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We perform a systematic study of the α-particle excitation from its ground state 0þ1 to the 0þ2 resonance.
The so-called monopole transition form factor is investigated via an electron scattering experiment in a
broad Q2 range (from 0.5 to 5.0 fm−2). The precision of the new data dramatically supersedes that of older
sets of data, each covering only a portion of the Q2 range. The new data allow the determination of two
coefficients in a low-momentum expansion, leading to a new puzzle. By confronting experiment to state-of-
the-art theoretical calculations, we observe that modern nuclear forces, including those derived within
chiral effective field theory that are well tested on a variety of observables, fail to reproduce the excitation of
the α particle.
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The rather complex nature of the strong interaction
generates a broad range of diverse phenomena in the
Universe, which can be experimentally observed and theo-
retically interpreted. Among the phenomena that are most
easily experimentally accessible are those involving strongly
interacting matter in the form of atomic nuclei, built from
quarks and gluons confined within nucleons. At energies
characteristic of nuclear binding, the strength and complexity
of quantum chromodynamics (QCD) complicate immensely
the understanding of nuclear phenomena in terms of quarks
and gluons as fundamental degrees of freedom. Providing a
link between QCD with its inherent symmetries and the
strong force acting in nuclear systems is a key problem in
modern nuclear physics. From the theoretical point of view, a
major breakthrough was spurred by the introduction of the
concept of effective field theory, which, applied to low-
energy QCD, gave rise to the so-called interactions from
chiral effective field theory (χEFT) [1–4], where nucleon-
nucleon (NN) and three-nucleon (3N) (and more-nucleon)
forces arise in a natural and consistent hierarchical scheme.
Developments in χEFT, together with advancements in few-
and many-body methods, enable controlled calculations of
matter at nuclear densities and, recently, even offer the

opportunity to extend into the high-density regimes of
nuclear matter found in neutron stars [5].
In order to understand exciting phenomena such as

neutron star mergers [6], knowledge of the nuclear equation
of state is required. The latter is described in terms of a few
parameters, such as the symmetry energy, its slope, and the
incompressibility [7]. These quantities, ultimately stem-
ming from QCD and recently derived from χEFT using
ab initio methods [8,9], can be connected to the physics of
finite nuclei. For example, the incompressibility K, giving
information about the stiffness of nuclear matter against
variations in the density, has been traditionally extracted
from studies of the isoscalar monopole resonance [10],
which is interpreted as a breathing mode.
In this Letter, we study the isoscalar monopole resonance

of the α particle in its transition from the ground state 0þ1 to
the first excited state 0þ2 .
The α particle is particularly interesting because it can be

addressed as a four-nucleon problem with numerical
methods that are accurate even at the subpercent level,
leaving any discrepancy with experiment to be blamed on
the only input, namely, the assumptions on the used nuclear
Hamiltonian, consisting of the choice of nucleons as
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effective degrees of freedom and of their relative effective
potential.
In particular, the α-particle 0þ1 → 0þ2 transition calculation

based on state-of-the-art χEFT NNþ 3N potentials [11]
showed a strong disagreement with the existing experimen-
tal data (χEFT being up to a factor 2 larger). The existing
data [12–14] date back to the early 1970s, with the most
recent dataset from 1983. Because of past technical limi-
tations, these measurements suffered from large uncer-
tainties. In addition, unknown normalizations between
the different datasets, each covering only part of the Q2

range of interest, call for new, more precise systematic
measurements.
For this purpose, an extensive experimental campaign to

measure the 4He monopole transition form factor with
high precision was performed at the Mainz Microtron
MAMI [15,16]. The measured reaction is e− þ 4He →
4He�ð0þ2 Þ þ e−0, where the resonance is excited by
Coulomb scattering. The differential cross section of this
reaction was measured using the three spectrometer setup
of the A1 Collaboration [17].
The continuous-wave electron beam with energies of

450, 690, and 795 MeV was rastered over a cryogenic
helium target. The target (see Ref. [16] for details) con-
sisted of cryogenic helium gas encapsulated in an alumin-
ium cell with 250 μm thick walls. The cylindrical target cell
has a diameter of 80 mm [18], which results in an areal
density of 320 mg=cm2 for production data. Permanent
pressure and temperature measurements of the target gas
allowed a precise (better than 1%) determination of the
helium density on the order of ρ4He ¼ 40 mg=cm3.
The two high-resolution magnetic spectrometers A and B

were positioned at various forward scattering angles,
covering the Q2 range from 0.5 to 5.0 fm−2, where the
four-momentum transfer Q2 is given by Q2 ¼ q2 − ω2,
with q ¼ jq⃗j as the three-momentum transfer and ω as the
energy transfer.
The electrons were detected using four layers of vertical

drift chambers for particle track reconstruction, two layers
of scintillators as the trigger system, and a gas Cherenkov
detector for electron-pion separation [19]. The overall
relative momentum resolution between 430 and
780 MeV=c was determined to be δ ≈ 2 × 10−4. Because
of the large relative momentum acceptances of spectrom-
eter A (20%) and B (15%), both the monopole reson-
ance and the 4He elastic peak could be detected
simultaneously. An eventwise separation is possible
by calculating the missing mass mmiss¼minv−M4He ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

