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We study the energetics and stability of branched tubular membrane structures by computer simulations
of a triangulated network model. We find that triple (Y) junctions can be created and stabilized by applying
mechanical forces, if the angle between branches is 120°. The same holds for tetrahedral junctions with
tetraeder angles. If the wrong angles are enforced, the branches coalesce to a linear structure, a pure tube.
After releasing the mechanical force, Y-branched structures remain metastable if one constrains the
enclosed volume and the average curvature (the area difference) to a fixed value; tetrahedral junctions
however split up into two Y junctions. Somewhat counterintuitively, the energy cost of adding a Y branch is
negative in structures with fixed surface area and tube diameter, even if one accounts for the positive
contribution of the additional branch end. For fixed average curvature, however, adding a branch also
enforces a thinning of tubes, therefore the overall curvature energy cost is positive. Possible implications
for the stability of branched networks structures in cells are discussed.

DOI: 10.1103/PhysRevLett.130.148401

Tubular membrane network structures are abundant in
biological cells, for example, in the Golgi complex [1,2]
and the endoplasmic reticulum [3,4]. Such tubular net-
works are highly dynamic structures [5], in which new
tubes are constantly created and existing tubes are merged
or dissolved. Potential physiological roles of the three-
dimensional tubular network spanning the endoplasmic
reticulum include membrane trafficking, lipid metabolism,
and autophagy, i.e., the cleaning mechanism of the cell [4].
The function of the tubular network in the Golgi apparatus
appears to be the interconnection of different building
blocks, which can also induce structural rearrangements
during cell differentiation [6]. Membrane nanotubes have
also been found to generally enhance intercellular transport
[7]. Understanding the formation and stability of tubular
networks is thus a critical problem in the fields of biology,
biophysics and soft matter.
The formation of tubular structures and membrane

networks can be induced by various different mechanisms,
which can be classified into different categories [8]. The
most obvious way of creating tubular structures is by a
force acting on a localized point on the membrane surface.
This force can be induced by growing filaments (filament
bundles) which are attached to the membrane [9,10] or by a
concerted action of molecular motors [11–16]. Other
mechanisms for tube formation include scaffolding, in
which proteins are polymerizing on the surface of the
membrane, effectively forcing the membrane to adopt the
shape of the proteins [17,18], and the adsorption or
inclusion of curvature-inducing proteins, which have been
widely observed in nature [19,20] and can induce either
positive or negative curvature [21,22]. For example,

reticulon has been found to induce the tubular network
structure in the endoplasmic reticulum [23–25].
From a theoretical point of view, membrane shapes have

been studied intensely for many decades [26–28], often
using elastic continuum models based on the Canham-
Helfrich theory [29–31]. Already for structures with simple
sphere topology, the shape diagrams were found to be
surprisingly complex, with first and second order transi-
tions between prolate, oblate, pear, and stomatocyte shapes
[26,32–34]. The process of mechanically pulling tubes
from vesicles has been investigated in detail by experiment,
theory, and simulation [35–42] and found to be accom-
panied by a free energy barrier [39], suggesting that it
might be possible to create metastable tubular structures
using mechanical forces (e.g., molecular motors). Indeed,
Bahrami et al. [43] have recently demonstrated by com-
puter simulations that linear tubular structures can be
metastable even in the absence of forces and curvature-
inducing proteins, as long as the enclosed volume is kept
fixed. This is due to the existence of a free energy barrier
between the linear tube shape and the true minimum-energy
shapes, which are oblate and prolate structures for thick
tubes and stromatocytes in the case of thin tubes.
While the (meta)stability of linear tubular structures has

been analyzed in some detail, a network has a second
fundamental building block, i.e., the junctions where
several tubes merge. Detailed theoretical analyses of such
branched structures, comparable to the ones for cylindrical
tubes, however, are still missing. In the present Letter, we
aim to fill this gap. We will first consider force-stabilized
branched structures and examine their stability. Then we
will establish conditions under which force-free branched
structures can be metastable.
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Model and method.—Our starting point is the simplest
continuum description of two-dimensional fluid membra-
nes on large scales, the so-called Helfrich Hamiltonian
[29–31],

