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We propose a universal framework to compute record age statistics of a stochastic time series that
undergoes random restarts. The proposed framework makes minimal assumptions on the underlying
process and is furthermore suited to treat generic restart protocols going beyond the Markovian setting.
After benchmarking the framework for classical random walks on the 1D lattice, we derive a universal
criterion underpinning the impact of restart on the age of the nth record for generic time series with nearest-
neighbor transitions. Crucially, the criterion contains a penalty of order n that puts strong constraints on
restart expediting the creation of records, as compared to the simple first-passage completion. The
applicability of our approach is further demonstrated on an aggregation-shattering process where we
compute the typical growth rates of aggregate sizes. This unified framework paves the way to explore
record statistics of time series under restart in a wide range of complex systems.
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Introduction.—How long will it take for the price of a
stock to cross its current all-time-high value? When will
another human being cover 100 meters faster than Usain
Bolt? These questions pertain to computing record ages, a
quantity that lies at the heart of the subject of record
statistics [1–6]. The study of record-breaking events has
generated immense research interest since the pioneering
work of Chandler in 1952 [7], owing to its applications in
fields including finance [8–10], climate studies [11–14],
hydrology [15], sports [16,17], and also physics [18–23].
The prototypical setting in the study of records consists

of a discrete time series x̄ ¼ fx0; x1; x2;…g, where the
entries could represent the daily temperatures of a city, the
number of people infected in a day during a pandemic, or
any other observable of interest that is being measured at
discrete time points. The jth entry, xj, of the time series x̄ is
called a record if its numerical value exceeds the values of
all preceding entries, xi, i.e., xj > xi for all i < j. Important
insight into the persistence of a record xi is obtained
through the record age LðxiÞ, which denotes the number of
time steps needed for a new record to be created, after xi.
Concretely, for two consecutive records xi and xj, the record
ageLðxiÞ is defined tobe j − i, as depicted inFig. 1(a),where
the two yellow symbols denote record events.
While most of the efforts have been focused toward

studying the case where the entries of the time series x̄ are
independent and identically distributed random variables,
oftentimes the entries obtained from real-world scenarios
are in fact correlated. Moreover, as we live in a world where
global catastrophes seem to be inevitable, consequently
their signatures appear in most datasets of practical
relevance, with examples including a sudden fall in the

price of a stock [24], a sharp layoff of individual jobs due to
postpandemic recession, or a massive extinction of pop-
ulation due to catastrophe [25]. This ubiquitous feature of
resetting events is not limited to economics [24,26], opera-
tions research [27], or ecology [28]. It can also be observed
in microscopic out-of-equilibrium physical [29–33],
chemical [34,35], or biological [36,37] systems. More
recently, restart has also emerged as an efficient strategy
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FIG. 1. (a) Schematic for an observable xðtÞ that evolves and
undergoes stochastic resetting. Yellow points denote record
events (X). Dashed red lines denote restart events, and blue lines
denote nonrestart transitions in the evolution of the process. (b) A
mass aggregation-shattering process. Masses aggregate on a
nucleation site until a shattering event occurs, resetting the mass
to zero. Aggregation resumes and continues to grow until the next
shattering event.
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to speed up complex search processes with potential
applications in optimization problems [38–41] and search
theory [28,29,31,42–55]. A natural question then arises:
How do such restart events ramify the record statistics—in
particular, the record ages? Quite remarkably, our answer
to this question also sheds light on a seemingly unre-
lated problem, namely the lifetime statistics in the mass
aggregation-shattering models (see Fig. 1).
The central theme of this Letter is to build a unified

