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There is ongoing controversy about whether a coherent superposition of the occupied states of two
fermionic modes should be regarded entangled or not, that is, whether its intrinsic quantum correlations are
operationally accessible and useful as a resource. This has been questioned on the basis that such an
entanglement cannot be accessed by local operations on individual modes due to the parity superselection
rule which constrains the set of physical observables. In other words, one cannot observe violations of
Bell’s inequality. Here, we show, however, that entanglement of a two-mode fermionic state can be used as
a genuine quantum resource in open-system thermodynamic processes, enabling one to perform tasks
forbidden for separable states. We thus demonstrate that quantum thermodynamics can shed light on the
nature of fermionic entanglement and the operational meaning of the different notions used to define it.
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Introduction.—Entanglement is one of the most funda-
mental concepts of quantum mechanics, implying the
impossibility of local realistic description of physical
systems, as well as one of key resources in quantum
computing, metrology, communication, and thermodynam-
ics [1]. In the field of quantum information, it is commonly
defined as follows [2]:
Definition 1: General definition of entanglement.—The

state of a bipartite system AB is deemed separable when its
density matrix can be decomposed as

ρAB ¼
X
k

λkρ
k
A ⊗ ρkB; ð1Þ

where λk are positive-valued probabilities summing up to 1
and ρkA, ρ

k
B are positive semidefinite matrices with trace 1.

Otherwise, the state is deemed to be entangled.
Although this general notion is applicable to systems of

distinguishable entities (such as qubits), the proper defi-
nition of entanglement of indistinguishable particles is still
a disputed issue (see Ref. [3] for a review). For example, it
has been asserted that the definition of entanglement needs
to be modified for fermionic systems which obey the parity
superselection rule prohibiting coherent superpositions
of states with different particle parity (e.g., empty and
occupied states of a single energy level) [4,5]. This rule
provides constraints on the form of physically allowed
fermionic states, as well as observables and quantum
operations [6]. As thoroughly discussed by Bañuls et al.
[7], applying the parity superselection rule in different
ways, one can provide physically justified notions of
entanglement which are either weaker [8,9] or stronger
[10–14] than Definition 1. In particular, these definitions

provide different answers to the question of whether or not
the pure state of a single fermion delocalized between two
modes A and B (e.g., quantum dots),

jΨABi ¼
1ffiffiffi
2

p ðj1Aij0Bi þ j0Aij1BiÞ; ð2Þ

is entangled or not (here, j0Xi and j1Xi denote the empty
and occupied states of the mode X, respectively; see
footnote [15] for further clarifications about the notation
used). According to Definition 1 such a state is max-
imally entangled [indeed, it looks like the Bell state
ðj↑↓i þ j↓↑iÞ= ffiffiffi

2
p

]. It is separable, however, according
to a more restrictive notion used in Refs. [10–14]:
Definition 2: Observable-based definition of fermionic

entanglement.—Let us first define the locally projected
state

πAB ¼
X

α;γ¼e;o

ðPA
α ⊗ PB

γ ÞρABðPA
α ⊗ PB

γ Þ; ð3Þ

where PX
e (PX

o ) is the local projection of the subsystem
X ∈ fA; Bg on the even (odd) particle parity sector. Then,
the state ρAB is considered entangled when πAB is entangled
with respect to Definition 1.
The physical meaning of this definition becomes clear by

noting that the state πAB reproduces all the correlations of
local observables OA and OB acting on A and B,

∀ OA;OB∶ Tr½OAOBρAB� ¼ Tr½OAOBπAB�; ð4Þ
as the observables obey the parity superselection rule.
Therefore, the state ρAB is deemed separable when it cannot
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be distinguished from a classical mixture of tensor product
states via correlations of local measurements (e.g., through
a violation of Bell’s inequality). The reason why the state
jΨABi is not entangled according to Definition 2 is that the
parity superselection rule permits only a single type of
measurement on a single fermionic mode, namely, a
projection on its empty or occupied state. As a result,
one cannot distinguish the state jΨABi from the mixed state

