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We analyze the recoil corrections in superallowed beta decays of T ¼ 1, JP ¼ 0þ nuclei by fixing the
mean square charged weak radius model independently using the data of multiple charge radii across the
nuclear isotriplet. By comparing to model estimations, we argue that the existing theory uncertainty in
the statistical rate function f might have been substantially underestimated. We discuss the implications of
our proposed strategy for precision tests of the standard model, including a potential alleviation of the first-
row CKM unitarity deficit, and motivate new experiments for charge radii measurements.
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Introduction.—To confirm the recent observation of the
first-row Cabibbo-Kobayashi-Maskawa (CKM) unitarity
deficit [1], namely, the apparent 3σ deviation of the
combination jVudj2 þ jVusj2 þ jVubj2 from the standard
model (SM) prediction of 1, one needs to further improve
the precision of jVudj2 which weights the most in the
unitarity sum. Currently, superallowed beta decays of
T ¼ 1, JP ¼ 0þ nuclei report the most precise determi-
nation of jVudj0þ ¼ 0.973 67ð11Þexpð30Þth [2,3], but the
precision from the free neutron decay is catching up, with
jVudjn ¼ 0.974 13ð40Þexpð13Þth [3] if the single best meas-
urement of the neutron lifetime [4] and axial coupling [5]
are used (although the Particle Data Group averages of
these inputs leads to much a less precise jVudjn due to some
internal tensions in the neutron dataset). Searching for
small differences between the two determinations of jVudj
may open another window for the precision test of the SM
(see, e.g., [6–9] and references therein), and for this
purpose we must keep major sources of uncertainties in
both avenues under control. For jVudj0þ, this refers to the
theory uncertainties which are the focus of this Letter.
Given the recent improvements of the nucleus-indepen-

dent radiative corrections [10–17], the theory uncertainty in
jVudj0þ comes mainly from nuclear structure effects. The
quantity of interest is the so-called F t value,

F t ¼ ftð1þ δ0RÞð1þ δNS − δCÞ ∝ jVudj−20þ ; ð1Þ

with t the beta decay half-life. Most discussions of nuclear
structure effects focus on δNS and δC, which stem from the
radiative corrections and the isospin symmetry breaking
(ISB) correction, respectively, and there are proposals to
improve their precisions using ab initio methods [18] and
experiments [19]. On the other hand, the “outer” radiative
correction δ0R [20–22] and the statistical rate function f [23]

were believed to be well under control; in particular, the
combination ft is often referred to as the “experimental ft
value” as if it was a pure experimental observable [2,24].
In this Letter, we carefully examine the validity of this
assertion.
A large number of structure-dependent effects are

included in the statistical rate function f and were dis-
cussed extensively in literature (see, e.g., [25] and refer-
ences therein). Most of them concern the interactions
between the positron or atomic electrons and the nucleus
of a finite size. Because of the electromagnetic nature, they
can largely be fixed by the knowledge of the charge radius
RCh of the daughter nucleus, often very precisely measured,
which guarantees the model independence to certain extent.
There is, however, one obvious exception, namely, the
recoil correction in the tree-level charged weak (CW) decay
itself which scales as q2R2

CW, where q2 is the squared
momentum transfer and R2

CW is the mean square (MS)
nuclear CW radius associated to the coupling of the nucleus
to the W boson; it influences the value of f at (0.1–1)%
level. In general RCW and RCh are quite different, so the
information of a single nuclear charge radius cannot pin
down this effect to a satisfactory level. To the best of our
knowledge, all existing literature about f handled the
effects of nuclear CW form factors using simplified nuclear
models [24–26], which invalidate the claim of ft being
“experimental.” Neither was the possible systematic error
stemming from such modelings properly discussed.
Here we propose a simple method to restore the model

independence of this entry, namely, to use two measured
charge radii from the nuclear isotriplet to unambiguously
determine RCW, bearing small ISB corrections negligible in
recoil effects. This idea was first pointed out by Holstein
[27] but, for some reason, was not seriously implemented in
subsequent analysis. We apply this strategy to 13 measured
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superallowed transitions and compare the outcomes with
model-dependent estimates. We find that simplified models
could result in systematic errors as large as 10−3 for
medium and heavy nuclei. We discuss possible implica-
tions of this strategy for the precise Vud extraction and
other precision tests of SM. We use them as new motiva-
tions for future experimental measurements of rare isotope
charge radii.
Tree-level decay rate.—In this Letter, we concentrate on

pure quantum chromodynamics (QCD) contributions to f,
and neglect the electromagnetic interactions between the
positron or atomic electrons and the nucleus. In this
context, it is most convenient to start from a fully-
relativistic description, where the kinematics of the super-
allowed nuclear beta decay ϕiðpiÞ → ϕfðpfÞeþðpeÞνeðpνÞ
are exactly the same as the semileptonic kaon decay. In
particular, all the analytic formulas of the Ke3 decay rate in
Ref. [28] apply directly here upon simple replacements
Vus → Vud, K → ϕi, π → ϕf. The tree-level decay ampli-
tude reads

