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Topological superconductors are associated with the appearance of Majorana bound states, with
promising applications in topologically protected quantum computing. In this Letter, we study a system
where a skyrmion crystal is interfaced with a normal metal. Through interfacial exchange coupling, spin
fluctuations in the skyrmion crystal mediate an effective electron-electron interaction in the normal metal.
We study superconductivity within a weak-coupling approach and solve gap equations both close to the
critical temperature and at zero temperature. Special features in the effective electron-electron interaction
due to the noncolinearity of the magnetic ground state yield topological superconductivity at the interface.
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Introduction.—Quantum computation aims to solve
problems of potentially great societal impact considerably
faster than conventional computers. To achieve this, the
intention is to utilize the quantum mechanical notions of
superposition and entanglement. Quantum decoherence
due to small perturbations is a major challenge for proposed
realizations, introducing the need for error correction [1]. In
topological quantum computers, the idea is to use braiding
of anyons as logic gates. Computations based on this are
topologically protected against small perturbations [2]. In
this setting, topological superconductivity (TSC) offers the
prospect of realizing Majorana bound states (MBSs), which
are non-Abelian anyons. Braiding of MBSs is one of the
most prominent propositions for topologically protected
quantum computations [2–7].
There has been considerable interest in creating TSC

at the interface between chiral magnets and conventional
superconductors (SCs) [7–16]. The case of noncoplanar,
skyrmion ground states in the chiral magnets has been
given much attention, since MBSs can be localized at the
centers of skyrmions [10] or bound states of skyrmions and
vortices [11]. Bound states of skyrmions and superconduct-
ing vortices have been observed in Ref. [16]. Signatures of
MBSs have been observed in a SC monolayer proximitized
to magnetic islands [4] and at the ends of one-dimensional
nanowire SCs [5]. Binding Majoranas to skyrmions is
particularly interesting, since skyrmions can be moved by
electric currents [10,11,17,18]. To reach the topologically
nontrivial regime, the theoretical proposals typically study
a strong interaction between the spins in the magnet and the
electrons in the SC [7–12].
Magnon-mediated superconductivity in heterostructures

of colinear magnets and conductors has received a great deal
of attention, often considering much weaker coupling across
the interface [19–25]. All of these studies find topologically
trivial SCs. Superconductivity mediated by spin fluctuations
has been observed in a bilayer of bismuth and nickel [26].

In this Letter, we study magnon-mediated superconduc-
tivity in a normal metal (NM) due to spin fluctuations in
skyrmion crystals (SkXs). Their noncolinearity leads to
fundamentally new effects in the effective electron-electron
interactions that give rise to TSC. We study superconduc-
tivity with a weak-coupling approach and solve both the
linearized gap equation and the zero temperature gap
equation. A bulk topological invariant is calculated to
determine which parts of the superconducting phase dia-
gram are topologically nontrivial.
Model.—The system is shown in Fig. 1(b). The insulat-

ing magnetic monolayer (MML) is modeled by a nearest-
neighbor ferromagnetic exchange interaction of strength J,
a Dzyaloshinskii-Moriya interaction (DMI) of strength D,
a four-spin interaction of strength U, and an easy-
axis anisotropy of strength K [27–29]. Motivated by
Refs. [35,36], we consider K to be a tunable parameter.
Throughout, we set ℏ ¼ a ¼ 1, where a is the lattice
constant. The role of the heavy metal (HM) is to provide
the spin-orbit coupling necessary for DMI. In addition,
hydridization [37] can lead to an unusually small nearest-
neighbor exchange interaction so that the four-spin inter-
action is not negligible. Other than that, the HM has no
effect on our model, which focuses on the two-dimensional
interface between the NM and the MML. DMI prefers
noncolinear magnetically ordered ground states (GSs).
Among those, the four-spin interaction prefers noncopla-
nar, dense SkXs [37]. The two classical GSs in the MML
are shown in Figs. 1(c) and 1(d). SkX1 is the GS for K <
Kt and SkX2 is the GS for K > Kt, where Kt=J ∈
ð0.518; 0.519Þ as previously reported in Refs. [27,28].
Note that the centers of the skyrmions in SkX2 are shifted
compared to SkX1, giving SkX2 a lower symmetry [27].
These SkXs both feature 15 magnon bands ωqn, which we
take as inputs in this Letter:HMML ¼ P

q∈MBZ;n ωqnb
†
qnbqn.