πAB ¼ 1

2
ðj1Aij0Bih1Ajh0Bj þ j0Aij1Bih0Ajh1BjÞ; ð5Þ

and thus this state is deemed separable. In fact, any pure or
mixed state ρAB of a two-mode system is separable
according to Definition 2. This is the reason why the
operational meaning of the entanglement of the one-body
state with respect to Definition 1 has been put into question.
It has been described as a physically inaccessible “fluffy
bunny” entanglement [11,14] and its applicability as a
quantum resource has been contested [12].
At the same time, it has been shown that the violation of

Bell’s inequality [16] or quantum teleportation [17,18] can
be achieved using an initial product state of a pair of one-
body states: jΨÃ B̃i ¼ jΨA1B1

i ⊗ jΨA2B2
i. This has been

interpreted as a demonstration of a genuine one-body
entanglement [19]. However, one can raise a possible
objection to such an interpretation, which may read as
follows. The aforementioned protocols require the joint and
simultaneous processing of the states jΨA1B1

i and jΨA2B2
i,

and the measurement of their collective observables
[defined as superpositions of different states of modes
Ai, such as ðj1A1

ij0A2
i þ j0A1

ij1A2
iÞ= ffiffiffi

2
p

]. This differs
from the standard experimental procedures used to dem-
onstrate the presence of entanglement, where each
entangled state is processed in a separate experimental
run (e.g., individual photon pairs are created and detected at
separate moments of time). Thus, one may argue that the
aforementioned studies can be interpreted on the ground of
Definition 2 using the concept of entanglement superaddi-
tivity [10]: because of the possibility of defining collective
observables, the tensor product jΨÃ B̃i ¼ jΨA1B1

i ⊗ jΨA2B2
i

can be entangled even when the individual states jΨAiBi
i are

separable. According to this line of reasoning, the entangle-
ment of a single one-body state jΨABi is regarded as
physically meaningful only if it is operationally accessible
when such a state (or, more generally, every member of an
ensemble of such states) is processed separately (as in typical
Bell’s inequality violation experiments).
In this Letter, we show that considering the thermody-

namics of the open system provides an operational way to
physically reveal the entanglement of a single one-body
fermionic state jΨABi with respect to Definition 1. Such a
state can be used to realize thermodynamic tasks that would
be impossible with a separable state. Specifically, we
demonstrate a process in which the one-body entanglement

is a source of positive coherent information (negative
conditional entropy) that can be used as a thermodynamic
resource to perform the cooling [20]. This shows that the
entanglement of the one-body state has a clear physical
manifestation and operational value, even though it is
inaccessible through local operations.
Setup.—We consider a single-mode system S coupled

with a single-modememoryM described by theHamiltonian

HMS ¼ ϵMc
†
McM þ ϵSðtÞc†ScS þ ℏΩðtÞðc†McS þ c†ScMÞ; ð6Þ

where ϵX is the energy of the mode X andΩðtÞ is the tunnel
coupling. The system-memory ensemble is connected to
the reservoir R as

HMSR ¼ HMSðtÞ þHR þHIðtÞ; ð7Þ

where HR is the reservoir Hamiltonian and HIðtÞ
describes a switchable system-reservoir coupling. The
global system MSR undergoes a unitary evolution
starting from the initial state ρMSRð0Þ ¼ ρMSð0Þ ⊗ ρeqR ,
where ρeqR ¼ expð−βHRÞ=Tr expð−βHRÞ is the equilib-
rium Gibbs state of the reservoir. Here, β ¼ 1=ðkBTÞ is
the inverse temperature of the reservoir, and we take the
chemical potential μ ¼ 0 for simplicity. The heat flow is
defined as an energy change of the reservoir (with a
minus sign):