M0 ¼ −
G
ffiffiffi

2
p ūνγμð1 − γ5ÞveFμðpf; piÞ; ð2Þ

where G ¼ GFVud, and Fμ is the nuclear matrix element of
the charged weak current which defines two form factors:

Fμðpf; piÞ ¼ hϕðpfÞjJW†
μ ð0ÞjϕiðpiÞi

¼ fþðq2Þðpi þ pfÞμ þ f−ðq2Þðpi − pfÞμ; ð3Þ

with q ¼ pi − pf. The contribution of f−ðq2Þ to the decay
rate is simultaneously suppressed by kinematics
(m2

e=M2
i ≪ 1) and ISB, thus it is sufficient to retain only

fþðq2Þ. We isolate the q2 dependence of the latter by
writing fþðq2Þ ¼ fþð0Þf̄þðq2Þ, where the leading q2

dependence defines a MS CW radius R2
CW:

f̄þðq2Þ ¼ 1þ ðq2=6ÞR2
CW þOðq4Þ: ð4Þ

However, in practice one defines and scales out the so-
called Fermi matrix element not at q2 ¼ 0 (which is
inaccessible in beta decay processes) but at the static point
q2 ¼ ðMi −MfÞ2:
MF ≡ fþððMi −MfÞ2Þ ≈ fþð0Þð1þ ðMi −MfÞ2R2

CW=6Þ;
ð5Þ

in contrast to the usual treatment in kaon decay that scales
out fþð0Þ. Notice that MF → M0

F ¼ ffiffiffi

2
p

in the absence
of ISB.
After summing up the lepton spins, the squared ampli-

tude reads

jM0j2 ¼ G2f2þðq2ÞHðþ1;þ1Þ; ð6Þ

where

Hðþ1;þ1Þ ¼ 2M4
i ½4ð1 − yÞðyþ z − 1Þ − 4rf

þ reðrf þ 4yþ 3z − 3Þ − r2e� ð7Þ
depends only on two scalar variables, y ¼ 2pi · pe=M2

i and
z ¼ 2pi · pf=M2

i (with re ≡m2
e=M2

i and r2f ≡M2
f=M

2
i ).

Integrating out z and taking Mi;f → ∞ give the following
differential decay rate in the parent nucleus’s rest frame

dΓ
dEe

≈
G2

2π3
jMFj2FðZf; EeÞjp⃗ejEeðEm − EeÞ2S; ð8Þ

where Em ≡ ðM2
i −M2

f þm2
eÞ=ð2MiÞ ≈Mi −Mf is the

positron’s end-point energy, and we add the Fermi function
FðZf; EeÞ [29] manually just to improve the numerical
accuracy. The quantity S denotes the pure-QCD contribu-
tion to the shape factor

S ¼ 1þ R2
CWm

2
e

9

�

1 −
3E2

m

m2
e
þ 4EmEe

m2
e

þ 2Em

Ee
−
4E2

e

m2
e

�

ð9Þ

in agreement with existing literature [25,26,30] (upon
taking 1 − 3E2

m=m2
e ≈ −3E2

m=m2
e).

Isospin relation between CW and charge radii.—In his
famous review [27], Holstein derived the relation between
the vector CW form factors and the difference between the
parent and daughter nucleus’s electromagnetic form factors
using the conserved vector current (CVC) condition. Here
we present a generalized version, not restricted to the
parent-daughter pair but any two nuclei within the iso-
triplet, in order to better make use of the currently available
data of charge radii.
First, using the spatial translational symmetry and work-

ing in a modified Breit frame (Ei ¼ Ef), the μ ¼ 0
component of Eq. (3) gives

fþðq2Þ ¼
Z

d3xe−iq⃗·x⃗hϕfjρWðrÞjϕii

¼
Z

d3x

�

1 −
ðq⃗ · x⃗Þ2

2
þ � � �

�

hϕfjρWðrÞjϕii; ð10Þ

where q2 ¼ −q⃗2, ρWðrÞ is the time component of the
charged weak current operator which depends only on r ¼
jx⃗j due to rotational symmetry, and jϕi;fi are quantum
mechanical external nuclear states that normalize to 1. Our
interest is in the second term which, after symmetric
replacement, provides a formal definition of R2