4Heþ2M4HeðEi−EfÞ−Q2
q

−M4He, which peaks at

zero for elastic scattering, whereas the monopole peak
is centered at about 20 MeV. Here, Ei is given by
the beam energy, the final electron energy Ef and the
four-momentum transfer Q2 are reconstructed from the
detector data.

From the 4He elastic peak and its corresponding form
factor [20], the experimental luminosity can be determined
precisely. In addition, the width of the elastic peak is used
to estimate the experimental resolution needed for precise
extraction of the width Γ0 of the monopole resonance.
In the analysis of the data to obtain the transition form

factor, background determination and subtraction is an
essential part. Background contributions originate from
electron scattering of the aluminium cell walls, the radiative
tail of the elastic peak, and the continuum of 4He. A vertex
cut could not be used to subtract such background because
of the limited vertex resolution and varying angle that
would have resulted in a significant reduction of data while
introducing additional systematic errors. Instead, dedicated
runs were performed for each setup with effectively
reduced target gas density (ρ4He ≈ 4 mg=cm3) to determine
the background contribution from the aluminium cell,
almost exclusively consisting of 27Al. A measurement with
a complete empty cell was not performed to avoid thermal
stressing of the cell material. With these data, simulations
for a complete model of the target cell background were
designed and tested, including typical electron scattering
processes on 27Al [21]. Phenomenological models for
elastic form factors [22] were used to simulate the elastic
scattering of 27Al, providing a good agreement between
model and data taken with reduced target gas density.
Moreover, the excited states of 27Al listed in Ref. [23]

could be observed in the missing mass (mmiss) spectrum and
were embedded in the simulation as well. An additional
background contribution is given by two-body breakup
processes from quasielastic electron scattering on 27Al
for mmiss ≳ 8 MeV and thus propagates to the region of
the monopole resonance. The breakup continuum of 27Al
begins with the proton knockout threshold Ep ¼ 8.2 MeV
and is dominated by two-body breakup processes. Those
processes are described and simulated as off-shell-electron
scattering in the framework of De Forest [24]. Furthermore,
the form factor parametrization from Ottermann et al. [20]
has been used to simulate the additional source of back-
ground originating from the 4He elastic peak. Radiative
corrections, leading to a modification of the final electron
energy to about 25%, were taken into account in all
simulations as well [25]. Figure 1 shows data and back-
ground simulations for the setup with 450 MeV beam
energy at a scattering angle ϑscat ¼ 20.1°. After background
subtraction, the 4He continuum with the monopole reso-
nance centered at 20.21 MeV between proton and neutron
breakup threshold is completely separated, as illustrated
in Fig. 2.
To extract the transition form factor from the measured

cross sections, an appropriate model parametrization of
the unknown resonance peak, including radiative correc-
tions, is required. For such parametrizations, the resonance
peak is traditionally considered as a convolution of a
Gaussian and a Lorentzian distribution, GðE;E0; σresÞ
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and LðE;E0;Γ0Þ, respectively. While the width of the
Gaussian distribution σres includes experimental resolu-
tion effects, the intrinsic width of the resonance is imple-
mented by the full width at half maximum (FWHM) Γ0 of
the Lorentzian distribution. To avoid the complicated

convolution integral, the following approximation is
used:

σ1ðE;E0;σres;Γ0Þ∝ ηLðE;E0;Γ0Þþ ð1− ηÞGðE;E0;σresÞ:
ð1Þ

In this ansatz η ∈ ð0; 1Þ is a parameter, constrained by
σres and Γ0, which regulates the ratio of Gaussian to
Lorentzian distribution [27]. In order to quantify more
precisely the systematic uncertainties of the described
model, a second approach has been used as described
in [26,28]. Within this model, the resonance depends on
two dimensionless parameters,

μ ¼ E − Ethresh

Γ0=2
and μ0 ¼

E0 − Ethresh

Γ0=2
; ð2Þ

with E0 ¼ 20.21 MeV being the central value of the
resonance and Ethresh ¼ 19.815 MeV the continuum proton
threshold. The resonance parametrization is taken as