formalism that allows us to obtain record ages for time
series generated by arbitrary stochastic processes that are
subjected to intermittent collapse-restart events. Employing
ideas and techniques from the first passage under restart
description [44,56,57], we distill the core principles that
underpin the universal behavior of record ages under
arbitrary restart. This allows us to probe record ages in a
very generic setting covering both Markov and non-
Markov processes, with minimal assumptions. In particu-
lar, we derive a universal criterion that dictates the effect of
restart on the record ages. Notably, the statistics of the
number of records (average properties) have been studied
recently for random walk (RW) models under the
assumption of geometric restart steps [58,59]. However,
the observable of interest herein is the record ages that have
not been studied hitherto. After demonstrating the formal-
ism for a biased RW, we apply it to the widely applicable
aggregation-fragmentation models [Fig. 1(b)]. To be spe-
cific, we compute the growth rate for mass aggregates that
requires us to generalize the formalism to arbitrary shatter-
ing and restart events that are not necessarily rate limiting
process but can also have intrinsic temporal heterogeneity.
General formalism.—We start by considering an

extremely general case, where we have an arbitrary discrete
time series x̄ ¼ fx1; x2; x3…g generated by a stochastic
process. Corresponding to this time series, we have the set
of records X̄ ¼ fX1; X2; X3;…g, where Xi denotes the
numerical value of the ith record-breaking event in the time
series x̄. For each Xi, we define the record age LðXiÞ to be
the time taken for the next record-breaking event Xiþ1 to
occur following Xi [60].
Now, suppose the stochastic process generating the time

series x̄ is subjected to random restart events, whose
occurrence bring the numerical value of the subsequent
entry in the time series to a predetermined value that is
assumed to be 0. Note, however, a generalization to this
assumption (i.e., restart from another arbitrary value or
from an ensemble) is feasible within our framework. Let us
denote by X an entry that is a record-breaking event in the
time series generated by the stochastic process under restart
events. For simplicity, let us assume that these restart events
take place after some geometrically distributed random
time step R (generalization to arbitrary distributions is
considered later). The age of the record X (under restart) is
denoted by LRðXÞ. If the record-breaking event subsequent
to the formation of record X occurs prior to any restart, we

have LRðXÞ ¼ LðXÞ. Otherwise, the process resets to 0
after time R, and from there the resultant process has to be
observed until it crosses the record X. Combining these two
possibilities, one has

LRðXÞ ¼
�
LðXÞ if LðXÞ < R

Rþ TR
X;0 otherwise;

ð1Þ

where TR
X;0 is the time taken for the time series to cross the

threshold X for the first time, given that it starts from 0, in
the presence of restart events. Equation (1) is central to our
analysis. Indeed, noting that LRðXÞ ¼ minfLðXÞ; Rg þ
1½R ≤ LðXÞ�TR

X;0, where minfz1; z2g is the minimum of
z1 and z2 and 1ðz1 ≤ z2Þ is an indicator random variable
that is unity if z1 ≤ z2 and zero otherwise, we find the mean
record age as follows:

hLRðXÞi ¼ hminfLðXÞ; Rgi þ Pr½R ≤ LðXÞ�hTR
X;0i; ð2Þ

where hTR
X;0i is the mean first-passage time under restart

[56,57,62]. Given the statistics of individual terms, one can
then compute the mean record age using Eq. (2). Notably,
Eq. (1) serves as a backbone to provide the full statistics of
the record age, which is also a perceived challenge. To gain
further insights, we first illustrate our formalism on the 1D
lattice RW and then show how the generalized theory
applies to more complex scenarios.
Random walks on 1D lattice.—A major advancement in

our understanding of record statistics beyond independent
and identically distributed random variables has come
through the examples of RW that were popularized
following Pólya’s seminal work [63]. A major advantage
of using random walk models is that we can gain much
insight by solving them analytically [64–67]. To proceed
further, we assume that the 1D RW evolves with the
dynamics xi ¼ xi−1 þ ηi−1, where xi denotes the position
of the RW at ith step and ηi is the increment. The walker is
biased so that ηi ¼ þ1 with probability p, and ηi ¼ −1
with probability 1 − p, for all i. Positions of the RW (xi)
represent a strongly correlated time series. Furthermore,
the walker experiences sharp transitions with probability r
to the origin after which it restarts its dynamics [42,56].
For the case of random walk on a 1D lattice with nearest-

neighbor jumps, the time series of the position of the walker
x̄ is a sequence of integers, and consequentially the same
holds for the sequence of records X̄. We denote by LRðnÞ
the time taken for a record-breaking event to occur, after the
last record was created at position n. In the absence of
resetting, the record age LðnÞ is simply Tnþ1;n—the first-
passage time to go from n to nþ 1, and it is independent of
n. However, restart introduces an inherent heterogeneity in
the problem so that the record ages depend on the record
number or the magnitude of the last record. To see this, we
first obtain the mean from Eq. (2):
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hLRðnÞi ¼ hminfTnþ1;n; Rgi þ Pr½R ≤ Tnþ1;n�hTR
nþ1;0i;