−Q ¼ TrfHR½ρRðtÞ − ρeqR �g: ð8Þ

Here, we follow a standard sign convention where the
heat flow to the system is denoted as positive.
Using such definitions, the heat flow has been shown to

obey the second law of thermodynamics in the form [21]

σ ¼ ΔSMS − βQ ≥ 0; ð9Þ

where σ is the entropy production, SX ¼ −TrðρX ln ρXÞ is
the von Neumann entropy, and ΔSMS ¼ SMSðtÞ − SMSð0Þ;
this expression is valid for an arbitrary initial state ρMS
(since the von Neumann entropy is well defined outside of
equilibrium).
Memory-assisted purification.—We will now consider a

thermodynamic process proposed by del Rio et al. [20],
which is defined as follows:
Definition 3: Memory-assisted purification.—Memory-

assisted purification is a process converting the initially
correlated state ρMS of the memory M and the purified
system S as

ρMS → ρM ⊗ jΨS0 ihΨS0 j; ð10Þ

where ρM is the unchanged state of the memory and jΨS0 i is
the final pure state of the system.
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Heat dissipation during this process obeys the following
theorem [20]:
Theorem 1.—For any initial state ρMS which is separable

with respect to Definition 1 the heat dissipation during the
memory-assisted purification is nonnegative: −Q ≥ 0.
Proof.—The change in von Neumann entropy of ρMS

during memory-assisted purification ΔSMS ¼ SM − SSM is
equal to the coherent information ISiM ¼ SM − SSM, which
is negative for any separable state [22,23] (with respect to
Definition 1). According to the second law of thermody-
namics ΔSMS − βQ ≥ 0. Thus, −Q ≥ 0. ▪
Therefore, the cooling of the reservoir (−Q < 0) during

memory-assisted purification can be realized only when the
initial state ρMS is entangled. This can be also expressed
in another way: entanglement allows one to extract work
(−W ¼ Q > 0) during the process since it increases the
initial free energy FMS ¼ EMS − β−1SMS (which obeys the
inequality −W ≤ −ΔFMS) by lowering the entropy.
We will now demonstrate that the reservoir cooling can

be achieved using physically allowed fermionic operations
and the initial one-body state

jΨMSið1Þ ¼
1ffiffiffi
2

p ðj1Mij0Si þ ij0Mij1SiÞ: ð11Þ

The initial reduced states of the system and the memory
read accordingly:

ρð1ÞS ¼ 1

2
ðj1Sih1Sj þ j0Sih0SjÞ; ð12Þ

ρð1ÞM ¼ 1

2
ðj1Mih1Mj þ j0Mih0MjÞ: ð13Þ

The von Neumann entropy of the total pure state jΨMSið1Þ is
equal to 0 (SMS ¼ 0). The marginal entropies of S and M
read SS ¼ SM ¼ hð1=2Þ ¼ ln 2 where hðxÞ ¼ −x ln x −
ð1 − xÞ lnð1 − xÞ is the binary entropy. Thus, the coherent
information ISiM ¼ SM − SSM ¼ ln 2 is positive.
We shall now consider the following sequence of

operations. The initial mode energies are set to 0:
ϵM ¼ ϵS ¼ 0. In the first step, the initial state is converted
via a unitary transformation as

jΨMSið1Þ → jΨMSið2Þ ¼ j0Mij1Si; ð14Þ

which is performed by switching on the tunnel coupling
ΩðtÞ ¼ Ω for a time πΩ−1=4. This can be realized exper-
imentally, e.g., in quantum dot systems [24,25]. We note
here that the coherent superposition jΨMSið1Þ can be
prepared by the reverse transformation from the initial
state j0Mij1Si which, in turn, can be created by non-
equilibrium driving [24] or by Landauer erasure [26].
In the next step, we perform the following thermody-

namic quasistatic process: the system energy is lowered to

ϵS → −∞. Then, the system is coupled to the reservoir and
its energy is slowly increased to ϵS ¼ 0 (see Ref. [27] for a
similar experimental procedure). As a result, the population
of the system decreases from 1 to 1=2 and the state becomes
mixed:

jΨMSið2Þ → ρð3ÞMS ¼
1

2
j0Mih0Mj ⊗ ðj1Sih1Sj þ j0Sih0SjÞ:

