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Here we present a many-body theory based on a solution of the N-representability problem in which the
ground-state two-particle reduced density matrix (2-RDM) is determined directly without the many-particle
wave function.We derive an equation that re-expresses physical constraints on higher-order RDMs to generate
direct constraints on the 2-RDM, which are required for its derivation from an N-particle density matrix,
known as N-representability conditions. The approach produces a complete hierarchy of 2-RDM constraints
that do not depend explicitly upon the higher RDMs or the wave function. By using the two-particle part of a
unitary decomposition of higher-order constraint matrices, we can solve the energy minimization by
semidefinite programming in a form where the low-rank structure of these matrices can be potentially
exploited. We illustrate by computing the ground-state electronic energy and properties of the H8 ring.
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Introduction.—The N-particle wave function or density
matrix of a many-body system with at most pairwise
interactions contains significantly more information than
necessary to compute the ground-state energy and its one-
and two-particle properties [1,2]. Density functional theory
(DFT) expresses the many-particle energy as a functional of
the single-particle density, but its exact functional form for
electrons as well as other particles remains unknown [3],
causing well-known problems with charge-transfer states,
van der Waals interactions, band gaps, and more generally,
static correlation [4]. Another approach is to express the
energy as a functional of the two-particle reduced density
matrix (2-RDM) [5]. The 2-RDM arises from integration of
the N-particle density matrix over all particles except two.
Unlike the situation in DFT, the energy is a known, linear
functional of the 2-RDM. The energy expression, however,
cannot be minimized with respect to the 2-RDM without
additional constraints to ensure that the 2-RDM represents
anN-particle system, which are known asN-representability
conditions [1,2,5–10]. Minimization without these condi-
tions yields energies significantly below the ground-state
energy. The search for the N-representability conditions is
known as the N-representability problem [5,10,11].
Kummer [7] first proved the formal existence of a

solution to the N-representability problem although his
approach required solving a large number of N-particle
eigenvalue equations. More recently, the author [10]
showed that the complete N-representability conditions
are derivable from convex combinations of higher-particle,
constraint matrices. In the past decade approximate con-
ditions have been employed in variational calculations of
the 2-RDM [12–37] to solve significant problems such as
the elucidation of the electronic properties of a glassy,
highly conductive amorphous polymer [38] and the
revelation of exciton condensation in molecular analogs
of double-layer graphene [39–42] (refer to Refs. [43–48]

for their use in one-particle RDM functional theories).
Nonetheless, despite these theoretical advances and appli-
cations, an open, critically important challenge is to include
higher N-representability conditions on the 2-RDM to
obtain a convergent series of increasingly tighter lower
bounds on the energy.
In this Letter, we present a many-body theory based on a

solution of the N-representability problem in which the
ground-state energy and 2-RDM are variationally com-
puted without any explicit dependence on the higher-order
RDMs or the N-particle wave function. We derive an
equation that parametrically generates a systematic, com-
plete hierarchy of N-representability conditions on the
2-RDM from convex combinations of constraints on
higher-order RDMs. Using a unitary decomposition to
extract the two-particle part of the higher-order constraint
matrices [49,50], we solve the energy minimization at each
level of the hierarchy by an efficient optimization, known
as semidefinite programming [25,51–53]. Compared to
earlier work [10,14,20,36,54,55], the present theory has a
potentially major advantage in computational scaling
because the constraint matrices, unlike the higher-order
RDMs, are extremely low rank for Hamiltonians with
pairwise interactions. While the theory is developed here
for electrons that are fermions, with minor adjustments it is
applicable to bosons [56]. To illustrate, we apply the theory
to compute the energies and 2-RDMs of the H8 ring, which
show rapid convergence with the level of the hierarchy.
Theory.—Because electrons are indistinguishable

with pairwise interactions, the electronic energy of any
atom or molecule can be written in terms of only two
electrons