Hcv ¼
κ

2

Z
dAK2 þ κ̄

Z
dAKG: ð1Þ

Here κ, κ̄ are curvature moduli (for lipid membranes, κ is
typically of order 20kBT [44]), K is the total curvature, and
KG the Gaussian curvature. We consider closed structures
with fixed sphere topology, hence the last term is a constant
according to the Gauss-Bonnet theorem [45] and can be
omitted. We note that we have not included a spontaneous
curvature term in Eq. (1). Instead, we will discuss the effect
of imposing an integrated average curvature

R
dAK in the

spirit of the area difference elasticity (ADE) model [46–49].
The physical origin of this global curvature could be
asymmetric numbers of lipid in the inner and outer
membrane leaflet (“area difference”) [31,46–52].
The theory is solved numerically using a dynamically

triangulated surface model [43,53–64]. Specifically, we use
the version of Noguchi and Gompper [65] which is
described in detail in Ref. [66]. The surface is described
by a network of N vertices that are connected by bonds in a
triangular network structure [NΔ ¼ 2ðN − 2Þ triangles],
and the simulation is a combination of Brownian dynamics
(node motion) and Monte Carlo moves (bond flips). We fix
the area (A ¼ A0) and in some simulations also the enclo-
sed volume V and the dimensionless average curvature (the
area difference) [43,46–49] Δa ¼ ð1=4 ffiffiffiffiffiffiffiffi

πA0

p Þ R dAK by
introducing harmonic constraint potentials with spring
constants kA, kV , and kΔa. Details of the implementation
can be found in Supplemental Material [67].
In the following, results are given in units of lb (typical

bond length), ϵ ¼ ðκ=20Þ (energy unit), and τ ¼ lb
ffiffiffiffiffiffiffiffiffiffi
mϵ−1

p
(time unit), where m is the mass of the vertices. Unless
stated otherwise, the remaining parameters are kBT ¼ 1ϵ,
N ¼ 2562, A0 ¼ 0.41l2b · NΔ, kA ¼ 2ϵ=l2b, kV ¼ kΔa ¼ 0,
and the simulation time step is Δt ¼ 10−4τ. Constraints on
V and/or Δa are imposed by setting kV ¼ 1ϵ=l3b and/or
kΔa ¼ 1ϵ. The enclosed volume will be characterized by
the dimensionless quantity ν ¼ 6

ffiffiffiffiffiffiffiffiffiffi
π=A3

p
V. The reference

values of ν andΔa for perfect spheres are thus ν ¼ Δa ¼ 1.
Force-stabilized linear and branched tubular struc-

tures.—To create tubular structures, forces with amplitude
Fext are applied to a set of n vertices such that the total force
is zero (n ¼ 2, 3, 4). For n ¼ 2, linear tubes are obtained.
For n ¼ 3, a branched structure with a Y junction can be
stabilized, provided the forces lie in one plane and have an
angle of 120° to each other [see Fig. 1(a)], otherwise one
creates linear structures as well. Using n ¼ 4, one can
create mechanically forced tetrahedral junctions; all
other fourfold junctions are unstable and separate into
Y junctions (see Supplemental Material [67], Fig. 1

and movies 4fold.mp4, 4fold_twisted.mp4,
tetrahedral.mp4).
Y junctions with fixed angle 120° are characteristic of the

so-called Fermat point, the state that minimizes the total
tube length of a network if the tube ends are kept at fixed
positions. In experimental studies, artificial surfactant and
liposome networks with fixed tube ends were found to
always evolves towards the Fermat point [70–72]. Our
simulations show that these 120° Y junctions remain the
only stable triple junctions even in situations where the tube
ends are mobile. Figure 1(b) shows the effect of slightly
perturbing the angle of one applied force from 120°,
starting from the configuration Fig. 1(a): The junction
starts moving in the direction of the smallest angle until it
disappears, with a velocity that is roughly proportional to
the distortion Δφ [Fig. 1(c)].
For stable branched structures, the presence of the

junction has little effect on the structure of the connected
tubes. The tube radius RT as a function of the applied force
Fext is the same for linear and branched structures and
consistent with the theoretical estimate [11,35] RT ¼
2πκ=Fext [Fig. 1(d)].

