian K� as opposed to
K) weighted by the norm landscape at the given time.
Equation (22) can alternatively be derived froma coherent

state approximation of the dynamics. The Husimi distribu-
tion of a time-evolved state jψðtÞi ¼ Ûjψð0Þi, with time
evolution operator Û ¼ e−iK̂t, is by definition given by

Qðz; tÞ ¼ jhzjÛjψð0Þij2; ð26Þ

which may be rewritten as

Qðz; tÞ ¼ jhϵðtÞjψð0Þij2; ð27Þ

where we define

jϵðtÞi ¼ Û†jzi: ð28Þ

The time evolution operator Û† can be interpreted as the time
evolution generated by −K̂†. In general, jϵðtÞi will not be a
coherent state. In the classical limit, however, one can
approximate jϵðtÞi with a coherent state and a norm factor
as [31]

jϵðtÞi ¼ wðz; tÞ12jz̃ðtÞi; ð29Þ

where z̃ðtÞ is the solution of a complexified Hamiltonian
flow with the Hamiltonian −K�, and wðz; tÞ12 is the corre-
sponding norm, yielding (22).
The quantum and classical Husimi flows are identical as

long as the Hamiltonian is a bilinear function of the creation
and annihilation operators. For more general systems, the
classical Husimi evolution (22) is a short-time approxima-
tion of the full quantum dynamics. We will illustrate the
features of the classical Husimi flow and its relation to the
quantum flow in two examples.
Example 1.—As a first example, we consider a tilted

Mexican hat profile in phase space with additional damp-
ing, described by the Hamiltonian

K̂ ¼ −â†â − iγâ†âþ βâ†â†â âþ δffiffiffi
2

p ðâ† þ âÞ; ð30Þ

with β; δ; γ ∈ Rþ. Similar models arise in various physical
systems, such as optical systems with a Kerr nonlinearity
[28,29]. The anti-Hermitian part can be viewed as resulting
from photon losses and a postselection of experimental
outcomes [11]. The classical Hamiltonian is given by

K ¼ −jzj2 − iγjzj2 þ βjzj4 þ δffiffiffi
2

p ðz� þ zÞ

¼ −ð1þ iγÞp
2 þ q2

2
þ β

ðp2 þ q2Þ2
4

þ δq: ð31Þ

A phase-space portrait of the trajectories along which the
Husimi distribution is transported is depicted in the top left

panel of Fig. 2, for the parameter values β ¼ 0.05, δ ¼ 1,
and γ ¼ 0.05. The trajectories spiral outward away from
two fixed points. Two snapshots of the logarithm of the
corresponding norm landscape are depicted in the middle
and right plots of the top row of the same figure at times
t ¼ 2 and t ¼ 8, respectively. We observe a dominant
maximum located away from the origin. The overall norm
decreases, and the final value of the norm depends strongly
on the initial positions. The remaining panels of Fig. 2
show snapshots of the Husimi distribution corresponding to
an initially displaced second excited state. The middle row
shows the classical flow, and the bottom row shows the full
quantum Husimi distribution at the same times. We observe
clear traces of the phase-space trajectories in the time-
evolved Husimi distribution for these intermediate times.
The quantum flow is organized according to the under-
lying classical flow, with additional quantum interferences.
The long term dynamics of both quantum and classical
flow are dominated by the single maximum in the norm
landscape.
The main contribution of the anti-Hermitian part in this

example is a damping effect. This is a typical feature, but by
no means the only possible effect of anti-Hermitian
terms. In particular, in PT-symmetric cases, the interplay
between Hermitian and anti-Hermitian components can
lead to far less intuitive behaviors. We will close with
a brief discussion of the Husimi flow in one such
example.

FIG. 2. Non-Hermitian anharmonic oscillator (30) with
γ ¼ 0.05, β ¼ 0.05, δ ¼ 1. Top row: phase-space trajectories
(left) and logarithm of norm landscapes at t ¼ 2 (middle) and
t ¼ 8 (right). Snapshots of the classical (middle row) and quantum
(bottom row) Husimi distributions (renormalized) at times t ¼ 0.5
(left), t ¼ 2 (middle), and t ¼ 8 (right), for an initial harmonic
oscillator state j2i displaced to zc ¼ ð1= ffiffiffi

2
p Þð−3þ 5iÞ.
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Example 2.—We consider the Hamiltonian

K̂ ¼ â†âþ βâ†â†â â−i
ϵffiffiffi
2

p ðâ† þ âÞ; ð32Þ

with β; ϵ ∈ Rþ. which is an anharmonic oscillator with a
gain-loss profile in the q direction. This system is PT-
symmetric with respect to the PT operator

PT∶ q̂ → −q̂; p̂ → p̂; i → −i: ð33Þ
The corresponding classical Hamiltonian is given by

K ¼ jzj2 þ βjzj4 − i
ϵffiffiffi
2

p ðz� þ zÞ

¼ p2 þ q2

2
þ β

4
ðp2 þ q2Þ2 − iϵq: ð34Þ

The resulting phase-space trajectories are equivalent to the
trajectories of the real-valued Hamiltonian

H̃ ¼ p2 þ q2

2
þ β

4
ðp2 þ q2Þ2 þ ϵp: ð35Þ

The imaginary part of the Hamiltonian (34) leads to a pull
toward decreasing position, which is reflected in the extra
linear momentum term in the real Hamiltonian. There is a
single elliptic fixed point located at q ¼ 0 and p0 < 0,
where p0 is the single real root of the polyno-
mial p3

0 þ 1
βp0 þ ϵ

β ¼ 0.
A phase-space portrait for β ¼ 0.25 and ϵ ¼ 1 is

depicted in the top left panel of Fig. 3. Because of the
quartic term, the frequencies of the orbits increase with
their distance from the fixed point. When transporting an
initial density along these orbits, the different frequencies
lead to a spread of the initial distribution along whorl
structures, similar to the Hermitian case [1]. The non-
Hermiticity of the system manifests in the time dependence
of the norm landscape, two snapshots of which (at times
t ¼ ðπ=4Þ and t ¼ π) are depicted in the middle and right
plots in the top row of the same figure. Since the trajectories
are all symmetric around q ¼ 0, the value of the norm
periodically returns to one for all initial states, however, at
different times for the different initial conditions. In
contrast to the previous example, the values of the classical
norm are bounded, and the long time limit of the norm
landscape is given by a distribution that is spread out over
an ever finer spiraling structure. The middle and bottom
rows of Fig. 3 show snapshots of the classical and quantum
dynamics of the Husimi distribution for an initially dis-
placed third excited state at three different times. The
classical Husimi distribution evolves into a whorl structure,
where the density is concentrated in regions corresponding
to the higher areas of the norm landscape. The full quantum
evolution shows characteristic interference effects on top of
the classical flow, which are partially washed out by the
non-Hermitian part. The nonuniform distribution of the
quantum density is clearly in accordance with the predic-
tions of the classical norm landscape.

Conclusion.—In summary, we have derived a classical
counterpart of the Husimi flow generated by non-Hermitian
Hamiltonians, which highlights the stark differences to
Hermitian systems. The classical flow consists of two
factors, the original Husimi distribution transported along
phase-space trajectories and a norm landscape. The inter-
play of both factors leads to intriguing dynamics, which
often describe damping effects, such as in our first example,
or more subtle effects of gain and loss, such as in our
second (PT-symmetric) example. The investigation of the
classical Husimi flow will be a powerful tool in the analysis
of general non-Hermitian model systems. It is an interesting
task to extend the approach presented here to master
equations and stochastic Schrödinger equations appearing
in other models of open quantum systems.
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