ð3Þ

where each component of the rhs can be computed given
the distribution of T and R. In particular, for geometric
distribution of restart steps, we have [61]

hLRðnÞi ¼
Q̃1−rðnþ 1jnÞ

1 − rQ̃1−rðnþ 1j0Þ ; ð4Þ

where Q̃zðijjÞ ¼
P∞

k¼0 z
kQkðijjÞ is the generating function

of the survival probability QkðijjÞ that denotes the prob-
ability for a RW starting from a site j < i and not reaching i
until the kth time step. It is important to note that hLRðnÞi is
expressed solely in terms of the survival properties for the
bare process. Furthermore, the survival probability equals
Q̃zðijjÞ ¼ f½1 − F̃zðijjÞ�=ð1 − zÞg, where F̃zðijjÞ denotes
the generating function of the first-passage time distribution
FkðijjÞ ¼ Prob½Ti;j ¼ k� that the walker starts from state j
and reaches i for the first time exactly in k steps. For the
biased RW, this can be expressed as [65]

F̃zðijjÞ ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4pð1 − pÞz2

p
2ð1 − pÞz

�i−j

ð5Þ

for i − j > 0. Replacing the expressions in Eq. (4), one
finds the mean record age for the RW.
Several comments are in order now. In the case of

symmetric walkers for the bare process (p ¼ 1=2, r ¼ 0),
the mean record age is infinite, and any restart probability
r < 1 would render the mean finite. In other words,
collapse-restart events will always expedite record-break-
ing events for symmetric RW. However, this need not be the
case in general as restart could also result in longer record
ages. Consider, for example, the biased RW, where the
mean record ages are finite for the bare process. Thus, it is
essential to pinpoint the transition point that can be
understood by the introduction of an infinitesimal resetting
probability. Indeed, expanding mean record age Eq. (4)
with respect to δr → 0, one finds hLδrðnÞi ¼ hLðnÞi−
ðδr=2ÞhTnþ1;ni2fCV2

nþ1;n þ ½ðhTnþ1;ni − 1 − 2hTnþ1;0iÞ=
hTnþ1;ni�g, where CV2

nþ1;n ¼ VarðTnþ1;nÞ=hTnþ1;ni2 is the
squared coefficient of variation of Tnþ1;n. For restart to
reduce the record age, one should have hLδrðnÞi < hLðnÞi,
resulting in [61]

CV2
nþ1;n >

2hTnþ1;0i þ 1

hTnþ1;ni
− 1: ð6Þ

Equation (6) remarkably holds for any underlying stochas-
tic process, and sets up a universal criterion for the effect of
restart on record ages. In the paradigmatic case of biased
RW, the criterion in Eq. (6) reduces to

CV2
nþ1;n > 2nþ

�
1þ 1

hTnþ1;ni
�
; ð7Þ

where the second term on the rhs is the criterion for the
mean first passage solely [57]. Thus, the additional term of
2n corresponds to a “penalty” for resetting to a point further
away from the target, compared to the initial condition,
setting up a very strict criterion on the relative fluctuations
of the underlying first-passage process in order for restart to
expedite record-breaking events. For large n, the criterion is
dominated by the penalty term 2n, as both hTnþ1;ni and
CV2