(a)

(c) (d)

(b)

FIG. 1. Force-stabilized tubular structures. (a) Illustration of
creation process. The starting point is a force-free spherical
vesicle. To create linear structures, two opposing forces are
applied at opposing vertices while keeping the area A fixed (no
other constraints). Y-branched structures are obtained by apply-
ing three coplanar forces with angles 120° to each other.
(b) Evolution of a Y-branched structure with time t at Fext ¼
90ϵ=lb if the direction of one applied force deviates from the
symmetric direction by Δφ ¼ 4o [69]. (c) Initial velocity of the
junction as a function of Δφ at Fext ¼ 90ϵ=lB. The dashed line is
a guide for the eye. Inset shows the displacement y of the junction
from its initial position versus time for different Δφ as indicated,
along with a quadratic fit to y ¼ y0 þ vjunctiontþ bt2 (black
lines). (d) Tube radius versus applied force Fext for linear (green
diamond) and branched structures (blue circles), compared with
theory (red line).
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Next we analyze the curvature energy (1) of the different
structures. Figure 2(a) shows the results at temperature
kBT ¼ 1 and after annealing to kBT ¼ 10−6ϵ ≈ 0 for linear
and branched structures. The energies at kBT ¼ 1ϵ and
kBT ≈ 0 differ by roughly N=2, indicating that this energy
difference can be attributed to thermal out-of-plane fluc-
tuations of vertices. Interestingly, the elastic energy of
branched structures is found to be lower than that of linear
structures [Fig. 2(a), lower panel].
To analyze this in more detail, we calculate separately

the excess elastic energy of caps (tube ends) and junctions
relative to a reference cylindrical tube section with the same
radius and the same area [see Fig. 2(c)]: We separate the
structures into “caps,” “junctions,” and “tubular” sections
as indicated in Fig. 2(b), extract an elastic energy e per tube
length from the tubular sections, and evaluate the excess
energies of caps and junctions via ΔEcap;junction ¼
Ecap;junction − lrefe, where lref ¼ Acap;junction=2πRT is the
length of the reference tube section. For example, the ideal
values for semispherical caps are e ¼ πκ=RT and
ΔEcap ¼ 3πκ, and this is independent of the cutoff value
rc marking the end of the cap region as long as rc > RT .
The procedure thus largely removes the dependence of the
results on the specific dissection into junctions, caps, and
tubular regions.
In practice, the results are still somewhat sensitive to the

choice of the cutoff values rc [Fig. 2(d), shaded areas].
Even taking these uncertainties into account, it is clear that

the excess energy of caps is positive (ΔEcap ¼ 190–220ϵ
depending on the applied force) and the excess energy of
junctions is negative (ΔEjunction ≈ −280ϵ). The excess
energy of caps is higher than the theoretical estimate
Ecap ¼ 3πκ, which we attribute to some extra distortion
in the vicinity of the vertex where the force Fext is applied.
The negative excess energy of junctions reflects the fact
that the overall curvature in the region of the junction is
reduced. Interestingly, in branched structures, the energy
gain at junctions more than compensates the energy loss
due to the formation of an additional cap. As a result, the
total elastic energy of branched structures is lower than that
of linear structures.
Force-free (meta)stable structures.—We turn to the

question whether branched structures can be metastable
in the absence of forcing. Bahrami et al. [43] have recently
observed that linear structures remain metastable if the
enclosed volume V0 is fixed. Motivated by their findings,
we study in Fig. 3(a) the time evolution of linear and
branched structures after releasing a stabilizing force while
keeping V0 fixed. In both cases, the structures eventually
transform into a structure with lower energy, a stomatocyte
[see Fig. 3(c)]. However, the transformation process is
qualitatively different. In branched structures, it sets in
immediately via a disclike widening at the junction (see
Supplemental Material movie branch_fixNu.mp4).
Linear structures initially remain (meta)stable for some

(a) (b) (d)

(c)