E ¼ Trð2K̂ 2Dð12; 1̄ 2̄ÞÞ; ð1Þ
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is the two-electron reduced Hamiltonian operator and

2Dð12; 1̄ 2̄Þ ¼
Z

Ψð12…NÞΨ�ð1̄ 2̄…NÞd3…dN ð3Þ

is the 2-RDM expressed in terms of the N-electron wave
function Ψð12…NÞ. Each roman number corresponds to
the spatial and spin coordinates of an electron. In a matrix
representation with respect to a finite set of orthonormal
orbitals, the energy can be expressed as

E ¼
X

ijkl

2Kij
kl
2Dij

kl ð4Þ

in which the indices i, j, k, l range from 1 to r with r being
the rank of the orbital basis set.
The 2-RDM in the energy expression must be further

constrained to ensure that it represents an N-electron
system—the N-representability conditions. These condi-
tions can be expressed by a system of linear inequalities on
the 2-RDM

Trð2Bj
2DÞ ≥ 0; ð5Þ

in which the two-electron matrices 2Bj lie in a convex cone
2P�

N that is polar to the set of 2-RDMs 2PN . The polar cone
of 2Bj matrices can be described by the following linear
matrix inequalities (or semidefinite constraints)

2Bj ∧ IN−2 ⪰ 0; ð6Þ

in which ∧ is the Grassmann wedge product [49,57,58],
IN−2 is the (N − 2)-electron identity matrix, and M ⪰ 0
indicates that the matrix M is positive semidefinite (non-
negative eigenvalues). Each 2Bj defines the one- and two-
body terms of a positive semidefinite N-electron matrix in
Eq. (6) if and only if it has a non-negative trace against
every N-representable 2-RDM in Eq. (5). Otherwise, there
is a contradiction between the expectation values of 2Bj on
the reduced space and those on the N-electron space. Each
semidefinite constraint in Eq. (6), however, is not easily
checked because it involves solving an N-electron eigen-
value equation.
The solution of the N-representability problem, as we

showed previously, can be formally cast as convex combi-
nations of higher-body positive semidefinite operators that
generate the two-particle operators in the polar cone [10].
Here we recognize that we can successfully express each
convex combination by the following fundamental and

practical matrix equation for parametrizing the 2Bj

matrices:

X

i

pBi;j − 2Bj ∧ Ip−2 ¼ 0; ð7Þ

where the pBi;j matrices can be selected from known,
necessary N-representability conditions on the p-RDM,
called p-positivity conditions (see below), and hence, they
have the property pBi;j ∧ IN−p ⪰ 0 by construction without
the need to form the N-electron matrix. Equation (7)
converts a sum of p-electron matrices that are necessary
for a p-RDM to be N representable into a 2-electron matrix
2Bj that is necessary for a 2-RDM to be N representable.
Formally, the constraints are necessary and sufficient when
p ¼ N because each member of the polar cone in Eq. (6) is
generated, but practically, based on previous p-RDM
calculations [14,20,36,54,55,59], they often converge to
either a complete or a practically complete set for p ≪ N.
Therefore, the combination of Eqs. (5) and (7) provides a
hierarchy of N-representability conditions for the varia-
tional computation of the 2-RDM. This hierarchy has a
significant advantage over the hierarchy in Ref. [10]
because it expresses all of the conditions through the
parametrization of a single matrix equation.
The sum over i in Eq. (7) consists of (pþ 1) terms that

translate each of the p-positivity conditions on the p-RDM
into conditions directly on the 2-RDM, which we call
ð2; pÞ-positivity conditions. For two-positivity there are
three terms with the first term 2B1;j ⪰ 0 corresponding to
the D2 condition in which the two-particle RDM is con-
strained to be positive semidefinite. Other contributions can
be readily defined in second quantization [1,2,5–10]