nþ1;n are independent of n, resulting in an invalid
inequality. Thus, restart never shortens the record ages
for large n. Based on Eq. (7), in Fig. 2(a) we illustrate the
particular phase space region spanned by p and n where
restart can expedite the creation of records (gray shaded).
Note that for values of p below the dashed line (p ¼ 0.5),
restart renders hLRðnÞi finite for all n, and thus always
leads to shorter record ages. In the right panel, we further
plot hLRðnÞi for n ¼ 4, as a function of restart probability r
for two different values of p: (i) p ¼ 0.565, which lies
above the critical value p�ð4Þ ≈ 0.55363 beyond which
Eq. (7) is not satisfied for n ¼ 4 [61] and (ii) p ¼ 0.545,
which lies below the critical value p�ð4Þ, demonstrating the
validity of the criterion.
Record ages under arbitrary restart step.—So far, we

had restricted our discussion to geometric restarts.
However, while going beyond this Markovian case is an
important step, as evident through the first-passage liter-
ature [44,68–70], it is also quite challenging. The key issue
here is to know the statistics of the time required for a
restart event to occur right after a record. While for
Markovian setup, this time coincides with the restart time
(R) itself (due to the memoryless property of geometric
restart events), it is generically different for arbitrary restart
steps (see Fig. 3 for a timeline illustration).

Restart can shorten record ages

Record ages always longer

FIG. 2. Left: Phase diagram for record ages in a biased RW
on a 1D lattice. Right: Mean age of the 4th record hLRð4Þi as a
function of restart probability r for p ¼ 0.565½> p�ð4Þ� (blue)
and p ¼ 0.545½< p�ð4Þ� (orange), where p�ðnÞ is the value of the
bias p (taken from the phase separatrix on the left panel for a
given n [see Sec. S2 in [61] ]), beyond which restart cannot
shorten record ages. Here, p�ð4Þ ¼ 0.55363. The solid lines are
obtained from our analytical formula, while symbols represent
values obtained from numerical simulations.
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For such a stochastic process, we can identify a renewal
structure for the record ages as the following:

LRðnÞ ¼
�LðnÞ; if LðnÞ < Rδn

Rδn þ TR
nþ1;0 otherwise;

ð8Þ

where Rδn ¼ fR − δnjR > δng is the forward recurrence
time, and δn is the backward recurrence time so that δn ¼
fTn;0jTn;0 < Rg and Rδn þ δn ¼ R (see Fig. 3). The latter is
distributed according to

PδnðkÞ ¼ Fkðnj0Þ
P∞

m¼kþ1 PRðmÞ
Pr ðTn;0 < RÞ ; ð9Þ

where PRðmÞ is the restart time density (not necessarily
geometric). We stress that while Eq. (8) is written in terms
of the variable n, keeping in mind discrete-state stochastic
processes (e.g., RW), generalization to continuous state
processes is straightforward.
For geometrically distributed restarts, Rδn and R have

statistically identical distribution and hence one recovers
Eq. (1). However, generically, Rδn pertains to a different
distribution [61],

PRδn
ðkÞ ¼ Pr ðR − Tn;0 ¼ kÞ

Pr ðR > Tn;0Þ · PrðR > δnÞ
; ð10Þ

where k takes strictly positive values. Together, Eqs. (8), (9),
and (10) allow us to write a closed set of equations to obtain
the record age statistics of a time series generated by an
arbitrary stochastic process that undergoes possibly non-
geometric restarts. For instance, the mean record age reads

hLRðnÞi ¼ hminfLðnÞ; Rδngi þ Pr½Rδn ≤ LðnÞ�hTR
nþ1;0i;

ð11Þ

where we show that the mean record age under a non-
geometric restart protocol can be expressed completely in
terms of quantities related to the underlying process. This
property holds also for all the subsequent moments ofLRðnÞ.
Aggregation-shattering processes.—An important appli-

cation of studying nongeometric (non-Markovian) restarts
arises in the study of aggregation-fragmentation-shattering
processes. Apart from being a paradigmatic model to
probe nonequilibrium behavior [71–75], models of aggre-
gation and fragmentation have found diverse applications,
ranging from modeling socioeconomic phenomena [76,77]
and neurodegenerative diseases [78–80] to explaining the
particle size distribution in Saturn’s rings [81], the distri-
bution of sizes of animal groups in nature [82–84], and
raindrops [85]. In particular, in the case of neurodegenerative
diseases, where it is argued that diseases like Alzheimer’s or
Parkinson’s disease are caused by the pathological aggre-
gation of certain proteins, it is suggested that some clearance
mechanisms must also be at play, which keep these proteins
from forming large aggregates in healthy individuals. These
clearance mechanisms play the role of “shattering,” which
bring down the size of aggregates [78]. Figure 1(b) is a
schematic of such an aggregation-shattering process, where
masses arrive, possibly nongeometrically, on a nucleation
site, and form a larger aggregate. However, shattering of the
aggregate can reset the mass at the nucleation site to zero.
Let us consider a time series MðtÞ, which tracks the size