FIG. 2. Curvature energies of force-stabilized tubular struc-
tures. (a) Top: Elastic energy for linear (diamonds) and branched
(circles) structures as a function of applied force Fext at kBT ¼ 1ϵ
(red) and kBT ¼ 10−6ϵ (blue). Bottom: Difference between the
curvature energy of branched and linear structures kBT ¼ 1ϵ (red
crosses) and kBT ¼ 10−6ϵ (blue squares). (b) Cartoon showing
dissection of structures into tubes, caps and junctions (see text).
(c) Cartoon illustrating the definition of excess energies: The
energy of a tubular structure is compared to that of a reference
tubular section with the same area. (d) Excess curvature energy of
caps (top) and junctions (bottom) for linear (green diamonds) and
branched (blue circles) structures, obtained at kBT ¼ 10−6ϵ.
Dashed line (top) shows theoretical value for ideal semispherical
caps. Symbols or lines show values obtained with cutoff
parameters rc;cap ¼ 8lb and rc;junction ¼ 20lb. Gray shaded areas
indicate spread of results if one varies the cutoff between rc;cap ∈
½7; 10�lb and rc;junction ∈ ½10; 25�lb.

(a)

(c) (d) (e)

(b)

FIG. 3. Stability of force-free tubular structures. (a) Examples
of time evolution of the total energy after releasing the force on
force-stabilized linear (blue) and branched (red) structures at
fixed ν as indicated (Δa is not constrained). Both structures
eventually transform into a stomatocyte. For linear structures, the
transformation process sets in after an activation time, which
exceeds the maximum simulation time for ν > 0.15. (b) Average
lifetime of linear structures after releasing the stabilizing force as
a function of ν (Δa is free). Dashed line shows exponential
behavior. (c) Example of a stable stomatocyte structure with
ν ¼ 0.14. (d) Stable linear and branched structure if both ν and
Δa are fixed (ν ¼ 0.14). (e) Structure obtained after releasing the
force from a force-stabilized tetrahedral structure at fixed ν and
Δa (at ν ¼ 0.2). The tetrajunction splits up into two Y junctions.
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activation time, indicating that the shape change is an
activated process. The transformation is then initiated by
the nucleation of a disc at one end (see Supplemental
Material movie linear_fixNu.mp4 [67]). The activa-
tion time of linear structures increases roughly exponen-
tially with ν [see Fig. 3(b)] and eventually exceeds the total
simulation time, consistent with [43].
Imposing a small reduced volume alone is thus not

sufficient to stabilize branched structures. However, con-
straining the average curvature Δa in addition to ν does
have a stabilizing effect. Supplemental Material Figs. 2(a)
and 2(b) [67] show that Δa drops substantially during the
transformation from tubular or branched structures to
stomatocyte. If one constrains Δa to its initial value, i.e.,
the value of the force-stabilized structure, this suppresses
the transformation, and the tubular or branched structures
with Y junctions remain (meta)stable. Examples are shown
in Fig. 3(d). Tetrahedral junctions, on the other hand, do not
persist, but separate into two Y junctions [see Fig. 3(d),
Supplemental Material Fig. 2(e) and Supplemental Material
movie f0_tetrahedral_nu20fixDa.mp4 [67] ]. If
only Δa is kept fixed, linear and branched structures are
also stable, but may acquire slightly pearled shapes, see
Supplemental Material Fig. 2(d) [67].
Origin of energy penalty for junction defects.—The

question remains which of the two structures, branched,
or linear, has the lower energy. Judging from our previous
results on excess cap and junction energies (Fig. 2), one
might suspect that branching is energetically favorable.
However, the situation is more subtle. Adding a junction
locally removes curvature in the junction region, which has
to be added elsewhere to keep Δa fixed. As a result, the
tubular sections become thinner, and their curvature energy
increases. In Supplemental Material [67], we present a
theoretical estimate showing that the resulting net energy
difference is roughly given by ECV;branch − ECV;linear ∼ πκþ
jε · ΔECV;junctionj > 0, where ε characterizes the reduction
of curvature at the junction. At fixedΔa, the total curvature
energy of branched structures should hence be higher than
that of linear structures. A similar effect is expected for
fixed ν: A junction adds enclosed volume, which has to be
removed elsewhere, leading again to a thinning of tubes.
The net effect of constraints on the curvature energy as