X

pqst

2Bpq;st
2;j â†pâ

†
qâtâs ¼

X

pqst

2Bst;pq
Q;j âsâtâ

†
qâ

†
p; ð8Þ

X

pqst

2Bpq;st
3;j â†pâ

†
qâtâs ¼

X

pqst

2Bpt;sq
G;j â†pâtâ

†
qâs; ð9Þ

where 2BQ;j ⪰ 0 and 2BG;j ⪰ 0. The 2B2;j and 2B3;j are
obtained in terms of the positive semidefinite 2BQ;j and
2BG;j by rearranging the fermionic second-quantized oper-
ators on the right sides of the equations to match the
canonical ordering on the left sides of the equations. These
terms correspond to the Q2 and G2 conditions that
constrain the distributions of two holes and a particle-hole
pair to be nonnegative. Similarly, for the three-positivity
conditions there are four terms with the first term 3B1;j ⪰ 0

corresponding to the D3 condition in which the three-
particle RDM is constrained to be positive semidefinite.
Other terms correspond to the E3, F3, and Q3 matrices that
constrain the probability distributions of two particles and a
hole, two holes and a particle, and three holes [10,14,20];
see Supplemental Material [60]. Similarly, the convex
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combinations can be defined for the higher p-positivity
conditions where p > 3 [14] to generate a complete hier-
archy of N-representability conditions on the 2-RDM, the
ð2; pÞ-positivity conditions [10].
These N-representability conditions can be efficiently

implemented for the direct variational calculation of the
ground-state 2-RDM through the following semidefinite
program based on the 2-RDM’s polar cone

max
E;X

E ð10Þ

such that ð2K − EI2Þ − 2B ¼ 0; ð11Þ
X

i

pBi½X� − 2B ∧ Ip−2 ¼ 0; ð12Þ

in which we cast the 2B matrix, which is not necessarily
positive semidefinite, as a functional of the pBi½X�matrices,
which are functionals of the positive semidefinite matrices
X, via their unitary decompositions [49,50]

2B¼ αp;0L̂
0
pðpBÞI2þαp;1L̂

1
pðpBÞ∧ I1þαp;2L̂

2
pðpBÞ; ð13Þ

where L̂q
p is the contraction operator that contracts the

matrix from a p-electron matrix to a q-electron matrix and

αp;k ¼
ð−1Þ3−kðr−p− 3Þ!ðr−p− 2Þp!2

ðr− 2− kÞ!ð2− kÞ!ðp− 3Þ!ðk−pÞk!2 : ð14Þ

This polar-cone formulation is critical to expressing the
optimization as a semidefinite program without the higher
RDMs. Moreover, if the Hamiltonian has pairwise inter-
actions and/or sparsity, it provides a framework for maxi-
mally exploiting the low-rank, sparse structure of the pBi½X�
and X matrices.
The unitary decomposition allows us to separate the

solution of a given many-electron problem in Eq. (11) from
the solution of the N-representability problem in Eq. (12).
Equation (11) determines the 2B matrix in the polar cone

that generates the ground-state energy of any atom or
molecule defined by its reduced Hamiltonian 2K while
Eq. (12) transforms the N-representability conditions of the
p-RDM into a parametrization of the 2-RDM’s polar cone.
While the 2-RDM does not appear explicitly in any of the
above equations, in the Lagrange multiplier formulation of
the polar-cone semidefinite program, the Lagrange multi-
plier of Eq. (11) is the 2-RDM. This important result
follows, as shown in detail in Ref. [35], from an application
of the Hellmann-Feynman theorem [61].
Results.—To illustrate the theory, we treat the molecule