σ2ðμ; μ0Þ ∝
ðμ=μ0Þ12

ðμ − μ0Þ2 þ ðμ=μ0Þ
: ð3Þ

As a consequence of Eqs. (2) and (3), no resonance
events appear below this threshold, as long as resolution
and radiative effects are neglected. Resolution effects are
implemented in this parametrization by an additional
uncertainty of the momentum and angular reconstruction
of the spectrometers. This uncertainty is represented by a
superposition of two Gaussian distributions with different
widths.
To match simulation and data, a complete determination

of the previously unknown parameters σres and Γ0 is
mandatory. The experimental resolution for both para-
metrizations is determined by the width of the 4He elastic
peak, which is broadened by resolution effects and radiative
losses. These two contributions are disentangled by
Monte Carlo techniques and verified by data. In order to
describe the background contribution from the 4He con-
tinuum, two model descriptions have been applied to
quantify model uncertainties. One model (BG1) describes
the continuum under the resonance peak as a linear
function, while the second model (BG2) is based on the
assumption that the resonance is located on the left tail of a
broad giant resonance at 25.95 MeV with IP ¼ 1− [29]. For
the determination of Γ0, the simulations of Eqs. (1) and (3),
as well as the two background models, were compared to
data with Γ0 as the free parameter to be optimized.
Our results for Γ0, summarized in Table I, agree within

error bars with previous data from Walcher [12,30] and
Köbschall et al. [13], while they disagree with data from
Frosch et al. [14], and can be compared to the only
theoretical calculation of 4Heðe; e0Þ, which resulted in
Γ0 ¼ 180ð70Þ keV, using a central NN force [31].

FIG. 2. Typical mmiss mass spectrum of the monopole reso-
nance of 4He. Shown with blue points are the data for 690 MeV
beam energy with a central scattering angle of 24.0° (correspond-
ing to aQ2 value of 1.99 fm−2). They are compared to simulation
of the monopole resonance (solid green online) and background
model BG2 (black dotted line) based on the parametrization of
[26]. The dashed line shows the combination of background
model and resonance simulation.

FIG. 1. Missing mass spectrum of 4He. Shown in blue are data
for 450 MeV beam energy and a central scattering angle of 20.1°
(corresponding to a Q2 value of 0.59 fm−2.) The data are
compared to simulation of the 4He elastic peak (green) and
background (BG) contributions from the 27Al target (orange). The
contributions from the 27Al elastic peak are located at mmiss < 0
due to recoil corrections applied to the scattered electrons. Inset:
shows the area of interest, the monopole resonance centered at
20.21 MeV.
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The transition form factor is obtained from the exper-
imental cross section divided by the normalized Mott cross
section,

jFM0þðQ2Þj2 ¼
�
dσ
dΩ

�
Exp
=

�
dσ
dΩ

�
Mott

: ð4Þ

It is beneficial to take advantage of the simultaneously
measured elastic peak of 4He to avoid fluctuations in the
data caused by different luminosities and determine the
monopole form factor relative to the elastic peak. Both
quantities, the elastic peak and the monopole resonance,
exhibit a slightly different Q2 which was accounted for
when evaluating the form factor ratio. The value of Q2 is
determined by a binned distribution taking into account the
applied data cuts. Those cuts were first restricted to
�240 keV around both peaks to keep the influence of
the continuum background to the form factor ratio small.
The relative transition form factor established this way is
then in a last iteration step improved by extending themmiss
cut from 19.5 to 22 MeV to include large contributions of
the monopoles radiative tail. For this purpose, the reso-
nance peak is simulated with parametrization σ1 and σ2 and
the valid transition form factor ratio and in combination
with the backgrounds BG1 and BG2, respectively, opti-
mized to data in order to minimize the χ2. Within this
minimization procedure, the simulation of the monopole
resonance peak is allowed to float only by a factor, which is
then used to adjust the transition form factor. Further details
of the data analysis can be found in the supplemental
material [32].
Our final experimental results for the monopole tran-

sition form factor are shown in Fig. 3, in comparison to the
χEFT calculation from Ref. [11]. A third order basis spline
polynomial is used to fit the data. To account for the model
uncertainties, the analysis was repeated with all remaining
combinations of resonance parametrizations and back-
ground models. Analyzing the transition form factor with
model BG1 leads to a variation of δBG model ¼ �3.2%
around the results obtained by BG2, see Table II.
However, a constant shift of the transition form factor to
higher or lower values by a different continuum model
could not be verified. On the contrary, analyzing the data
with σ1 from (1) leads to an average shift of the transition
form factor of δres model ¼ −5.8% and thus to smaller
values. These model dependencies were added linearly

