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The long search for insulating materials that possess low-energy quasiparticles carrying electron’s
quantum numbers except charge—inspired by the neutral spin-1=2 excitations, the so-called spinons,
exhibited by Anderson’s resonating-valence-bond state—seems to have reached a turning point after the
discovery of several Mott insulators displaying the same thermal and magnetic properties as metals,
including quantum oscillations in a magnetic field. Here, we show that such anomalous behavior is not
inconsistent with Landau’s Fermi liquid theory of quasiparticles at a Luttinger surface. That is the manifold
of zeros within the Brillouin zone of the single-particle Green’s function at zero frequency, and which thus
defines the spinon Fermi surface conjectured by Anderson.

DOI: 10.1103/PhysRevLett.130.156702

Common sense would suggest that Mott insulators and
Landau’s Fermi liquids are antinomic phases of matter that
can turn one into the other only through a Mott transition.
However, there is growing, intriguing evidence of quasipar-
ticlelike excitations in some Mott insulating materials. For
instance, the Kondo insulators SmB6 and YbB12 show
quantum oscillations in a magnetic field, finite specific heat,
Cv=T, and thermal conductivity, κ=T, coefficients for T → 0
[1–6], though κ ∼ T is still debated in SmB6 [7,8]. Evidence
of finite Cv=T and κ=T for T → 0 is also found in candidate
spin-liquid insulators: 1T-TaS2 [9–11], and, with some
caveats, in the organic salts EtMe3Sb½PdðdmitÞ2�2 [12–17]
and κ-ðBEDT-TTFÞ2Cu2ðCNÞ3 [18,19]. Quantum oscilla-
tions in themagnetothermal conductivity of the field induced
spin-liquid state of α-RuCl3 have also been reported [20],
even though their origin is controversial [21].
All the above properties, at odds with the conventional

view of insulators, are commonly interpreted by the
existence of neutral quasiparticles [22–28], not neces-
sarily gapless [26], although alternative explanations have
been proposed [29–31]. Those quasiparticles are dubbed
spinons [32,33] when they only carry the spin quantum
number, which is the case of systems whose low energy
behavior is determined by just a single band, as we shall
assume hereafter.
Despite the observed Fermi-liquid-like thermal and

magnetic properties of spinons, their emergence from
spin-charge deconfinement [34] is at first sight incompat-
ible with Landau’s Fermi liquid theory [35–37]. This is
obviously the case of conventional Landau’s quasiparticles
at a Fermi surface, the location of poles of the single-
particle Green’s function at zero frequency and temper-
ature, since these poles entail metallicity. However, it has
been recently shown [38] that Landau’s quasiparticles also
exist at a Luttinger surface, the manifold of zeros of the
single-particle Green’s function at zero frequency and

temperature. These quasiparticles are invisible in the
single-particle spectrum, and are also incompressible [39],
thus perfectly allowed in insulators. Nonetheless, the
insulating character poses constraints to Landau’s Fermi
liquid theory, most notably the vanishing of Drude weight
and of charge compressibility. Here, we show that these
constraints can be fulfilled. We conclude that a Landau
Fermi liquid can well be insulating, and analyze its physical
properties with special emphasis on the quantum oscilla-
tions in a magnetic field.
Uncovering Landau quasiparticles.—In what follows,

we consider a periodic model with a single band of
interacting electrons, and assume that neither translational
symmetry nor a spin rotational one are broken. The single-
particle Green’s function is therefore diagonal in momen-
tum k and spin σ ¼ ↑;↓, and independent of the latter. In
Matsubara frequencies, ϵ ¼ ð2nþ 1ÞπT, the Green’s func-
tion satisfies Dyson’s equation

Gðiϵ;kÞ ¼ 1

iϵ − ϵðkÞ − Σðiϵ;kÞ ; ð1Þ

where ϵðkÞ is the noninteracting energy dispersion in
momentum space measured with respect to the chemical
potential, and Σðiϵ;kÞ the self-energy that, like Gðiϵ;kÞ,
has a real part even in ϵ, while