H8 of eight hydrogen atoms equally spaced in a ring of
radius R [62]. The hydrogen atoms are represented in the
minimal Slater-type-orbital (STO-3G) basis set [63]. The
semidefinite programs are solved by the boundary-point
algorithm presented in Ref. [25]. We use the Quantum
Chemistry Package in Maple [64] to compute electron
integrals, second-order many-body perturbation (MP2)
theory, and coupled cluster with single-double excitations
(CCSD) and with perturbative triples [CCSD(T)] [65].
While MP2, CCSD, and CCSD(T) results are given to
provide context for the difficulty in treating H8, accurate
results have been previously obtained with coupled cluster
through quadruple excitations [66].
The 2-RDMmethod is applied to computing the ground-

state energy as well as several properties of the 1- and
2-RDMs for H8 with R ¼ 1=

ffiffiffi
2

p
Å in Table I. Calculations

using different N-representability constraints are ordered
with respect to their accuracy relative to full configuration
interaction (FCI). Total energies reveal that the 2-RDM
method converges rapidly with respect to the addition of
positivity conditions. For example, the (2,2)-positivity,
(2,3)-positivity, and partial (2,4)-positivity conditions on
the 2-RDM, denoted 2,2-POS, 2,3-POS, and ≈2; 4-POS,
have energy errors of −0.032 07, −0.000 23, and
−0.000 05 a:u: and 2-RDM errors, measured relative
to FCI by the l2 norm, of 0.001 523, 0.000 029, and
0.000 007, respectively, showing that all two-particle ex-
pectation values have an accuracy similar to the energy.

TABLE I. The ground-state energy as well as several properties of the 1- and 2-RDMs for H8 with R ¼ 0.707 Å are shown from the 2-
RDM method with different levels of N-representability conditions. The trace of the 2-RDM is normalized to one.

Total energy Natural orbitals h1=r12i 2-RDM

Method Value Error HONO LUNO Value Error Error

HF −2.245 49 0.114 15 1.000 00 0.000 00 0.470 40 0.004 91 0.053 813
MP2 −2.309 55 0.050 09 0.994 77 0.007 33 0.467 50 0.002 00 0.053 149
CCSD −2.342 50 0.017 14 0.650 83 0.349 56 0.465 62 0.000 12 0.051 282
2,2-POS −2.391 71 −0.032 07 0.500 75 0.500 75 0.463 54 −0.001 95 0.001 523
2;2-POS þ T1 −2.377 21 −0.017 57 0.501 38 0.501 38 0.464 38 −0.001 11 0.000 856
2;2-POS þ T2 −2.364 97 −0.005 33 0.500 93 0.500 93 0.465 11 −0.000 39 0.000 314
2,3-POS −2.359 87 −0.000 23 0.500 75 0.500 75 0.465 47 −0.000 03 0.000 029
≈2;4-POS −2.359 69 −0.000 05 0.500 75 0.500 75 0.465 49 −0.000 00 0.000 007
FCI −2.359 64 0.000 00 0.500 74 0.500 74 0.465 49 0.000 00 0.000 000
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While the ð2; qÞ-positivity conditions scale in floating-point
operations as r3q, these scalings can be substantially reduced
through low-rank tensor approximations; for example,
exploiting the low-rank structure of the T2 constraint
reduces its scaling from r9 to r6 [35] and exploiting the
structure of the (2,4)-positivity constraints reduces their
scaling from r12 to r7. The partial (2,4)-positivity condi-
tions include 2-RDM constraints derived from the D4, E4,
F4, and Q4metric matrices (not previously implemented for
molecules) that physically constrain the probability distri-
butions of four particles, three particles and a hole, three
holes and a particle, and four holes [14]. The hierarchy of
constraints on the 2-RDM, generated by Eq. (7), rapidly
improves upon the simplest sum-of-squares conditions—the
T1 or T2 condition where T1 is 3Dþ3 Q ⪰ 0 and T2 is
3Eþ3 F ⪰ 0 [8,16,18,29,35].
Occupations of the highest occupied natural orbital

