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Despite ground-breaking observations of supersolidity in spin-orbit-coupled Bose-Einstein condensates,
until now the dynamics of the emerging spatially periodic density modulations has been vastly unexplored.
Here, we demonstrate the nonrigidity of the density stripes in such a supersolid condensate and explore
their dynamic behavior subject to spin perturbations. We show both analytically in infinite systems and
numerically in the presence of a harmonic trap how spin waves affect the supersolid’s density profile in the
form of crystal waves, inducing oscillations of the periodicity as well as the orientation of the fringes. Both
these features are well within reach of present-day experiments. Our results show that this system is a
paradigmatic supersolid, featuring superfluidity in conjunction with a fully dynamic crystalline structure.
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Supersolidity is an intriguing phenomenon exhibited by
many-body systems, where both superfluid and crystalline
properties coexist as a consequence of the simultaneous
breaking of phase symmetry and translational invariance
[1–6]. After unsuccessful attempts in solid helium [7,8],
supersolidity was first experimentally realized in Bose-
Einstein condensates (BECs) with spin-orbit coupling
(SOC) [9,10] or inside optical resonators [11]. More
recently, the supersolid phase has been identified in a
series of experiments with dipolar Bose gases, where phase
coherence, spatial modulations of the density profile, as
well as the Goldstone modes associated with the superfluid
and crystal behavior have been observed [12–19].
Since the experimental realization of spin-orbit-coupled

Bose-Einstein condensates (SOC BECs) [20,21], this plat-
form has emerged as a peculiar candidate of supersolidity
because the spin degree of freedom is coupled to the density
of the system [22–29]. Without SOC, a two-component
BEC has already two broken symmetries, one for the
absolute phase and one for the relative phase between the
two BEC order parameters. The addition of weak SOC
mixes the spatial and spin degree of freedom, resulting in a
stripe phase where the relative phase between the two
condensates breaks the translational symmetry of space—
the defining property of a supersolid. The Goldstone modes
associated with the relative phase are spin excitations,
whose dispersion relations as a function of the Raman
coupling have been explored in Refs. [28,30], but a

connection to the crystal dynamics of the stripes has so
far only been established for their rigid zero-frequency
translational motion [28,29].
The rigidity of the stripe pattern has been controversially

discussed in the literature. For supersolids induced by
coupling a BEC to two single-mode cavities [11,31], the
wave vector of the density modulations is determined by
the cavity light and the associated Goldstone mode is
suppressed for nonzero wave vectors [32]. Since the spin-
orbit effect is induced by Raman laser beams, it has been
widely believed that the stripe pattern in SOC BECs is also
externally imposed by the light and thus rigid. Up to now,
conclusive evidence for the nonrigidity of the stripe pattern
has been lacking, as previous studies of stripe dynamics
have mainly focused on the infinite-wavelength limit
[28,29]. In this Letter, we elucidate the lattice-phonon
nature of the spin Goldstone mode at finite wavelengths and
thus demonstrate that the stripes form a fully dynamic
crystal that is by no means rigid. Specifically, we show how
spin perturbations can excite oscillations of both the
spacing and the orientation of the density fringes, establish-
ing SOC BECs as paradigm examples of supersolidity.
Origin of stripe dynamics.—We consider the common

scenario where SOC is generated in a binary mixture of
atomic quantum gases by coupling two internal states using
a pair of intersecting Raman lasers [34–36]. In contrast to
quantum mixtures with a simple coherent coupling of radio
frequency or microwave type, the Raman coupling involves
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a finite momentum transfer −2ℏk0 ¼ −2ℏk0êx, which we
assume to point in the negative x direction. In the limit of
weak Raman coupling, the emergence of the stripes and
their dynamics can simply be explained as a spatial
interference effect within a wave function which has four
components (Fig. 1): spin-up condensate at zero momen-
tum with a SOC admixture of spin down at wave vector
2k0, and spin-down condensate at zero momentum with a
SOC admixture of spin up at wave vector −2k0. Because of
SOC, there is now a spatial interference pattern between the
two spin-up and two spin-down components with wave
vector K ¼ 2k0. The spontaneously chosen relative phase
between the two condensates determines the origin of the
stripe pattern. If there is a chemical potential difference
between the two components, the relative phase of the two
condensates will oscillate and therefore also the position of
the stripes. One can add a spin current to the system, e.g.,
an out-of-phase or relative motion between the two con-
densates, which thus obtain the momenta �ℏkrel=2. The
four components of the wave function are now at krel=2,
−krel=2 − 2k0 for spin up and −krel=2, krel=2þ 2k0 for spin
down, and the spatial interference pattern has now the wave
vector K ¼ 2k0 þ krel. If the spin current is oscillating, the
wave vector of the stripe pattern will oscillate at the same
frequency. When krel is parallel to k0, the fringe spacing
oscillates. When they are perpendicular, the angle of the
fringes oscillates. In what follows, we confirm and extend
this intuitive picture using rigorous perturbative calcula-
tions and numerical simulations.
Theoretical framework.—After transforming to a spin-

rotated frame, the single-particle Hamiltonian of the system
takes the time-independent form [21]