ð15Þ

During a quasistatic (i.e., reversible) process, the entropy
production σ ¼ ΔSS − βQ is equal to 0. Therefore, the heat
dissipation is negative:

−Q ¼ −kBTΔSS ¼ −kBT½hð1=2Þ − hð1Þ�
¼ −kBT ln 2 ¼ −kBTISiM < 0: ð16Þ

In this way, the coherent information ISiM is fully used as a
resource to perform the cooling. Finally, we apply a unitary
process swapping the states of the system and the memory,

ρð3ÞMS → ρð4ÞMS ¼
1

2
ðj1Mih1Mj þ j0Mih0MjÞ ⊗ j0Sih0Sj; ð17Þ

which is realized by turning on the tunnel coupling ΩðtÞ ¼
Ω for a time πΩ−1=2. As a result, the system becomes
purified while the memory state is restored to the initial one
[cf. Eq. (13)]. At this point, the memory-assisted purifica-
tion is complete.
Validity of quasistatic approximation.—While our ana-

lytic results assume an ideal quasistatic process, we now
show that cooling can also be achieved in finite time using
finite level energies. Specifically, we consider a process
where the system energy is linearly swept from the value
ϵ1 < 0 to ϵ2 > 0 during interval ½0; τ�, and then stays at the
value ϵ2. The dynamics of the system population is
described by the master equation [28]

_nS ¼ −Γ½nS − fðϵSÞ�; ð18Þ

where Γ is the relaxation rate and fðϵSÞ ¼ ½1þ expðβϵSÞ�−1
is theFermi distribution. Forweak system-reservoir coupling
Γ ≪ kBT the heat dissipation can be calculated as [29]

−Q ¼ −
Z

tf

0

ϵSðtÞ _nSðtÞdt; ð19Þ

where tf is the time at which nSðtÞ reaches 1=2 and the
coupling to the bath is switched off. We will later show that
this formula well reproduces the heat calculated using
exact simulations of the system-reservoir dynamics which
takes into account finite Γ. The results are presented in
Fig. 1. As shown, heat dissipation becomes negative for
Γτ⪆4 and approaches a theoretical limit −kBT ln 2 for long
sweep times.
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To confirm the validity of the master equation approach,
we performed a simulation of the exact system-reservoir
dynamics generated by the Hamiltonian

HSR ¼ ϵSc
†
ScS þ

XK
k¼1

ϵkc
†
kck þ T

XK
k¼1

ðc†kcS þ c†SckÞ: ð20Þ

The energy levels of the reservoir ϵk are uniformly
distributed over the interval ½−7kBT; 3kBT�. T is related
to Γ as Γ ¼ 2πT 2ξ, where ξ ¼ K=ð10kBTÞ is the density of
states in the reservoir [30]. Since the Hamiltonian is
quadratic, the system-reservoir state can be fully charac-
terized by the correlation matrix Cij ¼ hc†i cji [31]. We
simulated its evolution using the Euler method [32]:

Cðtþ ΔtÞ ¼ eiΔtHðtÞCðtÞe−iΔtHðtÞ: ð21Þ

As a matter of fact, this is not just an approximation, but
corresponds to a physical scenario when ϵS is swept in a
stepwise manner. The matrix H is defined as Hii ¼ ϵi,
HSk ¼ HkS ¼ T , and Hij ¼ 0 otherwise. The initial state
reads Cð0Þ ¼ diag½1; fðϵ1Þ;…; fðϵKÞ�. The reservoir
energy can be calculated as TrðHRρRÞ ¼

P
K
k¼1 ϵkckk.