(HONO) and the lowest unoccupied natural orbital
(LUNO) are also shown in Table I. These orbitals are
half-filled from all 2-RDM calculations, regardless of the
level of N-representability conditions, revealing the dir-
adical character of H8. MP2 does not show any radical
character with HONO and LUNO occupations of 0.994 77
and 0.007 33 while coupled cluster with single-double
excitations (CCSD) partially captures the diradical char-
acter. Results are also presented for h1=r12i, which show
that the hierarchy also converges rapidly towards other
two-electron observables computable from the 2-RDM.
Expanding the H8 ring introduces significant static

correlation [67,68] beyond the diradical character present
at short radii. Figure 1 compares the potential energy curves

from 2-RDM calculations with 2,2-POS and 2,3-POS
conditions as well as wave function calculations from
Hartree-Fock (HF), CCSD, and CCSD with perturbative
triple excitations [CCSD(T)]. The 2,3-POS energies signi-
ficantly improve upon the 2,2-POS energies with the errors
from 2,3-POS being consistently less than 0.001 a.u.
Moreover, the curves from 2,2-POS and 2,3-POS are more
accurate than those from CSSD or CCSD(T). Similarly,
Fig. 2 shows that the 2-RDM methods also yield accurate
expectations of 1=r12 with the errors from the 2,3-POS
constraints lying between 5 × 10−5 and 5 × 10−6 a:u.
Discussion and conclusions.—A complete characteriza-

tion of the N-representability conditions is known to be NP
complete (nondeterministic polynomial-time complete) on
a classical computer [10] and QMA complete (quantum-
Merlin-Arthur complete) on a quantum computer [69]—
meaning that the N-representability conditions likely can-
not be characterized in polynomial time. The present theory
is consistent with these complexity arguments in that the
worst-case scenario requires an N-particle metric matrix,
whose dimension scales exponentially with N. Practically,
however, we find in this work (as well as in earlier work
where the p-positivity conditions were imposed on the
p-RDM [14,20,36,54,55,59]) that the energy and 2-RDM
generally converge rapidly with respect to the level p of the
ð2; pÞ-positivity conditions although there are scenarios
such as the critical point of the Ising model [55] or spin-
frustrated lattices [36,59] where large pmay be required. In
contrast to the higher-order RDMs required in previous
p-positivity calculations [14,20,36,54,55,59], the p-particle
matrices in the polar cone have a low-rank structure, which

FIG. 1. For the H8 ring the potential energy curves with respect
to the radius R from several methods including the 2-RDM
calculations with (2,2)-positivity (2,2-POS) and (2,3)-positivity
(2,3-POS) conditions as well as wave function calculations from
the Hartree-Fock (HF), CCSD, and CCSD with perturbative triple
excitations [CCSD(T)] are compared.

FIG. 2. For the H8 ring, curves of expectation values of 1=r12
with respect to the radius R from several methods including the
2-RDM calculations with (2,2)-positivity (2,2-POS) and (2,3)-
positivity (2,3-POS) conditions as well as wave function calcu-
lations from the Hartree-Fock (HF), CCSD, and CCSD with
perturbative triple excitations [CCSD(T)] are compared.

PHYSICAL REVIEW LETTERS 130, 153001 (2023)

153001-4



can be exploited to reduce the computational cost, as
discussed in Refs. [29,35]. Although the present study
considers only spin and spatial symmetries, future work
will explore the low-rank structure.
In summary, we present a many-body theory based on a

solution of the N-representability problem of the 2-RDM.
We parametrize the N representability of the 2-RDM
through a hierarchy of efficiently solvable semidefinite
programs. The variational 2-RDM calculations yield rap-
idly convergent lower bounds on the ground-state energy
that complement the upper bounds of variational wave
functions. The techniques presented here can be readily
extended to other quantum marginal problems [70].
Application of the hierarchy to octahedral H8 shows that
it exhibits accurate energies and 2-RDMs even in the
presence of strong correlation. The solution of the N-
representability problem—once ranked by the National
Research Council as a top outstanding problem in chemical
physics—provides an important alternative many-body
theory based on the direct determination of the 2-RDM
with important applications in the molecular sciences.
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