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Recent years have seen the discovery of systems featuring fragile topological states. These states of
matter lack certain protection attributes typically associated with topology and are therefore characterized
by weaker signatures that make them elusive to observe. Moreover, they are typically confined to special
symmetry classes and, in general, rarely studied in the context of phononic media. In this Letter, we
theoretically predict the emergence of fragile topological bands in the spectrum of a twisted kagome elastic
lattice with threefold rotational symmetry, in the so-called self-dual configuration. A necessary requirement
is that the lattice is a structural metamaterial, in which the role of the hinges is played by elastic finite-
thickness ligaments. The interplay between the edge modes appearing in the band gaps bounding the fragile
topological states is also responsible for the emergence of corner modes at selected corners of a finite
hexagonal domain, which qualifies the lattice as a second-order topological insulator. We demonstrate our
findings through a series of experiments via 3D scanning laser doppler vibrometry conducted on a physical
prototype. The selected configuration stands out for its remarkable geometric simplicity and ease of
physical implementation in the panorama of dynamical systems exhibiting fragile topology.
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Topological insulators (TIs), materials with a gapped
band structure characterized by topological invariants, have
gained increasing attention due to their unique topologi-
cally protected edge dynamics. As a result of the so-called
bulk-boundary correspondence, they can support edge and
interface modes that are immune to backscattering and
robust against perturbations and defects. Recent studies
have introduced a new class of so-called fragile topological
states [1–12]. A set of m frequency bands of a Hamiltonian
with some symmetries is called fragile topological if the
bands cannot be represented by symmetric (constrained by
the symmetries of the Hamiltonian) exponentially localized
Wannier functions (SLWF)—generalization of atomic orbi-
tals—in real space; but addition of n trivial bands to those
bands allows for representation of the total (mþ n) bands
by SLWF [1–3,6]. This is in contrast to conventional
topological bands where addition of trivial bands does
not trivialize the topology. This fragility of the topology
means that there cannot exist robust edge states protected
by the nontrivial topology at the boundary. However,
fragile topological systems in two dimensions are predicted
to have corner modes [3,5,8,13].
Another class of systems of interest in topological

mechanics is Maxwell lattices, which have an equal
number of degrees of freedom and constraints in the bulk
[14,15] and are therefore on the verge of mechanical
instability [16–19]. A typical example in two dimensions
is the kagome lattice, whose unit cell consists of two
triangles pinned at a vertex and relatively rotated [20].
Several studies have addressed the mechanical properties

[20–26] and wave propagation characteristics [27–30] of
these lattices under a variety of cell shapes and effective
hinge conditions. Relevant work has studied the faith of
mechanical and topological properties in the transition from
ideal configurations featuring perfect hinges to structural
lattices, as they would be obtained via machining, cutting,
or 3D printing. It has been shown that the topological
polarization is preserved, albeit diluted, and the zero modes
are shifted to finite frequencies [31,32]. Fruchart et al. [33]
showed that twisted kagome lattices exhibit a special type
of duality, whereby a hidden symmetry guarantees that any
pair of configurations that are symmetrically located (in
configuration space) with respect to a critical configuration
referred to as self-dual, display identical phonon spectra—a
condition that is, however, relaxed working with nonideal
lattices of beams [34]. The self-dual case presents peculiar
dynamics, with a twofold degenerate spectrum over the
entire Brillouin zone (BZ).
In this Letter, we delve deeper into the dynamics of self-

dual kagome lattices in search for additional emerging
behavior that can be linked to their topology. In the vein of
the above-mentioned discourse on structural lattices, we
study the case where the cell is modeled as a 2D
elastodynamic continuum, which yields a dramatic recon-
figuration of the band gap (BG) landscape compared to the
ideal case. Our main goal is to determine whether this
transition leads to the emergence of new phenomena rooted
in topology. Specifically, using topological quantum chem-
istry (TQC) arguments, we aim at documenting the
emergence of fragile topological states at finite frequencies,
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an extremely rare occurrence in phononic media, as
detailed in [35]. As a by-product of the band reconfigura-
tion, we also report the availability of two spectrally distinct
sets of corner modes characterized by different degrees of
robustness.
Figure 1(a) shows the unit cell of a twisted kagome

lattice comprising two 90°-rotated equilateral triangles, a
configuration known as self-dual [33], with e1 and e2
denoting the primitive lattice vectors. Here, the lattice
consists of rods supporting only tension or compression
connected with ideal hinges that allow free rotation. The
corresponding band diagram, shown in Fig. 1(b), features a
twofold degenerate spectrum over the entire BZ, shown in
the inset, with three pairs of overlapping bands and a

double Dirac cone at the high symmetry point (HSP) Γ
between bands 3–6. The frequency is normalized as
Ω ¼ ω=ω∘, where ω∘ ¼ π=L