ImΣðiϵ;kÞ ¼ −ImΣð−iϵ;kÞ
�
< 0 ϵ > 0;

> 0 ϵ < 0:
ð2Þ

We define the real function

Zðϵ;kÞ ¼ Zð−ϵ;kÞ ¼
�
1 −

ImΣðiϵ;kÞ
ϵ

�
−1
; ð3Þ

which, because of (2), varies in the interval [0, 1]. Through
Zðϵ;kÞ we can rewrite Eq. (1) as
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Gðiϵ;kÞ ¼ Zðϵ;kÞ
iϵ − ϵ�ðϵ;kÞ

; ð4Þ

with real

ϵ�ðϵ;kÞ ¼ ϵ�ð−ϵ;kÞ ¼ Zðϵ;kÞðϵðkÞ þ ReΣðiϵ;kÞÞ: ð5Þ

Landau’s Fermi liquid theory can be formally derived under
the assumption that ϵ�ðϵ;kÞ and Zðϵ;kÞ are analytic, at
least to leading order, in ϵ around ϵ ¼ 0, as well as in k
close to the surface defined by ϵ�ð0;kÞ ¼ 0 [38]. This
assumption is equivalent to assuming that Σðiϵ;kÞ is
analytic at any nonzero ϵ, which includes conventional
Fermi liquids as the special case of Σðiϵ;kÞ analytic also at
ϵ ¼ 0, but also allows for poles of Σðiϵ;kÞ for ϵ → 0.
The actual quasiparticles have energy dispersion

ϵ�ðkÞ≡ ϵ�ð0;kÞ and residue ZðkÞ≡ Zð0;kÞ. The roots
of ϵ�ðkÞ in momentum space define the quasiparticle
Fermi surface that, because of the definition (5), corre-
spond (i) either to the roots of ϵðkÞ þ ReΣð0;kÞ, the
conventional Fermi surface, (ii) or those of Zð0;kÞ, the
so-called Luttinger surface [40]. Therefore, well-defined
quasiparticles exist at Fermi as well at Luttinger surfaces,
and that despite the vanishing quasiparticle residue ZðkÞ at
the Luttinger surface implies the absence of quasiparticle
peaks in the physical electron density of states.
Fermi liquid properties.—We recall that Landau’s Fermi

liquid theory allows calculating linear response functions
at low temperature, low frequency, and long wavelength
in terms of two unknown functions: the quasiparticle
dispersion ϵ�ðkÞ and the Landau parameters fkσ;k0σ0 , where
σ and σ0 are the spins of the quasiparticles with momentum
k and k0, respectively. In reality, this huge simplification
just applies to densities of conserved quantities and their
currents defined through the continuity equation. Indeed,
only in those cases one can exploit the Ward-Takahashi
identities and relate vertex to self-energy corrections [36].
In a single-band periodic model, the conserved quantities

are the electron number N ¼ N↑ þ N↓, the energy E, and
the magnetization along a given axis, e.g., M ¼ N↑ − N↓.
We denote by χρQðω;qÞ and χJQðω;qÞ, the proper response
functions, respectively, of the density, ρQ, and current, JQ,
operators associated to the conserved quantity Q ¼ N, E,
M, i.e., the response functions irreducible with respect to
cutting a Coulomb interaction line. The thermodynamic
susceptibilities are simply obtainable through χQ ¼ −χqρQ ,
where χqρQ ≡ χρQðω ¼ 0;q → 0Þ is the so-called q limit of
the density response function. We recall that the specific
heat is actually defined through Cv ¼ χE=T.
In the absence of impurities, the low-temperature con-

ductivities have the standard Drude-like expression
σQðωÞ ¼ iDQ=ðωþ i0þÞ, where the Drude weights DQ

coincide with the so-called ω limit of the corresponding
current response functions: DQ¼ χωJQ ≡ χJQðω→0;q ¼ 0Þ.