The quasimomentum q is restricted to the magnetic first
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Brillouin zone (MBZ) corresponding to the centered
rectangular lattice set up by the SkX GSs [27,28].
The NM at the interface is modeled by a hopping term

with energy t and a controllable chemical potential μ,
which is diagonalized by a Fourier transform (FT)
ciσ ¼ ð1= ffiffiffiffi

N
p ÞPk∈EBZ ckσe

ik·ri . The quasimomentum k is
restricted to the electron first Brillouin zone (EBZ) corre-
sponding to the triangular lattice, and N is the total number
of lattice sites at the interface. ciσ annihilates an electron
with spin σ and site index i, located at ri. This yields
HNM ¼ P

k∈EBZ;σ ϵkc
†
kσckσ , with ϵk ¼ −μ − 2t½cos kx þ

2 cosðkx=2Þ cosð
ffiffiffi
3

p
ky=2Þ� shown in Fig. 1(a).

The interaction between electrons in theNMand localized
spins in the MML is modeled as an interfacial exchange
interaction [8–16,19–26,38], Hem ¼ −2J̄

P
i c

†
i σci · Si,

where ci ¼ ðci↑; ci↓ÞT , σ is a vector of the Pauli matrices,
and Si is the spin operator at site i. We treat this term as a
perturbation to the NM and focus on the magnon-mediated
effective electron-electron interaction. Assuming J̄ ≪ t, we
keep the z axis as quantization axis for the electron spins in
the NM. The spins in theMML are each quantized along the
direction of the spin in the classical GS giving 15 separate
quantization axes. Performing such rotations of the spins in
the MML and applying the Holstein-Primakoff transforma-
tion yields [29]

Hem ¼ −J̄
ffiffiffiffiffiffi
2S

p X
iσ

½e−iσϕiðcos θi − nσÞaic†iσci;−σ þ H:c:�

þ J̄
ffiffiffiffiffiffi
2S

p X
iσ

ðnσ sin θiaic†iσciσ þ H:c:Þ: ð1Þ

Here, H.c. denotes Hermitian conjugate, n↑ ¼ 1, n↓ ¼ −1,
ai annihilates a magnon at site i, S is the spin quantum
number in the MML, and θi, ϕi are the polar and azimuthal
angles specifying the direction of the classical spin at site i.
We have ignored terms that contain only two electron
operators. Such renormalizations of the electron spectrum
are higher order in perturbation theory than our weak-
coupling treatment of the effective electron-electron inter-
action. Self-energy effects due to electron-magnon coupling
could renormalize the electron spectrum.Given the existence
of a magnon gap [27,28], such effects are negligible close to
the Fermi surface (FS) [39].
Compared to earlier studies of superconductivity

induced by colinear spin structures, Eq. (1) features a
fundamental difference. Namely, given that θi ≠ f0; πg, a
magnon can be involved in both spin flip processes as well
as processes where the z component of the electron spin is
not changed. We illustrate this in Fig. 1(b). When the spin
in the magnet points in the z direction, the electron spin will
always get a spin flip. When an itinerant electron interacts
with a spin in the magnet with a nonzero in-plane
component, the electron spin need not change.
Effective interaction.—As shown in Fig. 1(a), the MBZ

is far smaller than the EBZ. Thus, umklapp processes must
be included when applying FTs to Eq. (1). The FT of the
electron operators is modified to ciσ ¼ ð1= ffiffiffiffi