obtained from simulations is summarized in Table I for the
example of force-stabilized structures at Fext ¼ 70ϵ=lb.
Here, we have used the values of ν and/or Δa obtained for
unconstrained force-stabilized linear structures (parameter
set C1) and branched structures (parameter set C2) as input
parameters in constrained force-stabilized simulations of
linear and branched structures. The curvature energies
obtained with the set C1 are generally higher than those
obtained with C2, because Δa is higher and/or ν is lower.
Comparing linear and branched structures for the same
parameter set, the results confirm the expectations of the
discussion above. Only in the absence of any constraints is

the curvature energy of branched structures lower than that
of linear structures. In all other cases (constraints on ν, on
Δa, on both), the curvature energy of branched structures is
higher.
Conclusions.—To summarize, we have investigated the

energetics and stability of an essential component of
tubular membrane networks, the junctions, from the point
of view of the Canham-Helfrich elastic theory of mem-
branes. We consider membrane structures with closed
sphere topology and allow for constraints on the enclosed
volume ν and the average curvature Δa, without, however,
imposing specific local curvatures. Within this simple
model, we find that Y junctions with angles 120° can be
stabilized by mechanical forces and remain metastable after
releasing the forces. Other types of junctions and other
angles are unstable. Furthermore, we find that Y junctions
locally have a negative excess curvature energy. For fixed
tube diameter, branching is energetically favorable, even if
one accounts for the positive energy of the additional cap.
At fixed Δa, however, adding a branch enforces a thinning
of the tubes, such that the overall curvature energy balance
disfavors branching.
This subtle energy balance should lead to an increase of

the lifetime of metastable branches, as their elimination is
only favorable if the entire tube network rearranges. In
addition, dynamical simulations suggest that the creation
and annihilation of branches is accompanied by a free
energy barrier: Pulling a branch out of a tube requires
slightly higher forces than needed to stabilize it [see
Supplemental Material, Fig. 2(a)] and if one annihilates
a branch by pulling on the other tubes, the curvature energy
passes through a maximum [Supplemental Material,
Fig. 2(b)].
Our results thus indicate that simple properties of elastic

membranes might be responsible for the abundance of tube

TABLE I. Curvature energies ECV , reduced volumes ν, and
average curvatures Δa for force-stabilized pure linear and
branched structures at Fext ¼ 70ϵ=lb. Results are shown for
two sets of constraints C1 and C2 on ν, Δa, or both as indicated,
which correspond to the values obtained for unconstrained force-
stabilized linear and branched structures, respectively.

Fixed Structure ECV=ϵ ν Δa

Linear 9333� 26 0.186� 0.001 3.90� 0.01
Branched 9082� 34 0.193� 0.001 3.81� 0.01

C1 (Linear) C2 (Branched)

ECV ν Δa ECV ν Δa

Δa Linear 9333� 3 0.186 3.90 8975� 3 0.191 3.81
Branched 9470� 3 0.187 3.90 9117� 3 0.192 3.81

ν Linear 9355� 3 0.186 3.91 8882� 3 0.192 3.79
Branch 9538� 4 0.186 3.92 9079� 4 0.193 3.80

ν, Δa Linear 9342� 3 0.186 3.90 8951� 3 0.192 3.81
Branch 9480� 3 0.186 3.90 9126� 3 0.193 3.81

PHYSICAL REVIEW LETTERS 130, 148401 (2023)

148401-4



network structures in cells. These structures are already
metastable and long lived if one imposes a few generic
constraints, such as a fixed surface area difference between
inner and outer membrane leaflet and possibly imper-
meability (fixed enclosed volume; not strictly necessary).
Hence they can be stabilized and manipulated with little
extra effort.
We have studied a very idealized model of bare mem-

branes. However, given the generic character of our main
conclusions, we expect them to still hold in other mem-
brane models, e.g., ADEmodels with more realistic (lower)
area difference elasticities kΔa, or membrane structures
with average curvature imposed by freely moving curva-
ture-inducing proteins [19–24], where one has to account
for their entropy of mixing. This will be an interesting
subject for future studies.
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