CW:

R2
CW ¼ 1

fþð0Þ
hϕfj

Z

d3xr2ρWðrÞjϕii: ð11Þ

The rhs may be expressed in terms of the isovector
monopole operator

M⃗ð1Þ ≡
Z

d3xr2ψ†ðxÞ τ⃗
2
ψðxÞ; ð12Þ
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where ψ ¼ ðd; uÞT is the light quark doublet field (here we
adopt the nuclear theory convention of isospin, Tz;u ¼
−1=2). Rank-1 irreducible tensors in the isospin space can

be constructed as Mð1Þ
0 ¼ Mð1Þ

z , Mð1Þ
�1 ¼∓ ðMð1Þ

x � iMð1Þ
y Þ=

ffiffiffi

2
p

. Finally, we may take fþð0Þ →
ffiffiffi

2
p

in Eq. (11) because
ISB on top of a recoil correction is negligible. Therefore,
we obtain

R2
CW ¼ −hϕfjMð1Þ

þ1jϕii: ð13Þ
We want to relate R2

CW to the MS charge radius of a
nucleus ϕ, defined as

R2
Ch;ϕ ¼ 1

Zϕ
hϕj

Z

d3xr2ρChðrÞjϕi

¼ 1

Zϕ
hϕj

Z

d3xr2
�

1

6
ψ†ψ −

1

3
s†s − ψ† τ

3

2
ψ

�

jϕi;

ð14Þ
with Zϕ the atomic number of ϕ. For simplicity, we will
label Z; RCh of an isotriplet nuclear state j1; Tzi as ZTz

,
RCh;Tz

, respectively. The rhs of the second line in Eq. (14)
consists of two isoscalar terms and an isovector term; the

last is just the nuclear matrix element of Mð1Þ
0 . By con-

structing the difference between ZϕR2
Ch;ϕ of two nuclei

within the same isotriplet, the isosinglet pieces drop out and
the remaining isovector term can then be related to Eq. (13)
in the isospin-symmetric limit through the Wigner-Eckart
theorem:

h1; TzbjMð1Þ
m j1; Tzai ¼ C1;1;1;Tzb

1;Tza;1;m
h1jjMð1Þjj1i; ð15Þ

with C1;1;1;Tzb
1;Tza;1;m

the Clebsch-Gordan coefficient and

h1jjMð1Þjj1i the reduced matrix element. With this we
finally obtain

R2
CW ¼ R2

Ch;1 þ Z0ðR2
Ch;0 − R2

Ch;1Þ

¼ R2
Ch;1 þ

Z−1

2
ðR2

Ch;−1 − R2
Ch;1Þ; ð16Þ

where we have used Z1 ¼ Z0 − 1 ¼ Z−1 − 2.
Equation (16) is the central result of this work: it says

that R2
CW can be determined model independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the rhs of Eq. (16); the first term is
the MS charge radius of the most stable Tz ¼ þ1 nucleus,
while the second term involves a difference R2

Ch;a − R2
Ch;b.

Nevertheless, this term is numerically comparable to the
first term because it is multiplied to a large factor Z; in fact,
it is also the main source of error because the experimental

TABLE I. Determinations of R2
CW based on available data of nuclear charge radii for isotriplets in measured superallowed decays.

Superscripts denote the source of data: Ref. [31]a, Ref. [32]b, Ref. [33]c, Ref. [34]d, and Ref. [35]e.

A RCh;−1 (fm) RCh;0 (fm) RCh;1 (fm) R2
Ch;1 (fm2) R2

CW (fm2)

10 10
6 C

10
5 BðexÞ 10

4 Be: 2.3550(170)
a 5.546(80) N=A

14 14
8 O

14
7 NðexÞ 14

6 C: 2.50 25(87)
a 6.263(44) N=A

18 18
10Ne: 2.9714(76)

a 18
9 FðexÞ 18

8 O: 2.77 26(56)
a 7.687(31) 13.40(53)

22 22
12Mg: 3.0691(89)b 22

11NaðexÞ 22
10Ne: 2.9525(40)

a 8.717(24) 12.93(71)

26 26
14Si

26m
13 Al 26

12Mg: 3.0337(18)a 9.203(11) N=A

30 30
16S

30
15PðexÞ 30

14Si: 3.1336(40)
a 9.819(25) N=A

34 34
18Ar: 3.3654(40)

a 34
17Cl

34
16S: 3.2847(21)

a 10.789(14) 15.62(54)

38 38
20Ca: 3.467(1)

c 38m
19 K: 3.437(4)d 38

18Ar: 3.4028(19)
a 11.579(13) 15.99(28)