of the aggregate at the nucleation site. Clearly, MðtÞ is a
stochastic process that undergoes restarts at random times.
To delve deeper, let us assume that the interarrival times
between two masses or monomers follow a geometric
distribution. Upon the arrival of a monomer, it sticks to the
cluster of masses at the nucleation site (an aggregation
event), leading to an increase in the mass at the site by unit
one. However, “clearance” occurs at random times follow-
ing possibly nongeometric distributions indicating a restart
protocol with temporal memory. Clearance leads to the
shattering of the cluster at the nucleation site, rendering
MðtÞ ¼ 0 in that time step. In this context, record age
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breaking event
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n + 1
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FIG. 3. Schematic for record age statistics under nongeometric
restarts. Unlike the Markovian case, the time taken for a restart
event to occur after the creation of a record (in this figure, a record
is created when the time series reaches n for the first time) is not
simply given by the distribution of R, and instead is given
by Rδn ¼ R − δn.

FIG. 4. Mean record age in aggregation-shattering process.
(a) Different non-Markovian restart distributions characterizing
the time between shattering events. (b) Variation of hLRð4Þi,
under the restart distributions plotted in (a), as a function of mean
restart time. In panel (b), the cross symbols denote our numerical
results and circles denote the theoretical estimates from Eq. (11).
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statistics of the aggregate size carries valuable insight
into the lifetime of these masses, and the rate at which they
grow.
In Fig. 4 we demonstrate the dependence of hLRð4Þi, i.e.,

the time until the formation of a mass aggregate with n ¼ 5
units after an aggregate of size 4 has been created for the
first time, as a function of the mean shattering time hRi, for
nongeometric shattering times (drawn from Poisson dis-
tribution and discretized Gamma distribution [61]). The
plot shows an excellent agreement between our theoretical
prediction from Eq. (11) and the simulations. It is evident
that shattering (restart) events slow down the process of
creation of records, which concurs with our physical
intuition. In [61], we show how this is consistent with
the criterion derived in Eq. (6) and discuss other contrasting
scenarios where such shattering like mechanisms can
expedite the creation of records despite the underlying
time series taking only non-negative values. Furthermore,
note that for higher mass index (i.e., increasing n), the
record age hLRðnÞi also keeps increasing, which is a
highlighted feature as well.
Conclusions.—Record statistics has been a longstanding

focal point of research due to its numerous interdisciplinary
applications that go beyond physics. In this Letter, we focus
on understanding record statistics of a time series that may
contain signatures of catastrophes or sharp intermittent
changes in the observed values. Modeling these events as
restart, we build a unified framework to estimate record age
statistics in a generic scenario. As such, our framework
advances in encompassing arbitrary stochastic processes
that undergo general non-Markovian restart events. Quite
importantly, our framework reveals a universal criterion,
Eq. (6), that can predict the conditions under which restart
could shorten the mean record ages of stochastic time series
with nearest-neighbor transitions. The application of this
criterion is demonstrated not only for RW models where
the underlying variable can be both positive and negative,
but also for the mass aggregation model where the random
variable remains strictly non-negative (see Ref. [61] for
additional discussion).
Our work brings forward new insights on the intricate

interplay between the inherent stochasticity pertaining to
the system and the restart events. Although the focus has
been on the average quantities, such ideas can also be
extended to study fluctuations and higher moments.
Finally, we highlight that sharp catastrophe in time series
[24] is a key signature of extreme events [86–88] across
complex systems. Thus, our formalism paves the way for
building an improved understanding of rare events in
natural systems and their consequences.
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