HSOC ¼ 1

2m
ðp − ℏk0σzÞ2 þ

ℏΩ
2

σx þ
ℏδ
2
σz þ VðrÞ; ð1Þ

wherem is the atomic mass, σx and σz are Pauli matrices,Ω
is the strength of the Raman coupling, δ is the effective
detuning, and VðrÞ is a single-particle potential. In infinite
systems (V ≡ 0), the Hamiltonian is translationally invari-
ant and allows for a spontaneous breaking of this symmetry,
which, in combination with the broken Uð1Þ symmetry in
the BEC phase, gives rise to supersolidity.
Since quantum depletion of a SOC BEC is typically

small under realistic conditions [37,38], interactions
between atoms are well described by mean-field theory
via the Gross-Pitaevskii (GP) energy functional [39]

E ¼
Z

dr

�
Ψ†HSOCΨþ gnn

2
n2 þ gss

2
s2z þ gnsnsz

�
: ð2Þ

Here, the order parameter is given by a two-component
spinor Ψ ¼ ðΨ↑;Ψ↓Þ⊺ with complex wave functions Ψ↑
andΨ↓ for the individual spin states. The last three terms in
Eq. (2) describe density-density, spin-spin, and density-
spin interactions, respectively, where n ¼ jΨ↑j2 þ jΨ↓j2
denotes the total particle density and sz ¼ jΨ↑j2 − jΨ↓j2 is
the spin density. The corresponding interaction constants
gnn ¼ ðg↑↑ þ g↓↓ þ 2g↑↓Þ=4, gss ¼ ðg↑↑ þ g↓↓ − 2g↑↓Þ=4,
and gns ¼ ðg↑↑ − g↓↓Þ=4 are obtained from suitable com-
binations of the coupling constants gij ¼ 4πℏ2aij=m,
determined by the s-wave scattering lengths aij of the
respective spin channels with i; j ∈ f↑;↓g. We focus our
analysis on symmetric intraspecies interactions, assuming
gns ¼ 0 and δ ¼ 0 from now on.
At the critical Raman coupling ℏΩcr ¼

4Er

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gss=ðgnn þ 2gssÞ

p
[23,25], where Er ¼ ðℏk0Þ2=2m

is the recoil energy, the system undergoes a first-order
transition between the supersolid (stripe) phase and the
superfluid (but not supersolid) so-called plane-wave and
single-minimum phases (see, e.g., Ref. [27]). The latter are
characterized by a strong Raman coupling that is respon-
sible for the locking of the relative phase between the two
spin components [40], resulting from the competition
between the spin (gss) and density (gnn) interaction com-
ponents of the mean-field energy functional (2) [41].
Consequently, there is only a single spin-density-
hybridized Goldstone mode above Ωcr. Conversely, in
the supersolid phase, below Ωcr, the spontaneous breaking
of both phase and translational symmetry implies the
existence of two Goldstone modes of predominantly
density and spin nature with distinct sound velocities
(see Supplemental Material [42] for further details) [26,29].
A major question to be addressed in what follows is how

the spin degree of freedom can induce dynamics in the
stripe patterns and in particular how the excitation of a spin
wave results in the excitation of a crystal wave affecting the
time dependence of the density profile.
Perturbation approach in infinite systems.—A useful

scenario to probe this question consists in suddenly

FIG. 1. Illustration of the interference effects that lead to the
appearance and dynamics of stripe patterns. The Raman process
responsible for spin-orbit coupling turns the two-component
Bose-Einstein condensate (two big circles) into a system with
a four-component wave function. Components with the same spin
form a spatial interference pattern.
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releasing at time t ¼ 0 a small static spin perturbation of the
form −λErσz cosðq · rÞ, with 0 < λ ≪ 1. The wave vector q
is assumed to be small in order to explore the relevant
phonon regime, where a major effect of the release of the
perturbation is the creation of a spin wave propagating with
velocity cs. Here, we are mainly interested in its effect
on the dynamic behavior of the stripes characterizing the
density distribution. Starting from the results of Ref. [29]
for the Bogoliubov amplitudes of the phonon modes in the
long-wavelength limit, and neglecting the small contribu-
tions of the gapped modes of the Bogoliubov spectrum, the
space and time dependence of the density can be written in
the form