42 42
22Ti

42
21Sc: 3.5702(238)

a 42
20Ca: 3.5081(21)

a 12.307(15) 21.5(3.6)

46 46
24Cr

46
23V

46
22Ti: 3.6070(22)

a 13.010(16) N=A

50 50
26Fe

50
25Mn: 3.7120(196)a 50

24Cr: 3.6588(65)
a 13.387(48) 23.2(3.8)

54 54
28Ni: 3.738(4)

e 54
27Co

54
26Fe: 3.6933(19)

a 13.640(14) 18.29(92)

62 62
32Ge

62
31Ga

62
30Zn: 3.9031(69)

b 15.234(54) N=A

66 66
34Se

66
33As

66
32Ge N=A N=A

70 70
36Kr

70
35Br

70
34Se N=A N=A

74 74
38Sr

74
37Rb: 4.1935(172)

b 74
36Kr: 4.1870(41)

a 17.531(34) 19.5(5.5)
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uncertainties in R2
Ch are enhanced by the same factor.

Therefore, we expect the error of R2
CW determined with this

method to be roughly an order of magnitude larger than that
of the individual R2

Ch.
We present our model-independent determination of

R2
CW in Table I based on the currently available data of

charge radii for nuclear isotriplets involved in measured
superallowed transitions [31–35]. One observes that in
many cases it is substantially larger than R2

Ch, which
signifies the importance of the “difference” term in
Eq. (16). Also, unlike the charge radius, RCW does not
seem to increase monotonically with the mass number A,
which makes an accurate theory modeling of its value much
more difficult.
Recoil effects: Experiment vs model.—Despite being

known since the 1970s, we are not aware of any literature
that seriously implemented the aforementioned idea in their
numerical analysis of f; instead, most of them resort to
nuclear models. For instance, Hardy and Towner [36]
computed the nuclear form factors directly using the
impulse approximation, where nucleons in a nucleus are
treated as noninteracting, and the nuclear matrix element of
a one-body operator Ô is expressed as a product of the
single-nucleon matrix element of Ô (with the q2 depend-
ence neglected) and the one-body density matrix element,
the latter is computed with the shell model. To what extent
such an approximation captures the correct q2 dependence
of the nuclear form factors is far from transparent. A more
traceable method was introduced by Wilkinson [26], who
estimated the difference between R2

CW and R2
Ch using shell

model and a modified-Gaussian charge distribution:

R2
CW − R2

Ch ≈
4

3ð5A0 þ 2Þ
4nþ 2l − 1

5
R2
Ch; ð17Þ

where fn; lg are the shell-model quantum numbers of the
single active nucleon that undergoes the beta decay, and A0
is a parameter of the modified-Gaussian charge distribution
fixed by the condition 2=ð2þ 3A0Þ ¼ Zl¼0=Z for the parent
nucleus. As we will see later that the effects of S to the total
decay rate can reach 0.1% or above for medium and heavy
nuclei, theory errors in the RCW modeling could lead to
corrections at (0.01–0.1)% level which are relevant for the
precise extraction of Vud.
Based on the data in Table I, we can immediately study

the effect of S to the total decay rate model independently
for 13 out of 23 [2] measured superallowed transitions. We
integrate Ee in Eq. (8) to obtain a total decay rate Γ, and we
do it in four different ways: (i) Γexp denotes our model-
independent determination making use of the experimental
values of RCW given in Table I; (ii) denoted by Γ0, we take
S ¼ 1, i.e., completely neglect the recoil correction;
(iii) denoted by Γ0

mod, we replace RCW in S by the charge
radius of the most stable Tz ¼ þ1 isotope RCh;1; and
(iv) denoted by Γmod, we substitute R2

CW by Wilkinson’s
shell-model estimate, Eq. (17). What we are interested in is
the relative difference between the experimental result and
the modelings (2)–(4), so we use the ratio ðΓexp − ΓiÞ=Γexp

to represent the systematic error induced by the modeling
type i.
Our results are summarized in Table II. From the first

column we see the size of the recoil correction: it is
negative and at (0.1–1)% level as we advertised before, and
increases with the mass number. The second column shows
the induced systematic error if one would naïvely replace
RCW by RCh; we find that it ranges from −0.03% to
−0.35%, indicating again the significance of the “differ-
ence” term in Eq. (16). The third column shows how the
modeling of RCW in Eq. (17) saves the situation, and we

TABLE II. Comparison between different determinations of the superallowed decay rate. The uncertainty comes
primarily from RCW in Γexp. All number are in %.