N
p ÞPk∈MBZP

ν ckþQν;σe
iðkþQνÞ·ri , where Qν is a set of 15 reciprocal

lattice vectors specified in Ref. [29]. If site i is located on

sublattice r we have ai ¼ ð1= ffiffiffiffiffi
N0p ÞPq∈MBZ a

ðrÞ
q eiq·ri ,

where N0 is the number of magnetic unit cells. The magnon

operators aðrÞq are transformed to their diagonal basis bqn
through a paraunitary matrix Tq [27,28,40]. We obtain an
effective electron-electron interaction mediated by the
magnons in the SkXs by applying a Schrieffer-Wolff
transformation [41]. Assuming oppositely directed
momenta, we obtain [29]

Hee ¼
1

2

XEBZ
kk0

X
σ1σ2
σ3σ4

V̄σ1σ2σ3σ4
kk0 c†k0σ1c

†
−k0σ2

c−kσ3ckσ4 ; ð2Þ

wherek0 ¼ kþ qþ Qν. The coupling functions V̄
σ1σ2σ3σ4
kk0 are

of order J̄2=t and contain linear combinations of magnon
transformation coefficients divided by ϵk − ϵk0 � ω�q;n.
Detailed expressions are given in Ref. [29]. Because of
the noncolinear spin structure, they are in general nonzero for
all combinations of spin indices. This is a crucial difference
from colinear spin structures, where only a subset are
nonzero [21–25]. This endows the superconducting order
parameter with richer spin texture than in the colinear case.
While we treat umklapp effects in the effective interaction,
their effect on the NM energy dispersion is ignored. Hence,
our results arevalidwhen theFS is smaller than theMBZ, i.e.,

(a)

(b)

(c)

(d)

FIG. 1. (a) Plot of the electron energy ϵk showing the electron
first Brillouin zone (EBZ) in black, the magnetic first Brillouin
zone (MBZ) in orange, and the Fermi surface (FS) in white. Two
choices of μ are shown, where the solid FS corresponds to μ=t ¼
−5.9 and the dashed FS corresponds to μ=t ¼ −5.0. (b) An
illustration of the system under consideration. The itinerant
electrons (blue arrows) in a normal metal (NM) are coupled to
the spins (orange arrows) in a magnetic monolayer (MML). The
MML is deposited on a heavy metal (HM) such that skyrmion
crystal (SkX) ground states (GSs) are preferred. The (c) SkX1 and
(d) SkX2 GSs are shown with periodic boundary conditions.
Colors give the z component of the spins, miz, and arrows show
their in-plane component.
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low filling μ=t ≤ −5.0, where such effects do not influence
occupied states.
Superconductivity.—We follow the generalized BCS

theory outlined in Ref. [42] for unconventional SCs.
Since all V̄σ1σ2σ3σ4

kk0 are nonzero in general, we can have

coexistence of singlet SC gap, ΔOðsÞ
k↑↓ ¼ ðΔk↑↓ − Δk↓↑Þ=2,

and all triplet gaps ΔEðsÞ
k↑↓ ¼ ðΔk↑↓ þ Δk↓↑Þ=2, Δk↑↑, and

Δk↓↓. This yields two distinct bands in the SC:

Ek�¼ðϵ2kþTrΔ̂kΔ̂
†
k=2�

ffiffiffiffiffi
Ak

p
=2Þ1=2, with ðΔ̂kÞσσ0 ¼ Δkσσ0 ,

and, in our case, Ak=16 ¼ ðΔEðsÞ
k↑↓ Þ2ðΔOðsÞ

k↑↓ Þ2 − Δk↑↑

Δk↓↓ðΔOðsÞ
k↑↓ Þ2. A more general expression for Ak is given

in Ref. [29].
The gap equation is [29]