ffiffiffiffiffiffiffiffi

E=ρ
p

is the first natural
frequency of a rod of length L, Young’s modulus E and
density ρ. Figure 1(c) documents the transition to a
structural lattice configuration, in which the triangles are
elastic domains and the role of the hinges is played by
finite-thickness ligaments. These changes induce a pro-
found reconfiguration of the band structure [Fig. 1(d)],
whereby (i) the twofold degenerate spectrum is lifted, (ii) a
second BG is opened between bands 4 and 5, leading to the
appearance of two isolated finite frequency modes, and (iii)
a quadratic band crossing is observed at the HSP Γ, between
the third and the fourth bands. We also study the evolution
of the band diagram upon progressive softening of the
hinges in order to reveal the existence of possible phase
transitions. We introduce softening by reducing the
Young’s modulus of the material in the immediate neigh-
borhood of the hinges, as captured by the ratio r ¼
Eligaments=Ebulk where, for instance, r ¼ 1% yields very
soft hinges while r ¼ 100% returns the monomaterial cell.
Specifically, here we monitor the frequencies fΓ of bands
3–5 at the HSP Γ, whose evolution with r is illustrated in
Fig. 1(e). We find that, as the hinge properties evolve, the
gap closes and reopens at a certain value of the control
parameter (here ∽ 6.6%), with the quadratic crossing
migrating from below to above the gap, which unequivo-
cally denotes a phase transition. The insets show, for a few
selected configurations, the immediate neighborhood of the
hinge along with the corresponding band diagram (zoom on
the neighborhood of the HSP Γ) with hinge and bands
color-coded proportionally to r. Interestingly, at the critical
point, the band crossing becomes linear and exhibits a
threefold degeneracy with an almost flat band (Dirac-like
cone). Recently, an analogous linear regime in the neigh-
borhood of Dirac points has been demonstrated for periodic
origami using a dynamic homogenization framework [36].
We now claim that the nature of the above-mentioned

phase transition is topological. Specifically, reopening the
BG induces fragile topological states within bands 3 and 4
protected by threefold rotation symmetry C3. This can be
shown using the recently developed method of symmetry
indicators [40,41], band structure combinatorics [42], and
TQC [43,44]. This method provides a full classification of
topological states protected by spatial symmetries, and can
detect any such topological states by investigating how the
eigenfunctions of the bands transform under symmetries,
i.e., the representation labels of the eigenfunctions, at the
HSPs of the BZ. Conveniently, all possible representation
labels that a set of bands generated by SLWF can feature are
tabulated in the Bilbao crystallography server (BCS) [45–
49]. We note that our system falls under G ¼ p31m
wallpaper group. The HSPs Γ, K, and M [inset of
Fig. 1(b)] have little co-groups C3v, C3v, and Cs, respec-
tively. The eigenfunctions at these HSPs transform under
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FIG. 1. (a) Geometry of ideal self-dual twisted kagome unit
cell. (b) Corresponding band diagram with first BZ shown in
inset. (c) Wigner-Seitz unit cell (left) of structural self-dual
twisted kagome lattice, labeled with red dot, green square, and
blue cross markers representing 1a, 2b, and 3c Wyckoff
positions, respectively, and its equivalent conventional unit cell
(right). (d) Corresponding band diagram with emerging isolated
modes 3 and 4 highlighted in maroon. The labels denote irrep at
HSPs for the first four bands. The corresponding mode shapes are
shown in the Supplemental Material, Sec. 1. [37]) (e) Effects of
the ligaments softening ðr ¼ Eligaments=EbulkÞ on the frequency fΓ
of the HSP Γ for bands 3–5, with insets showing the neighbor-
hood of the hinge and the corresponding band diagram near Γ,
color coded proportionally to the softness ratio.
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the representations of the corresponding little co-group.
From FEM, we find that degenerate eigenfunctions at the Γ
point of bands 3–4 transform under 2D irreducible repre-
sentation (irrep) Γ3, the eigenfunctions at M transform
under 1D irreps M2 and M1, and the eigenfunctions at K
transform under 1D irreps K2 and K1, as denoted in
Fig. 1(d) (see also Supplemental Material, Sec. 1 [37]
for corresponding eigenfunctions). BCS tables reveal that
these irreps cannot be represented by any SLWF, which
implies that these two bands are topological [43]; as a
result, the change in behavior observed at r ¼ 6.6% in
Fig. 1(e) can be qualified as a topological phase transition.
Specifically, the irreps of bands 3–4 are consistent with the
formal difference:

ð1E2E↑GÞ2b⊖ðE↑GÞ1a; ð1Þ

where 1E2E (and E) represents two SLWFs with angular
momentum 1 (px and py type orbitals), where 1a and 2b
are Wyckoff positions shown in Fig. 1(c). In words, this
means that irrep labels for bands 3 and 4 are consistent with
the difference between px − py type orbitals at position 2b
[see Fig. 1(c); position 2b has multiplicity 2 in the unit cell,
so in total 4 orbitals in the unit cell] and px − py type
orbitals at position 1a (position 1a has multiplicity 1 in the
unit cell, in total 2 orbitals in the unit cell). Furthermore,
since the irrep labels of the bands 1–2 are Γ3 −M1 ⊕
M2 − K3 and are consistent with the SLWFs ðE↑GÞ1a
(which renders bands 1–2 topologically trivial), together
bands 1–4 can be represented by SLWFs ð1E2E↑GÞ2b,
meaning that bands 1–4 together are topologically trivial.
This is the distinguishing characteristic of fragile topologi-
cal bands—the addition of trivial bands to them render the
topology trivial [6]. We also verify the topological non-
triviality of bands 3–4 by calculating the winding of
hexagonal Wilson loop (WL) [2] (see Supplemental
Material, Sec. 2 [37] for details of WL calculation).
Importantly, here the fragile topology of bands 3–4 is
protected by C3 (that this fragile topology only depends on
C3, not the mirrors can be understood from the fact that, if
we break the mirror symmetry perturbatively such that
bands 3–4 are still isolated from other bands, the irrep
labels at the HSPs would be Γ2 ⊕ Γ3 − 2M1 − 2K1, which
also correspond to fragile topological bands [6]). It is worth
noting that the fragile topology of bands 3–4 can be
detected just from the band connectivity, namely, from
the fact that there is a degeneracy at Γ and no degeneracy at
K—something that trivial bands (that can be represented
by SLWF) cannot display, as detailed in Supplemental
Material, Sec. 3 [37]. This makes the detection of C3

symmetry protected fragile bands in wallpaper group p31m
considerably easier than any other type of fragile bands
where further explicit calculations are required to confirm
nontrivial topology.

We now shift our attention to the two BGs bounding
bands 3–4, looking for any edge and corner modes
comprised therein. We first perform a super-cell analysis
on a 15-cell super-cell modeled with the same finite
element discretization used for the unit cell analysis. The
resulting band diagram is plotted in Fig. 2(a). We observe a
pair of degenerate bands in each BG (shaded regions)
indicated by green lines. The supercell mode shapes at ξ ¼
0 and ξ ¼ π within the first and the second BGs (marked by
the green markers) are displayed in Figs. 2(b)–2(e),
respectively. The high decay rate and the occurrence of
localization at two opposite edges qualify these branches as
nonpolarized edge modes, as expected for a twisted
kagome lattice (see Supplemental Material, Sec. 4 [37]
for details). We then calculate eigenfrequencies and mode
shapes for a finite hexagon-shaped domain as shown in
Figs. 2(g) and 2(i). The eigenfrequencies in intervals
encompassing the two BGs are shown in Figs. 2(f) and
2(h). The insets zoom in on two sets of three degene-
rate modes inside the second (f ¼ 16.01 kHz) and first
(f ¼ 7.34 kHz) BG; the corresponding mode shapes
depicted in Figs. 2(g) and 2(i), obtained by superposition
of the degenerate modes, reveal localization of deformation
at the corners of the hexagon, which qualifies these as
corner modes and the lattice as 2D second-order TI.
Interestingly, the two sets of mode shapes feature locali-
zation at alternating corners and have distinct morphologi-
cal characteristics. Specifically, corner modes appearing in
the first BG have lower decay rate, likely due to their higher
proximity to (and contamination from) the bulk band and
the edge modes observable in the top region of the gap.
Conversely, the second BG corner modes show stronger
localization. Additional evidence of these differences is
found via full-scale transient simulations, in which we
excite the bottom-right corner (marked by a black star) with
30-cycle narrow-band tone burst force excitations with
carrier frequencies at 16.01 and 7.34 kHz, corresponding to
the second BG and first BG corner modes, respectively
[time histories and spectra are depicted in Figs. 2(m), 2(q),
2(l), and 2(p)]. For each carrier, two snapshots of the
resulting wave fields are shown in Figs. 2(j) and 2(k) for the
second BG and Figs. 2(n) and 2(o) for the first BG. For
the second BG,we observe localization in the neighborhood
of the excitation point, matching the mode shape pattern in
Fig. 2(g) and confirming the notion that the second BG
corner modes minimally leak into edge and bulk modes. In
contrast, the wave field for the first BG corner modes shows
opposite dynamics: while in the early time snapshot of
Fig. 2(n) some degree of localization is established around
the excitation point, the signal travels along the edge and
eventually migrates to the adjacent corner, as seen in
Fig. 2(o). This transfer can be explained by the combination
of three factors: the lack of a corner mode for the excited
corner in the first BG, the availability of a corner mode, at
that same frequency, in the adjacent corner, and the spectral
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proximity of the signal carrier to prominent edgemodes.We
note that, while no formal connection can be claimed
between fragile topological states and edge or corner modes
in the absence of a proper bulk-edge correspondence for
fragile topology, the availability of localized modes is in
itself a by-product (of this band structure) of practical
relevance, e.g., for vibration isolation and harvesting
applications.
We substantiate our theoretical findings—emergence of