Parent ½ðΓexp − Γ0Þ=Γexp� ½ðΓexp − Γ0
modÞ=Γexp� ½ðΓexp − ΓmodÞ=Γexp� ðδf=fÞ in [2]

Tz;i ¼ −1
18Ne −0.06ð0Þ −0.03ð0Þ −0.02ð0Þ 0.13
22Mg −0.10ð1Þ −0.03ð1Þ −0.03ð1Þ 0.03
34Ar −0.29ð1Þ −0.09ð1Þ −0.06ð1Þ 0.01
38Ca −0.36ð1Þ −0.10ð1Þ −0.07ð1Þ 0.01
42Ti −0.55ð9Þ −0.23ð9Þ −0.19ð9Þ 0.02
50Fe −0.82ð13Þ −0.35ð13Þ −0.29ð13Þ 0.40
54Ni −0.75ð4Þ −0.19ð4Þ −0.13ð4Þ 0.27

Tz;i ¼ 0
34Cl −0.23ð1Þ −0.07ð1Þ −0.05ð1Þ 0.00
38mK −0.29ð1Þ −0.08ð1Þ −0.05ð1Þ 0.00
42Sc −0.45ð8Þ −0.19ð8Þ −0.15ð8Þ 0.01
50Mn −0.71ð12Þ −0.30ð12Þ −0.25ð12Þ 0.00
54Co −0.66ð3Þ −0.17ð3Þ −0.11ð3Þ 0.02
74Rb −1.17ð33Þ −0.12ð33Þ −0.03ð33Þ 0.20
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find that in most cases it only very mildly improves the
accuracy, indicating that Eq. (17) still largely underesti-
mates the difference R2

CW − R2
Ch. Finally, in the fourth

column we show the quoted relative uncertainty of the
statistical rate function f in the most recent review by
Hardy and Towner, Ref. [2]. We find that, in most cases the
central values in the third column largely exceed the
numbers in the fourth column. Of course the comparison
is not totally fair because it is not clear at this point that the
method used in Ref. [2] to effectively handle RCW is similar
to that in Eq. (17). Nevertheless, it still provides a strong
indication that the systematic error in f due to theory
modelings of the CW form factor might have been
underestimated.
Final discussions.—To fully make use of our model-

independent determination of RCW, one should carefully
sort out the theory modelings of the nuclear CW form
factors in recent literature that compute f, e.g.,
Refs. [2,24,25,36,37], and replace them consistently by
the experimental results. Also, to incorporate the Coulomb
effects between the positron and the nucleus, updated
charge distributions that are fully compatible with the most
recent charge radii measurements are needed. This is not
restricted to the 13 transitions that we analyzed above, but
should also be applied to all remaining superallowed
transitions once new data of charge radii are available in
the future. Also, a straightforward generalization of
Eq. (16) to T ¼ 1=2 systems provides model-independent
determination of charged weak form factors of neutron and
nuclear mirrors [38], both serving as alternative avenues to
measure jVudj.
Our finding hints towards a possible solution of the

CKM anomaly. For instance, if we would naïvely reduce
the overall F t value by the average of the central values of
column 3 in Table II, i.e., 0.11%, then the central value of
jVudj0þ would increase from 0.973 67 to 0.974 21, almost
recovering the pre-2018 value of 0.974 17(21) [24] and
largely restoring the first-row CKM unitarity. A more
robust number, of course, has to come from a combination
of experimental data and a comprehensive re-analysis of all
existing models as described above, which we save for a
future work. Recall also that the alignment of the F t values
across different nuclei is used to test the CVC hypothesis,
to constrain scalar currents and to test the reliability of
nuclear model calculations of the ISB correction δC [39].
Therefore, possible nucleus-dependent alterations of the f
values could lead to modified interpretations of these
constraints. Besides, the experimental determination of
RCW also improves the theory handle of other CW
processes that involve the same form factor, for example,
the neutrino-nucleus scattering νϕ → lþϕ0 where the
momentum exchange is much larger and the effects of
the form factors are more significant.
As indicated in Table I, for nuclear isotriplets with

A ¼ 10, 14, 26, 30, 46, and 62, the addition of one single

charge radius measurement will already provide sufficient
input for the model-independent RCW determination, and
with them we can sharpen our theory prediction of f for 8
more superallowed transitions, further improving the reli-
ability of the jVudj0þ extraction. These measurements may
be performed, for example, at the BECOLA facility at
FRIB [40], or within the context of the muX experiment at
PSI [41]. We hope the discussions above provide convinc-
ing new motivations for the planning of future experimental
programs for charge radii measurements of rare isotopes at
these facilities.
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