Δk ¼ −
X
k0
Vk0k

X
η

�
Δk0

2
þ ηBk0

�
χk0η: ð3Þ

Here, Δk¼ðΔOðsÞ
k↑↓ ;Δk↑↑;Δk↓↓;Δ

EðsÞ
k↑↓ ÞT , Bk ¼ ðBOðsÞ

k↑↓ ; Bk↑↑;

Bk↓↓; B
EðsÞ
k↑↓ ÞT , B†

kσ1σ2
¼ ð1=4 ffiffiffiffiffi

Ak
p Þð∂Ak=∂Δkσ1σ2Þ, and

χkη ¼ tanhðβEkη=2Þ=2Ekη. Vk0k is a matrix containing the
16 coupling functions [29].
For temperatures close to the critical temperature Tc we

linearize the gap equation. Since χk0η is peaked at the FS for
small Tc, we employ FS averages, keeping the angular
dependence of Vk0k, but ignoring any radial variation. The
matrix elements are set to their value on the FS, for energies
closer to the FS than the maximum magnon frequency ωc,
i.e., jϵkj; jϵk0 j < ωc. Otherwise, the coupling functions are
set to zero. The resulting gap equation is [29]

λΔðϕÞ ¼ −N0hVðϕ0;ϕÞΔðϕ0ÞiFS;ϕ0 ; ð4Þ
whereN0 is the density of states per spin on the FS, and ϕ is
the angle k makes with the kx axis. The dimensionless
coupling constant λ can be used to estimate the critical
temperature. Given λ ≪ 1, kBTc ¼ ð2eγ=πÞωce−1=λ, where
γ is the Euler-Mascheroni constant [43]. We solve Eq. (4) as
a matrix eigenvalue problem. Then, λ is the greatest
eigenvalue and its corresponding eigenvectors give infor-
mation about the structure of the gap [29].
Results for λ are given in Fig. 2(a). λ increases with μ,

presumably because the FS becomes larger. λ also increases
toward the phase transition between SkX1 and SkX2 in the
MML, since the magnon gap decreases, giving stronger
electron-electron interactions. Figure 2(a) also acts as a phase
diagram showing the symmetry of the gaps. The proceeding
symmetry classifications are illustrated in Fig. 2(b). In SkX1,

forK < Kt,Δ
EðsÞ
k↑↓ decouples from the other gaps. In the green

region,ΔEðsÞ
k↑↓ haspx-wave symmetrywhile the other gaps are

zero. In the orange and blue regions,ΔEðsÞ
k↑↓ ¼ 0. In the orange

region, Δk↓↓ has px þ ipy-wave, i.e., chiral p-wave sym-

metry,Δk↑↑ ¼ −Δ�
k↓↓, andΔ

OðsÞ
k↑↓ is a small dxy-wave gap for

lowμ. For higherμ,ΔOðsÞ
k↑↓ becomes gwave. In theblue region,

Δk↓↓ has fy þ ifx-wave, i.e., chiral f-wave symmetry,

Δk↑↑ ¼ −Δ�
k↓↓, whileΔ

OðsÞ
k↑↓ shows−dx2−y2-wave symmetry.

The situation in SkX2 is similar, but all four gaps couple.
While the other gap symmetries remain the same in the
orange and blue regions, a comparatively small amplitude

px-wave solution for ΔEðsÞ
k↑↓ coexists.

Figure 3 shows estimates of Tc in kelvin. Note from
Fig. 2(a) that λ is too small in the orange and green regions
to yield Tc > 1 mK when J̄=J ¼ 50. Here, λ ∼ ðJ̄=tÞ2 and
Tc depends exponentially on λ. Hence, an increase of J̄
gives a major increase in Tc. We still keep J̄ ≪ t, so that the
coupling to the magnet can be viewed as a perturbation.