nðr; tÞ ¼ n̄þ
Xþ∞

m̄¼1

ñm̄ cos½m̄χðr; tÞ�: ð3Þ

Here, n̄ is the average density and

χðr; tÞ ¼ 2k1xþ ϕþ δϕðtÞ cosðq · rÞ ð4Þ
the relative phase between the two condensates in the spin-
rotated frame. The sum over the integer index m̄ reflects the
presence of higher harmonics in the density profile (3)
characterizing the stripe phase, whose coefficients are
denoted by ñm̄. Equations (3) and (4) explicitly reveal that
the perturbed density fringes are a combined effect of the
equilibrium modulations, fixed by the wave vector 2k1 ¼
2k1êx (which differs from 2k0 at finite Raman coupling
[25,29]), and those induced by the external perturbation,
characterized by the wave vector q. The perturbative
expression for k1 is reported in Ref. [29] and for conven-
ience in the Supplemental Material [42]. The phase ϕ
represents the spontaneously chosen offset of the stripe
pattern in equilibrium. The time dependence of the function
δϕ is fixed by the sound velocities cn;s of the density and
spin phonons as well as by the Raman coupling Ω.
For q ≪ k1, the relative phase (4) varies very slowly over

a large number of equilibrium density oscillations.
Consequently, in a region of space jr − r0j ≪ q−1 around
a given point r0, one can approximate χ by its first-order
Taylor expansion,

χðr; tÞ ≃ Kðr0; tÞ · rþΦðr0; tÞ: ð5Þ

This expression features a local time-dependent stripe wave
vector, whose structure

Kðr0; tÞ ¼ ∇χðr0; tÞ ¼ 2k1 − δϕðtÞ sinðq · r0Þq ð6Þ

confirms the intuitive scenario of Fig. 1 (where k1 has been
approximated by k0), upon identifying krel with the second
term in Eq. (6). In addition, Eq. (5) contains the phase shift

Φðr0; tÞ ¼ χðr0; tÞ − r0 ·∇χðr0; tÞ
¼ ϕþ δϕðtÞ½cosðq · r0Þ þ ðq · r0Þ sinðq · r0Þ�; ð7Þ

which is responsible for the time modulation of the offset of
the stripe pattern.
Carrying out a perturbative analysis of the order para-

meter of the condensate up to second order in ℏΩ=4Er (see
Refs. [29,44]) yields the result

δϕðtÞ ¼ −
2k1vs
csq

sinðcsqtÞ; ð8Þ

where we have introduced the velocity

vs ¼ λ
ℏk0
m

�
1

2
− β

�
ℏΩ
4Er

�
2
�
; ð9Þ

with β ¼ Ern̄½2Ergnn þ 2ð2Er þ n̄gnnÞgss þ n̄g2ss�=½2ð2Erþ
n̄gnnÞ2ð2Er þ n̄gssÞ�, and the expression for cs is reported
in Ref. [29] and for convenience in the Supplemental
Material [42]. At the leading order Ω2, only the spin sound
velocity cs enters Eq. (8), while a second term oscillating at
the density phonon frequency cnq appears at order Ω4 [44].
For Ω ¼ 0, the velocity vs fixes the time variation rate of
the relative phase of the quantum mixture, without any
consequence for the density distribution since the contrast
of fringes exactly vanishes in this limit [25,29] (see also
Supplemental Material [42]).
If cosðq · r0Þ ¼ �1, the initial static spin perturbation has

a peak (antinode) at r0, and close to this point it becomes of
the form ∓ λErσz. After releasing the spin perturbation,
there is a spin imbalance at r0 and the difference in
chemical potentials causes an oscillation of the relative
phase of the two condensates. From Eqs. (7) and (8) one
sees that, at times satisfying the condition t ≪ ðcsqÞ−1
(which is easily fulfilled for the small q of interest here),
the stripes show a displacement at velocity �vs, i.e.,
χðr; tÞ ≃ 2k1ðx ∓ vstÞ þ ϕ, in excellent agreement with
the numerical findings of Ref. [28] (see Supplemental
Material [42] for further details). At q ¼ 0, the spatial
translation of stripes corresponds to the zero-frequency
limit of the spin Goldstone branch.
Far from the antinodes, after the spin quench there is