Similarly to the specific heat, the thermal conductivity is
defined by σEðωÞ=T.
According to Landau’s Fermi-liquid theory [36,37]

χN=M ¼ −2
Z

dk
ð2πÞd

∂fðϵ�ðkÞÞ
∂ϵ�ðkÞ

ð1 − AS=AðkÞÞ;

DN=M ¼ −
2

d

Z
dk

ð2πÞd
∂fðϵ�ðkÞÞ
∂ϵ�ðkÞ

v�ðkÞ · vS=AðkÞ; ð6Þ

where d > 1 is the dimension (in d ¼ 1 Landau’s Fermi
liquid theory is not applicable [41]), fðxÞ the Fermi
distribution function, v�ðkÞ ¼ ∂ϵ�ðkÞ=∂k the quasiparticle
group velocity, and

AS=AðkÞ ¼ −
Z

dk0

ð2πÞd
∂fðϵ�ðk0ÞÞ
∂ϵ�ðk0Þ AS=A

k;k0 ;

v̄S=AðkÞ ¼ v�ðkÞ þ
Z

dk0

ð2πÞd
∂fðϵ�ðk0ÞÞ
∂ϵ�ðk0Þ v�ðk0ÞfS=Ak;k0 : ð7Þ

The parameters AS=A
k;k0 correspond to the q limit of the

quasiparticle scattering amplitudes in the spin-singlet (S)
and spin-triplet (A) particle-hole channels, and are related
to the f parameters, the ω-limit counterparts,

fSk;k0 ¼ fk↑;k0↑ þ fk↑;k0↓;

fAk;k0 ¼ fk↑;k0↑ − fk↑;k0↓; ð8Þ

through the Bethe-Salpeter equation

AS=A
k;k0 ¼ fS=Ak;k0 þ

Z
dp

ð2πÞd
∂fðϵ�ðpÞÞ
∂ϵ�ðpÞ

fS=Ak;pA
S=A
p;k0 :

Similarly, the specific heat Cv and the Drude weight K of
the thermal conductivity read

Cv ¼ −
2

T

Z
dk

ð2πÞd
∂fðϵ�ðkÞÞ
∂ϵ�ðkÞ

ϵ�ðkÞ2

−
2

T

Z
dkdk0

ð2πÞ2d
∂fðϵ�ðkÞÞ
∂ϵ�ðkÞ

∂fðϵ�ðk0ÞÞ
∂ϵ�ðk0Þ

ϵ�ðkÞϵ�ðk0ÞAS
k;k0 ;

K ¼ −
2

dT

Z
dk

ð2πÞd
∂fðϵ�ðkÞÞ
∂ϵ�ðkÞ

ϵ�ðkÞ2jv�ðkÞj2

þ 2

dT

Z
dkdk0

ð2πÞ2d
∂fðϵ�ðkÞÞ
∂ϵ�ðkÞ

∂fðϵ�ðk0ÞÞ
∂ϵ�ðk0Þ

ϵ�ðkÞϵ�ðk0Þv�ðkÞ · v�ðk0ÞfSk;k0 :

The first term on the right-hand side of both equations is
linear in temperature T. Conversely, the second terms give a
finite contribution at low T only upon expanding AS

k;k0 and
fSk;k0 in ϵ�ðkÞ and ϵ�ðk0Þ, as well as including higher order
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corrections in the heat vertex as obtained through the
Ward-Takahashi identity. All those corrections yield at first
sight terms of order T3. In reality, the expansion is not
regular. For instance, the corrections to the linear term of
the specific heat are actually of order Td [42,43], with
logarithmic corrections in d ¼ 3, T3 ln 1=T. Nonetheless,
at leading order in T only the first terms contribute,
and thus