to the (blue) model confidence band in Fig. 3, representing
the model uncertainty of the data. The contributions to the
total systematic uncertainty on the extraction of the
transition form factor are summarized in Table II. A
conservative error of the elastic form factor of 4He, used
to normalize the data, has been estimated as point-to-point
uncertainty to 0.5% as given by the authors in [20].
Background subtraction of the elastic tails from 4He,
27Al, and the quasielastic scattering off 27Al contribute to
the systematic uncertainty with up to 1%. The FWHM of
the monopole resonance Γ0 influences the transition form
factor jFM0þðQ2Þj2 by 4% and contributes the major
uncertainty. This uncertainty has been estimated by varying
Γ0 within a realistic error range and observing the effect
onto the transition form factor. All systematic errors were
added quadratically to the statistical errors. Our results
agree with previous data [13,14] albeit having a much
higher precision and thereby reinforce the tension with
ab initio calculations [11], where, for example, the χEFT
result is 100% too high at Q2 ¼ 1.5 fm−2 with respect to
the new data.
Since the low-q2 part of the transition form factor allows

for a direct access to gross features of the 0þ2 state, we shall
focus now on discussing this q2 range. A q⃗ → 0 expansion
yields [33,34]

TABLE I. FWHM Γ0 for the investigated resonance para-
metrizations σ1 Eq. (1) and σ2 Eq. (3) and the two background
parametrizations BG1 and BG2.

BG1 (keV) BG2 (keV)

σ1 268� 43 285� 33
σ2 262� 47 288� 39

FIG. 3. Monopole transition form factor as a function of Q2, in
comparison to previous data [12–14] and χEFT prediction [11]
(see text for details).

TABLE II. Contributions to the systematic uncertainties of the
transition form factor and the model dependencies.

Source ΔjFM0þðQ2Þj2 (%)

Background �1
4He ground state form factor �0.5
ΔΓ0 �4

Model uncertainties

BG1-BG2 �3.2
σ1 − σ2 −5.8
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ZjFM0þðq2Þj
q2

¼ hr2itr
6

�
1 −

q2

20
R2

tr þOðq4Þ
�

ð5Þ

and allows extraction of the monopole transition matrix
element hr2itr and the transition radius R2

tr ¼ hr4itr=hr2itr,
which provide information about the spatial structure of the
resonant state 0þ2 . We use this formula to extract these
quantities both from experimental data and theoretical
calculations using a three-parameter fit. For the theory,
given that FM0þ was calculated on a grid of q every
0.25 fm−1 [11], we use four available low-momentum
points at q2 ≤ 1 fm−2, assigning to each point a 1%
numerical uncertainty. The fit values for hr2itr and Rtr
are compatible with what we obtain from a direct calcu-
lation using the transition density in coordinate space [35].
For the experiment, we fit the six data points below q2 ¼
1 fm−2 neglecting any recoil and assuming a sharp reso-
nance. A physics boundary condition FM0þðQ2 → 0Þ ¼ 0
(which arises from the fact that the inelastic form factor is
going to zero for q2 → 0) was implemented in the spline
polynomial fit function of the form factor. The obtained
values for hr2itr and Rtr are reported in Table III with the
uncertainties given by the fit, and the corresponding curves
based on the mean values of Table III are shown in Fig. 4.
We notice that in the range of 0.2 ≤ q2 ≤ 1 fm−2 the

simplified potential used by Hiyama et al. [36] leads to
agreement with the experimental data, while the realistic
calculations do not. Because the calculation by Hiyama
et al. was performed with a distinct few-body method, in
this Letter we recalculate it with the same method as in
Ref. [11] to infer whether the difference stems from the
numerical solver or from the Hamiltonian. In Fig. 4, we
show that we (gray solid line) reproduce the result of
Ref. [36] (black dashed line). We assign a 1% uncertainty to
our calculation by taking the difference from the largest and
second largest model-space results. While describing the

data, the AV8’þ central 3N potential is, however, not
compatible with the experimental fit value of hr2itr, while
the realistic AV18þ UIX is. Overall, we see that theory
predicts a smaller value ofRtr than the experimental fit, and
the χEFT prediction deviates the most from experiment,
even at low momenta. The combination of the new
experimental data and calculations prove that there is a
puzzle, which is not due to the applied few-body method,
but rather to the modeling of the nuclear Hamiltonian. The
experimental transition radius is ≈10% larger than the
calculation with chiral NN-interaction predicts. This might
indicate that the hard core of the interaction is too weak,
effectively producing a too narrow wave function.
Interestingly, another recent investigation [37] shows that
the 0þ2 state in 4He is very sensitive to the particular
parametrization of the chiral 3N force.
Further theoretical work is needed to resolve the

α-particle monopole puzzle. A systematic experimental
verification of future theoretical developments will be
opened up by the low-energy electron beam of the new
Mainz Energy-recovering Superconducting Accelerator
(MESA) under construction at [38], which will operate in
the ideal energy regime to test χEFT. Such future generation
experiments will allow us to investigate other observables,
as well as other light nuclei, leading to an improvement of
our current understanding of the nuclear forces.
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