The initial and final energies of the system were chosen
as ϵ1 ¼ −5kBT and ϵ2 ¼ kBT. An example of the time
evolution of the state population and heat dissipation is
presented in Fig. 2. One notes that the exact results are in
perfect agreement with the predictions of the master
equation and also describe cooling. Indeed, heat dissipation
is negative ð−Q ≈ −0.42kBT < 0Þ for Γt ¼ Γtf ≈ 9.3
when nSðtÞ reaches the value 1=2.
Entanglement detection.—Finally, let us show how the

presence of one-body entanglement can be experimentally
detected (also for processes which do not fulfill
Definition 3). This can be realized as follows. One prepares
an ensemble of two-mode states ρMS. For some members of
the ensemble, one measures the initial occupancies n0S and
n0M. For the remaining members, one performs the sequence

of quantum operations and determines the final occupan-
cies n1S, m

1
M, as well as heat dissipation −Q. The minimum

initial entropy for separable states is max½hðn0SÞ; hðn0MÞ�
[22,23]. Thus, the presence of an initial entanglement is
implied whenever the inequality

hðn1SÞ þ hðn1MÞ −max ½hðn0SÞ; hðn0MÞ� − βQ ≥ 0; ð22Þ

is violated (the proof is analogous to Theorem 1). In fact,
this inequality is already broken for the unitary process
given by Eq. (14), where the system is thermally isolated
from the environment (−Q ¼ 0). Since coherent electron
dynamics in isolated quantum dots has been experimentally
realized [25], the detection of the one-body fermionic
entanglement appears to be feasible using state-of-the-art
techniques. We highlight that in the proposed protocol,
each state ρMS can be processed separately. For example,
one may use identically prepared states of the same double-
quantum-dot system, which are processed sequentially at
separate moments of time. Therefore, it can be used to
demonstrate a genuine one-body entanglement with respect
to Definition 1 (cf. the discussion in the Introduction).
Final remarks.—We demonstrate that entanglement with

respect toDefinition 1 retains its operationalmeaning also for
two-mode fermionic states obeying the parity superselection
rule (which has been questioned in Refs. [10–14]). It
describes the potential of a quantum state to carry the positive
coherent information (negative conditional entropy), which

FIG. 1. Heat dissipation as a function of sweep time τ for ϵ1 ¼
−5kBT and ϵ2 ¼ kBT.

FIG. 2. (a) State population and (b) heat dissipation as a
function of time for the exact dynamics (black solid line) and
master equation (black dots). Parameters: Γ ¼ 0.02kBT, Γτ ¼ 10,
ΓΔt ¼ 0.06, K ¼ 200.
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can be extracted via global operations (e.g., open-system
thermodynamic processes) to perform classically forbidden
tasks. Since positive coherent information is a resource in
several quantum information protocols [33–36], the appli-
cability of fermionic states to these goals needs to be properly
established. At the same time, such an entanglement is not
enough to observe nonlocal correlations between distant
parties, which requires the fulfillment of Definition 2; how-
ever, this obstacle can be easily circumvented by jointly
processing a pair of fermionic states [16–18]. Another (and
equally justified) interpretation of our result is that the
entanglement of a one-body state is a genuine quantum
resource, which can be extracted in two distinct ways: either
by applying only local operations, but allowing joint
processing of several copies of a quantum state (as in
Refs. [16–18]), or by separately processing different copies,
but allowing global operations (our proposal). Furthermore,
we note that fermionic entanglement defined using notions
evenweaker thanDefinition 1 [8,9] has been demonstrated to
be applicable for certain tasks, such as data hiding [37,38]
(due to the impossibility of local state preparation). We
conclude, therefore, that different complementary definitions
of fermionic entanglement—and, more generally, entangle-
ment between identical particles—may be justified in differ-
ent physical contexts (see Ref. [39] for a similar message
concerning the particle entanglement in bosonic systems).
Our Letter shows that quantum thermodynamics may be a
useful theoretical framework to shed light on this issue.
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