Cv≃
2π2

3
Tρ�; K≃Cv

v2�
d
; ð9Þ

where

ρ� ≡
Z

dk
ð2πÞd δðϵ�ðkÞÞ; ð10Þ

is the quasiparticle density of states at the chemical
potential, and

v2� ≡ 1

ρ�

Z
dk

ð2πÞd δðϵ�ðkÞÞjv�ðkÞj
2: ð11Þ

Mott insulators with a Luttinger surface.—Let us now
consider a hypothetical model that has only a Luttinger
surface in the Brillouin zone, with finite quasiparticle
density of states at the chemical potential, ρ� ≠ 0 in
Eq. (10). Since quasiparticles at the Luttinger surface are
invisible in the single-particle density of states and incom-
pressible [39], the system describes a nonsymmetry break-
ing Mott insulator that may only occur at half-filling in a
single-band model. In a Mott insulator with localized
electrons, we expect that fk↑;k0↑ ≃ 0, which implies fSk;k0 ≃
−fAk;k0 and AS

k;k0 ≃ −AA
k;k0 . However, for the system to be a

charge insulator, we need to impose that the compressibility
χN and charge Drude weight DN in Eq. (6) vanish, which
implies, through Eq. (7), that ASðkÞ ¼ 1 plus a correction
that averages to zero on the Luttinger surface, as well
as that the flux of vSðkÞ out of the Luttinger surface is
zero. In turn, since AAðkÞ ≃ −ASðkÞ ¼ −1 and vAðkÞ≃
2v�ðkÞ − vSðkÞ, then, through Eqs. (6) and (11), the spin
susceptibility χM and Drude weight DM become simply

χM≃4ρ�; DM≃
4

d
ρ�v2�: ð12Þ

Comparing (12) with (9), we find that the Wilson ratio,
which measures the effective correlation strength, is

RW ¼ π2T
3Cv

χM ≃ 2: ð13Þ

Therefore, a Landau Fermi liquid characterized by a
Luttinger surface without Fermi pockets may indeed have
charge properties of an insulator, while spin and thermal

ones of a metal, very much alike a spin-liquid insulator with
gapless spinons.
We mention that conventional Fermi liquids often do not

survive down to T ¼ 0, since they may encounter an
instability at Tc > 0 towards a different phase that, most
of the time, breaks symmetries and opens gaps in the
quasiparticle spectrum. Well-known examples are the
superconducting and superfluidity instabilities in normal
metals and 3He, respectively. A Fermi liquid description of
such an instability is justified when quasiparticles have
already reached quantum degeneracy at Tc, which implies
that Tc must be much smaller than the quasiparticle Fermi
energy ϵF.
Similarly, we cannot exclude that also quasiparticles at a

Luttinger surface, the gapless spinons, may become unsta-
ble at Tc ≪ ϵF towards, e.g., a magnetically ordered phase,
and eventually acquire a gap. In this case, which presum-
ably corresponds to highly frustrated magnets, the above
Fermi liquid properties would still be observable for
Tc ≪ T ≪ ϵF. On the contrary, if Tc ∼ ϵF, likely the case
of unfrustrated magnets, the quantum degenerate behavior
of quasiparticles at the Luttinger surface cannot set in
before the instability.
Quantum oscillations.—The next relevant question to be

addressed is whether quasiparticles at a Luttinger surface
contribute to quantum oscillations in a magnetic field B. On
one hand, the semiclassical approach to the de Haas–van
Alphen (dHvA) effect by Lifshitz and Kosevich [44], which
just relies on the existence of quasiparticles, would suggest
a positive answer. However, the vanishing Drude weight
implies, through (6) and (7), that

0 ¼ −
Z

dk
∂fðϵ�ðkÞÞ

∂k
· vSðkÞ

¼
Z

dkfðϵ�ðkÞÞ∇k · vSðkÞ

¼
Z

dkfðϵ�ðkÞÞTrðm̂cðkÞ−1Þ;

where m̂cðkÞ is the cyclotron mass tensor as it emerges from
the Landau-Boltzmann transport equation. Considering, for
simplicity, an isotropic m̂cðkÞ ¼ mcðkÞÎ, it follows that
vanishing Drudeweight is equivalent to vanishing 1=mcðkÞ,
or, equivalently, vanishing cyclotron frequency, once inte-
grated over the volume enclosed by the Luttinger surface.
That hints at the absence of quantum oscillations, in contrast
to the previous observation.
To resolve this issue, we resort to Luttinger’s theory of

the de Haas–van Alphen effect in interacting electron
systems [45]. Luttinger showed that the leading oscillatory
part of the free energy derives from