(a) (b)

FIG. 2. (a) Phase diagram and dimensionless coupling λ in the
superconducting state close to Tc. The vertical, black line shows
the transition between SkX1 and SkX2 in the MML. The other
black lines show the locations of the phase transitions with better

resolution. In the green region, the unpolarized triplet gap ΔEðsÞ
k↑↓

shows px-wave symmetry, while the other gaps are zero. In the
orange and blue regions, the stated symmetry refers to the Δk↓↓

gap. The relevant gap symmetries are shown in (b). The
parameters are t=J ¼ 1000, J̄=J ¼ 50, D=J ¼ 2.16, U=J ¼
0.35, and S ¼ 1.

FIG. 3. Estimates of Tc as a function of the easy-axis anisotropy
K in the MML for different chemical potentials μ. We have set an
upper cutoff of 10 K since larger Tc means that λ ≪ 1 is no longer
valid. The parameters are t=J ¼ 1000,D=J ¼ 2.16,U=J ¼ 0.35,
and S ¼ 1. In this figure only, J ¼ 1 meV was set in order to find
Tc in kelvin.
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Zero temperature.—To study the low-temperature
behavior, we derive a gap equation at zero temperature,
where χkη ¼ 1=2Ekη. Using FS averages yields [29]

ΔðϕÞ ¼ −N0

�
Vðϕ0;ϕÞ

X
η

�
Δðϕ0Þ
2

þ ηBðϕ0Þ
�

× arsinh

� ffiffiffi
2

p
ωc

ðTrΔ̂ðϕ0ÞΔ̂†ðϕ0Þ þ η
ffiffiffiffiffiffiffiffiffiffiffi
Aðϕ0Þp Þ1=2

��
FS;ϕ0

:

ð5Þ

In the original BCS treatment of phonon-mediated super-
conductivity, 2Δð0Þ=kBTc ¼ 2πe−γ , where Δð0Þ is the
amplitude of the gap at zero temperature [43]. We use
this as the amplitude of an initial trial solution Δ0ðϕÞ with
its structure around the FS guided by the solution close to
Tc. Self-consistent iteration [29] is then used to obtain
solutions of Eq. (5) satisfying a convergence criterion,
typically 10−4 of the amplitude of the gap vector. The
amplitude is defined as the largest absolute value of the real
or imaginary parts of the four gap functions.
Figure 4 shows the resulting phase diagram at zero

temperature. The black lines showing the phase transitions
are wider, since there are regions where several symmetries
can give solutions of the nonlinear Eq. (5) [29]. LetΔð0Þ be
the maximum of the lowest energy band on the FS,
Δð0Þ≡maxFSEk−. This would be the largest gap found
on the FS in an experiment. We see that 2Δð0Þ=kBTc is
comparable to the BCS result in the px- and chiral p-wave
phases, except that it drops to small values when approach-
ing the phase transitions. In the chiral f-wave phases,
2Δð0Þ=kBTc is much smaller than the BCS result because
TrΔ̂kΔ̂†

k ≳
ffiffiffiffiffi
Ak

p
and so Ek− is small. This is due to the

unconventional nature of the SC. The value of 2Δð0Þ=kBTc
has a very weak dependence on J̄. We varied J̄ when
obtaining Fig. 4 to ensure that the expected amplitude at
zero temperature was larger than 10−5J.

Topological superconductivity.—The first requirement
for (strong) TSC is a fully gapped bulk spectrum [6].
The chiral f-wave phases have a very small Ek−, and we
leave their topological classification as an open question.
The px-wave phase is gapless and topologically trivial. In
the chiral p-wave phases the bulk spectrum Ekη is fully
gapped.
To determine if the SC state is topologically nontrivial,

we proceed by computing a bulk topological invariant. We
define a Bogoliubov–de Gennes (BdG) Hamiltonian where
the gaps Δk↑↓ and Δk↓↑ are multiplied by 1 − x. Using the
gap functions in the chiral p-wave phases we find that
tuning x from 0 to 1 does not close the bulk gap [29].
Hence, the obtained SC is topologically equivalent to one
where Δk↑↓ ¼ Δk↓↑ ¼ 0. For such a system, we can define
two spin-decoupled BdG Hamiltonians Hkσ ¼ dkσ · σ,
where dkσ ¼ ðReΔkσσ;−ImΔkσσ; ϵkÞ. The obtained SC
states are time-reversal symmetric (TRS) [29,42], and so
the bulk topological invariant is defined as