an oscillating spin current, which makes also the stripe
wave vector (6) vary in time. The strongest oscilla-
tions occur when sinðq · r0Þ ¼ �1, i.e., r0 is a node of
the initial perturbation, which is thus antisymmetric under
inversion with respect to r0 and locally behaves as
�λErq · ðr − r0Þσz. In particular, if q ¼ qêx, the local stripe
wavelength 2π=jKðr0; tÞj ¼ ½1 ∓ ðvs=csÞ sinðcsqtÞ�π=k1
oscillates around its equilibrium value. By contrast, if q ¼
qêy, the stripes rotate by an angle �ðvs=csÞ sinðcsqtÞ about
the z axis. This effect occurs in combination with the
fringe displacement seen above, unless r0 coincides with
a maximum or minimum of the equilibrium density
distribution.
The above discussion shows that a spin perturbation

applied to the stripe configuration can cause a rigid motion
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of the stripes as well as a periodic change in either
magnitude or orientation of their wave vector, depending
on the local behavior of the perturbation. Although the
analytic results (8) and (9) have been derived by carrying
out a perturbative analysis up to order Ω2, we have verified
that they provide a rather accurate description of the
dynamics of stripes, as compared to a numerical solution
of the time-dependent linearized GP equation in infinite
systems, also for fairly large values of the Raman coupling.
Numerical simulations in a harmonic trap.—Having

understood how spin perturbations affect the dynamics
of the stripe pattern in infinite systems, we now illustrate
similar effects taking place in finite-size configurations,
namely, in the presence of a harmonic trapping potential
VðrÞ ¼ mðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ=2 with angular frequ-
encies ωi and corresponding oscillator lengths ai ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωi

p
, i ¼ x, y, z. To this end, we numerically solve

the full time-dependent GP equations, which can be de-
rived by applying the variational principle iℏ∂tΨ↑=↓ ¼
δE=δΨ�

↑=↓ to the energy functional (2).
For our numerics, we assume symmetric intraspecies

scattering lengths close to those of 87Rb, where the majority
of experiments on SOC BECs has been conducted, a↑↑ ¼
a↓↓ ¼ 100a0 (a0 is the Bohr radius). Moreover, to enhance
the miscibility of the two spin species and thus the
supersolid features, we assume a quasi-two-dimensional
(2D) situation with reduced interspecies coupling g̃↑↓ ¼
0.6g̃↑↑ (see experimental considerations below), where

g̃↑↑ ¼ g̃↓↓ ¼ g↑↑=
ffiffiffiffiffiffi
2π

p
az are effective 2D couplings for

a strong vertical confinement with frequency ωz=2π ¼
2500 Hz [45]. Further, we choose an elongated trap in the
x direction with ðωx;ωyÞ ¼ 2πð50; 200Þ Hz, a total particle
number of N ¼ 104, as well as k0 ¼

ffiffiffi
2

p
π=λ0 with λ0 ¼

804.1 nm [21].
The numerical protocol is the same as that in the quench

scenario considered above: we first compute the ground
state in the presence of a small static perturbation of spin
nature and then observe the dynamics after suddenly
releasing the perturbation at time t ¼ 0. Here, our analysis
is focused on the stripe dynamics generated by the
longitudinal and transversal spin operators xσz and yσz,
which correspond in infinite systems to the local behavior
of the perturbation around the nodes. The translational
motion of the stripes induced by the uniform spin operator
σz, corresponding to a sudden change of the Raman
detuning, has been studied numerically in Ref. [28] and
is further detailed in the Supplemental Material [42].
Figures 2(a) and 2(b) illustrate, respectively, the oscil-

lation of the fringe spacing and the periodic rotation of the
stripe wave vector in response to weak perturbations by the
operators xσz and yσz. The corresponding oscillation
frequencies coincide with those of the induced spin-dipole
oscillations hxσzi and hyσzi, as shown in Figs. 2(c) and
2(d), respectively. It is remarkable that the transversal spin

operator yσz, which generates the oscillating rotation of the
stripes in the supersolid phase, also constitutes a crucial
spin contribution to the angular momentum operator as a
consequence of SOC [46,47]. The inclusion of such an
effective y-dependent detuning has been used to generate
quantized vortices [20] and to show the occurrence of
crucial rigid components in the moment of inertia [48].
Unsurprisingly, owing to nonlinear effects in the SOC