ΔFosc ¼ −T
X
ϵ

eiϵ0
þ
Tr lnðiϵ − Ĥ0 − Σ̂ðiϵÞÞ; ð14Þ
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where Ĥ0 is the noninteracting Hamiltonian, which
includes the static and uniform magnetic field B, repre-
sented in a generic basis of single particle wave functions.
The self-energy matrix Σ̂ðiϵÞ in (14) must include any
polynomial in B but not oscillatory terms in 1=B [45]. In
matrix notations, we now define

ẐðϵÞ−1 ≡ 1 −
ImΣ̂ðϵÞ

ϵ
;

which is a positive-definite matrix with eigenvalues ≥ 1,
and the Hermitian matrix

Ĥ�ðϵÞ ¼
ffiffiffiffiffiffiffiffiffi
ẐðϵÞ

q
ðĤ0 þ ReΣ̂ðiϵÞÞ

ffiffiffiffiffiffiffiffiffi
ẐðϵÞ

q
:

With these definitions that generalize (3) and (5), the free
energy component (14) becomes

ΔFosc ¼ −T
X
ϵ

eiϵ0
þ
Tr lnðiϵ − Ĥ�ðϵÞÞ

þ T
X
ϵ

eiϵ0
þ
Tr ln ẐðϵÞ

≡ ΔFð1Þ
osc þ ΔFð2Þ

osc: ð15Þ

In conventional Fermi liquids, where Ẑð0Þ has no null

eigenvalue, the first term,ΔFð1Þ
osc, is the only that contributes

and yields the Lifshitz and Kosevich theory of the dHvA
effect, as shown by Luttinger [45]. Indeed, in the semi-
classical limit, Ĥ�ðϵÞ becomes the representation in the
chosen basis of the operator ϵ�ðϵ;KðrÞÞ, Eq. (5) with k
replaced by

KðrÞ ¼ −iℏ
∂

∂r
þ e
2c

B ∧ r; ð16Þ

and thus

ΔFð1Þ
osc ≃ −T

X
ϵ

eiϵ0
þ
Tr lnðiϵ − ϵ�ðKðrÞÞÞ: ð17Þ

After that, one can simply follow Lifshitz and Kosevich [44]
and derive the expression of the dHvA oscillations.
However, in the present case of a Luttinger surface, also

ΔFð2Þ
osc in (15) may contribute since ẐðϵÞ has zero eigen-

values at ϵ ¼ 0. To assess their role, we note that ẐðϵÞ in the
semiclassical limit is the representation of the operator
Zðϵ;KðrÞÞ, i.e., of Zðϵ;kÞ in Eq. (3) with k → KðrÞ.
Moreover, the contribution ofΔFð2Þ

osc to quantum oscillations
only derives from the region around the zeros of
Zðϵ;kÞ [46], i.e., small ϵ and k close to the Luttinger
surface. In that region, we can write, without loss of
generality and consistently with the analytic assumption,
that [38,47]

Σðiϵ;kÞ ≃
ϵ→0

ΔðkÞ2
iϵ − EðkÞ ; ð18Þ

where kL∶ EðkLÞ ¼ 0 defines the Luttinger surface pro-
vided ΔðkLÞ ≠ 0, so that, for ϵ ≃ 0 and k ≃ kL,

Zðϵ;kÞ ¼ ϵ2 þ EðkÞ2
ϵ2 þ EðkÞ2 þ ΔðkÞ2

≃
ϵ2 þ EðkÞ2
ΔðkÞ2 ;