νZ2
¼ 1

2
ðN↑ − N↓Þ mod 2; ð6Þ

with Nσ ¼ ð1=8πÞ REBZ dkϵijd̂kσ · ð∂ki d̂kσ × ∂kj d̂kσÞ, ϵij the
Levi-Civita tensor, i; j ∈ fx; yg, and d̂kσ a unit vector along
dkσ [3]. Because of TRS, N↓ ¼ −N↑. Since the energy
scale of ϵk is much greater than the gapsΔkσσ, the integrand
is only nonzero close to the FS, where ϵk is small. Hence,
knowledge of the gaps close to the FS is sufficient to
calculate the integral over the full EBZ. Using adaptive
integration [28,44], N↓ approaches 1 with increasing
density of points. Therefore, νZ2

¼ 1, indicating a topo-
logically nontrivial SC.
The chiral p-wave phases of our SC are TRS 2D

topological SCs. In a finite geometry there will be two
topologically protected, counterpropagating edge states
which are Majorana fermions corresponding to each spin
species [3]. Additionally, there will be MBSs in the core of
vortices [2,3].
TSC requires spinless or spin polarized Cooper pairs [3].

Previous studies of magnon-mediated superconductivity
from colinear spin structures found only unpolarized
Cooper pairs [22–25]. The noncolinearity of the SkXs
admits the creation of polarized Cooper pairs, making
TSC possible. In heterostructures of chiral magnets and
conventional SCs, it is found that the noncoplanar nature
of skyrmions is essential to get a bulk gap and strong
TSC [6,8,9]. Unlike heterostructures involving conven-
tional SCs, the pairing mechanism itself leads to TSC in
the system we consider. From Eq. (1) it is clear that
noncolinearity is sufficient to facilitate polarized Cooper
pairs [45]. Whether noncolinear, coplanar states would
result in TSC requires detailed solutions of the gap equation
and is left as an open question.
Suggestions for materials.—A SkX similar to SkX1 and

SkX2 was observed in a MML of iron grown on top of the

FIG. 4. Phase diagram at zero temperature showing 2Δð0Þ=
kBTc in color. Black regions show where two or more symmetries
lead to convergence. Where applicable, the BCS result
2Δð0Þ=kBTc ¼ 2πe−γ is shown on the color bars. The parameters
are t=J ¼ 1000, D=J ¼ 2.16, U=J ¼ 0.35, and S ¼ 1.
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HM iridium [37]. To test our predictions, we suggest
growing a NM which does not become a SC due to
electron-phonon interactions, like copper, silver, or gold
[46], on top of the MML. Producing an interfacial exchange
interaction strong enough to bring Tc to observable temper-
atures is a materials science challenge. The value of J̄ is
associated with an overlap integral, depending on the
chosen materials and how the interface is grown. See
Ref. [39] and references therein for a discussion of the
value of J̄. Note that while we require J̄=t ∼ 0.1 to get TSC
with observable Tc, the studies of TSC in heterostructures of
chiral magnets and conventional SCs often require J̄ ∼ t for
the system to enter a topologically nontrivial state [7–12].
Conclusion.—We have studied an interface between a

normal metal and an insulating magnetic monolayer host-
ing skyrmion crystals. The noncolinearity of the magnetic
ground state allowed more exotic electron-electron inter-
actions mediated by magnons than colinear magnetic
ground states. In large parts of the phase diagram, we
found topological superconductivity, with possible appli-
cations in topological quantum computing.
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