fragile topological states and establishment of corner
modes—through laser vibrometry experiments on a physi-
cal prototype, see setup in Fig. 3(a). All details on
fabrication, vibrometer specifications, and setup are pro-
vided in Supplemental Material, Secs. 5–7 [37]. First, we
want to demonstrate experimentally the opening of the
second BG, which is absent in the ideal self-dual kagome
lattice, as a result of the finite-thickness hinges of the
structural metamaterial. To this end, we prescribe a broad-
band pseudorandom excitation at the point marked by the
yellow dot [Fig. 3(a)], measure the in-plane velocity at the
designated sampling points inside the green box [Fig. 3(a)],
and normalize the average value by that of the excitation
point to construct a curve of transmissibility versus
frequency, plotted in Fig. 3(b). An analogous curve, plotted
in Fig. 3(c), is obtained via full-scale steady-state simu-
lation under sustained harmonic excitation. Both curves, in
reasonable agreement, feature two distinct regions of
attenuation, highlighted in light purple, supporting the

existence of finite-frequency isolated band(s) in the mid-
frequency spectrum. The attenuation intervals are in satis-
factory agreement with the BGs predicted via Bloch
analysis [Fig. 1(d)]. See also Supplemental Material, Sec. 8
[37] for details on the discrepancies between experiments
and theory.
We now seek evidence of the fragile topological nature

of the intermediate bands by experimentally reconstructing
the morphological characteristics of the bands. To this end,
we collect the time histories of the lateral in-plane velocity
at evenly distanced points along the Γ-K direction [red dots
in the insets of the Figs. 3(d) and 3(e), for experiment and
simulation, respectively] for several tone burst excitation
signals with different carrier frequencies within the pass-
band regions. Subsequently, we perform 2D discrete
Fourier transform (2D-DFT) on each spatiotemporal data-
set and we aggregate all the resulting spectral amplitude
contours and superimpose them on the band diagram (see
Supplemental Material, Sec. 9 [37] for full depiction).
Overall the contours of the bursts populate the spectral
plane in a way that follows the morphological attributes of
the band diagram. Focusing on the midfrequency range, the
peculiar shape of the third and fourth modes associated
with fragile topology, featuring the bands crossing at Γ
without retouching elsewhere at the boundary of the BZ (or
at the other HSPs) is captured perfectly. Finally, we conduct
three experiments with three distinct tone bursts (applied at
the bottom corner) at three carrier frequencies falling in the
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FIG. 2. (a) Band diagram of a 15-cell structural self-dual twisted kagome supercell with Bloch-periodic boundary condition along e2
and open boundary condition along e1. (b)–(e) Mode shapes of degenerate edge mode pairs, sampled at ξ ¼ 0; π and highlighted with
green markers, within the first (b)–(c) and second (d)–(e) BG. (f)–(g) Eigenfrequencies (f) in an interval encompassing the second BG,
with three degenerate modes at f ¼ 16.01 kHz, highlighted in the inset, and corresponding corner mode (from linear superposition of
the degenerate modes) shown in (g). (j)–(m) Snapshots of wave fields for narrow-band burst excitation with carrier frequency at
∼16.01 kHz in the second BG [signal in (m) and corresponding spectrum in (l)], during the 30-cycle energy pumping stage (j) and
relaxation time (k) of the excitation. The wave fields suggest strong localization of the second BG corner modes. (h)–(i),(n)–(q) Same
quantities discussed in (f)–(g),(j)–(m) for corner modes in the first BG at 7.34 kHz. The wave fields suggest weak corner localization
promoted by activation of edge modes. Colors are proportional to the in-plane displacement normalized by the maximum value.
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acoustic passband, first BG and second BG. The objective
here is to reconstruct experimentally the wave propagation
patterns established in different frequency regimes and
document the establishment of corner modes. In Fig. 3(f) a
carrier frequency of ∼3 kHz generates a wave field that
propagates through the bulk, which is the signature of
passband behavior. For an excitation in the first BG
[Fig. 3(g)], we observe wave propagation along the edge
and accumulation at the next available corner. The behavior
is consistent with the localized modal landscape in the first
BG, in which the corner modes do not appear at the set of
corners that include the excitation point and, moreover,
well-defined edge modes exist in the gap. In contrast, for
excitation in the second BG, we observe a highly localized
and persistent corner mode [Fig. 3(h)], even after long
relaxation times for the bursts.
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