strength, the dynamic excitation of stripes is not only
produced by spin perturbations (as considered above), but
also by density perturbations. A density perturbation
mainly excites the associated density Goldstone mode,
but due to SOC also produces a weak cross excitation of the
spin Goldstone mode. Since the density mode also has a
weak manifestation in the spin sector, quantities sensitive to
the spin degree of freedom, e.g., the fringes, exhibit a beat
note involving the frequencies of both Goldstone modes
[49]. In fact, one can show that a density perturbation
generates a beating oscillation of the stripe wave vector
with an amplitude of order Ω2 [44] (see Supplemental
Material [42] for an illustration of such beating effects in
harmonically trapped systems). By contrast, a spin pertur-
bation produces a strong excitation of the spin mode (and

FIG. 2. Dynamics of the stripe pattern in a harmonically
trapped system for ℏΩ=Er ¼ 1.75. (a),(b) Snapshots of the
density profile at different times, showing the compression and
dilatation of the fringe spacing (a) as well as the rotation of the
stripes (b) after suddenly releasing the longitudinal and trans-
versal spin perturbations Hxσz ¼ −mω2

xx0 xσz with x0=ax ¼ 0.1
and Hyσz ¼ −mω2

yy0 yσz with y0=ay ¼ 0.15, respectively.
(c) Evolution of the magnitude of the stripe wave vector jKj
and of the longitudinal spin-dipole moment hxσzi for the scenario
in (a). (d) Time trace of the rotation angle θ of the stripes and of
the transversal spin-dipole moment hyσzi for the scenario in (b).
The oscillation frequencies of the stripe pattern coincide with
those of the corresponding spin-dipole moments.
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thus of the stripe pattern) with practically invisible beating
in the stripe wave vector since the contribution of the
density mode is of order Ω4, as noted below Eq. (9).
Experimental perspectives.—For the study of stripe

dynamics, it is favorable to have stripes with high contrast.
This requires strong miscibility between the two compo-
nents to suppress the transition to the phase-separated
plane-wave phase. It is therefore best to use an atom where
the scattering lengths are tunable via Feshbach resonances,
such as 39K [50] or 7Li [51]. Alternatively, in species with
low bulk miscibility, such as 87Rb, the critical Raman
coupling for the stripe phase can be enhanced by consid-
ering a quasi-2D configuration characterized by a reduced
spatial overlap of the two spin components in the strongly
confined direction. This can be realized experimentally
with the help of a spin-dependent trapping potential
[45,52,53] (as we have assumed in our numerics above)
or using pseudospin orbital states in a superlattice [9].
The stripe pattern for SOC BECs has been observed via

Bragg scattering [9,10]. Since the Bragg angle depends on
the period (and angle) of the stripes, any oscillation in the
stripe spacing (or orientation) will result in an oscillating
Bragg signal. Our simulations for realistic parameters show
a modulation of the stripe wave vector on the order of 5%.
This should be easily resolvable in experiments since the
angular resolution of the Bragg spot is diffraction limited
by the condensate size, which is typically 10 to 50 times
larger than the fringe spacing. Alternatively, the periodic
dilatation or rotation of the stripe wave vector could be
observed by identifying the oscillating peaks in the
momentum distribution after ballistic expansion. The
dynamics of the stripes, including their zero-frequency
translational motion, may also be observed in situ after
increasing the stripe period to several microns, e.g., by
creating a spatial beat note with the pattern imprinted by a
π=2 Raman pulse [45] or by using matter-wave-lensing
techniques [54,55]. Interestingly, since the phase of the
Raman beams is added to the spontaneous phase due to
symmetry breaking, an oscillation of the position of the
stripes can be driven by a frequency detuning of the Raman
beams and could possibly be detected by an increase in
temperature after dissipative damping.
In conclusion, SOC supersolids display a rich dynamics

of their spontaneously established crystal order. This is
similar to the dynamics predicted and observed in dipolar
quantum gases [15–17]. The main difference between the
two systems is that SOC supersolids have a spin degree of
freedom, which provides a natural way to excite the crystal
Goldstone mode. This supersolid Goldstone mode is of
hybridized spin-density nature. Its dynamics is different
from that of supersolids mediated by two single-mode
cavities, where nonzero wave vectors are suppressed by the
infinite-range coupling [11,31], and in strong distinction
from externally imposed rigid density patterns as in optical
lattices. As we have shown, the predicted dynamics in SOC

supersolids is readily accessible within state-of-the-art
experimental capabilities.
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