ϵ�ðϵ;kÞ ¼
ϵðkÞðϵ2 þ EðkÞ2Þ − EðkÞΔðkÞ2

ϵ2 þ EðkÞ2 þ ΔðkÞ2
≃ −EðkÞ; ð19Þ

which, as anticipated, are analytic. Therefore,

Zðϵ;KðrÞÞ ≃ ϵ2 þ ϵ�ðKðrÞÞ2
¼ ðiϵ − ϵ�ðKðrÞÞÞð−iϵ − ϵ�ðKðrÞÞÞ;

and, correspondingly,

ΔFð2Þ
osc ≃ T

X
ϵ

eiϵ0
þ½lnðiϵ − ϵ�ðKðrÞÞÞ

þ lnð−iϵ − ϵ�ðKðrÞÞÞ�; ð20Þ

so that, through (17) and (20), Eq. (15) becomes

ΔFosc ≃ T
X
ϵ

eiϵ0
þ
lnð−iϵ − ϵ�ðKðrÞÞÞ

≃ −ΔFð1Þ
osc; ð21Þ

as can be readily verified following Lifshitz and
Kosevich [44]. As a result, quasiparticles at the Luttinger
surface of a Mott insulator do yield dHvA oscillations in the
magnetization −∂ΔFosc=∂B alike conventional quasipar-
ticles with dispersion ϵ�ðkÞ, apart from a π shift.
Concluding remarks.—A few remarks are now in order.

Conventional theories of spin liquids [48–54] predict that a
spinon Fermi surface is most likely associated with so-
called Uð1Þ spin liquids, apart from a few known excep-
tions [55–58]. In that Uð1Þ case, the specific heat behaves
at low temperature as T2=3 and T ln 1=T in d ¼ 2 and
d ¼ 3, respectively [53,59,60], and, correspondingly,
κ=T diverges for T → 0 [22]. These thermal properties,
different from the observed ones, challenge the spin-
liquid interpretation. Finite Cv=T and κ=T for T → 0
may be, for instance, attributed to magnetic impurities,
assuming a gapped spin liquid phase lacking a spinon
Fermi surface [26]. However, this explanation implies that
also quantum oscillations are not due to spinons, and thus
that all intriguing thermal and magnetic properties observed

PHYSICAL REVIEW LETTERS 130, 156702 (2023)

156702-4



in experiments are unrelated to the purported spin liquid
nature of the material, which is a bit disappointing.
On the contrary, the Fermi liquid properties of a Mott

insulator with a Luttinger surface seem to account for
all experimental evidences. Nonetheless, the analyticity
assumption on the self-energy underlying Landau’s Fermi
liquid theory is evidently incompatible with the above-
mentioned nonanalytic behavior of Uð1Þ spin liquids with
a spinon Fermi surface. Therefore, either that analytic
behavior never occurs in physical models, or Mott insulators
with a Luttinger surface realize one of the above-mentioned
exceptions [55–58] of spin liquids with a spinon Fermi
surface. Indeed, an example of a spin liquid with Cv ∼ T is
very well known: the half-filled Hubbard model in one
dimension. Even though interacting electrons in d ¼ 1
behave as Luttinger liquids [61], their low-frequency, low-
temperature, and long-wavelength properties are just like
conventional Fermi liquids [41,61,62], including the specific
heat that, as we mentioned, is obtainable by the q limit of the
heat-heat response function. In particular, the half-filled
Hubbard model in d ¼ 1 is an insulator that has a
Luttinger surface at k ¼ �π=2 as well as gapless spinons
that yield a finite spin susceptibility, a finiteCv=T, apart from
corrections vanishing as powers of1= lnT, and aWilson ratio
RW ¼ 2 for T → 0 [63]. That is precisely what our Fermi-
liquid analysis predicts.
In conclusion, we have shown that non symmetry

breaking Mott insulators with a Luttinger surface realize
gapless spin liquids, where the spinons are actually
Landau’s quasiparticles at the Luttinger surface, which
thus provides the rigorous definition of Anderson’s spinon
Fermi surface [32,33]. These quasiparticles contribute to
thermal and magnetic properties, including quantum oscil-
lations, just like conventional quasiparticles do, despite that
the system is a charge insulator.
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