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A collection of thin structures buckle, bend, and bump into each other when confined. This contact can
lead to the formation of patterns: hair will self-organize in curls; DNA strands will layer into cell nuclei;
paper, when crumpled, will fold in on itself, forming a maze of interleaved sheets. This pattern formation
changes how densely the structures can pack, as well as the mechanical properties of the system. How and
when these patterns form, as well as the force required to pack these structures is not currently understood.
Here we study the emergence of order in a canonical example of packing in slender structures, i.e., a system
of parallel confined elastic beams. Using tabletop experiments, simulations, and standard theory from
statistical mechanics, we predict the amount of confinement (growth or compression) of the beams that will
guarantee a global system order, which depends only on the initial geometry of the system. Furthermore,
we find that the compressive stiffness and stored bending energy of this metamaterial are directly
proportional to the number of beams that are geometrically frustrated at any given point. We expect these
results to elucidate the mechanisms leading to pattern formation in these kinds of systems and to provide a

new mechanical metamaterial, with a tunable resistance to compressive force.

DOI: 10.1103/PhysRevLett.130.148201

When thin structures pack, there is a competition between
elasticity, which often encourages pattern formation and
densification, and geometric constraints. For example,
paper, when crumpled into a ball, forms complex three-
dimensional swirls [1,2], and DNA strands inserted into cell
nuclei fold and pack into layers [3,4]. In some cases, these
densification processes are resisted by friction [5,6] and
geometrical incompatibilities in the deformation of the
materials [7-10]. The formation of patterns has been studied
thoroughly in cases where thin structures are adhered to a
substrate [11-14], sheets are constrained in a ring [6,15,16],
and rods are inserted into a container [17—-19]. However, the
question of to what degree the rods and sheets will order
themselves in these complex and random packing processes
is still open.

In structured arrangements of elastic beams, the com-
petition between order and geometric frustration has been
used to great effect in the design of materials with novel and
programmed properties [20-23]. There are many models in
statistical mechanics to rationalize the emergence of order
[24,25], and in some cases these models have been
extended to study frustration, fluctuation, and shape change
in thin elastic structures [26-29]. However, these models
are insufficient to capture the ordering of beams because of
the difficulty of finding and modeling the interaction forces
between adjacent elements. For example, consider a simple
1D version of the ordering of packed beams, the gills of a
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mushroom ([see Fig. 1(a)]. If the mushroom dries
and shrinks, the gills will at first buckle and then bump
into each other. Reminiscent of the 1D Ising model for
magnetism [24], the ground state of this system occurs
when all gills point in the same direction [shown in an
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FIG. 1. (a) An oyster mushroom that has been left in the open
air to dry (approximately one day between consecutive pictures).
During this drying process, the gills become compressed along
their length, causing them to buckle (middle) and then align
(right). (b) Experimental observations of a similar phenomenon in
a system of slender parallel plates compressed in an Instron. (c) A
numerical experiment of the same system. Videos of a typical
experiment (Supplemental Material, Video 1 [30]) and simulation
(Supplemental Material, Video 2) are available.

© 2023 American Physical Society


https://orcid.org/0000-0001-7813-4955
https://orcid.org/0000-0002-6165-787X
https://orcid.org/0000-0003-3870-6562
https://orcid.org/0000-0003-0623-6789
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.148201&domain=pdf&date_stamp=2023-04-03
https://doi.org/10.1103/PhysRevLett.130.148201
https://doi.org/10.1103/PhysRevLett.130.148201
https://doi.org/10.1103/PhysRevLett.130.148201
https://doi.org/10.1103/PhysRevLett.130.148201

PHYSICAL REVIEW LETTERS 130, 148201 (2023)

analogous experiment in Fig. 1(b), right]. However, here
there exists a hierarchy of disordered metastable states in
the shallow-postbuckling regime, where the gills self-
organize into “clumps” and leave “holes” where they have
separated [Fig. 1(a), middle].

In this Letter, we consider a simplified version of this
system: an array of N parallel elastic beams confined to a
vertical space 7 that is shorter than their length # and
equally spaced inside of a box of width W, such that the
distance between the centers of any two adjacent beams is
d =W/N [Fig. 1(c)]. We characterize the control para-
meter of the system to be the confinement factor I' = £/7.
If the beams are initially perturbed in random directions, we
observe behavior reminiscent of a phase transition, where
the initial disordered state (beams buckled in random
directions) will gradually decay to the fully ordered ground
state (all beams aligned in one direction) as I" increases. We
therefore ask the following two questions: First, when and
how much will the beams align; can we predict how order
will emerge? Second, how does the mechanical response of
the system depend on the degree of order and its emergent
topology; conversely, could we use this emergent topology
in the design of tunable-stiffness materials?

To investigate this state transition experimentally,
we built a stiff acrylic two-piece mount that served to
clamp many slender elastic plates at two of their opposite
edges (effecting clamped-clamped boundary conditions).
We inserted sheets of polyvinyl siloxane (thickness
h = 1.5 mm, number N = 26) into the mounts and com-
pressed the system uniformly with an Instron, which
allowed us to measure I', as well as the force response
of the arrangement of beams [Fig. 1(b)]. We then performed
an ensemble of nonthermal quenches on this array of
beams; that is, we isostatically compressed the beams many
times, manually biasing each beam by hand to initially
buckle to the right or left based on a random coin flip at the
start of each experiment (further details in the Supplemental
Material, Sec. I [30]). Just as we see in the case of the
mushroom [Fig. 1(a)], any adjacent beams buckling toward
each other will eventually make contact and form clumps
[Fig. 1(b), middle]. After enough confinement, these
clumps become unstable and decompose, and the beams
eventually all point in one direction [Fig. 1(b), right].

We parametrize the direction of the buckling of each
beam using what we call the “tropism,” where 7; = 0 when
beam i is unbuckled, and 7; = +1 (1) if it is buckled to
the right (left), as shown in Fig. 2(a). To account for beams
that are no longer in the first buckling mode because of
contact with other adjacent beams or with the walls, we
consider that a beam is buckled to the right (left) if the
portion of the beam halfway up the box is farther to the
right (left) than its ends. We can average the behavior of all
beams into an overall system tropism,

(1)

(a) (i) (i7) Ly (i)

T: +1 +1

FIG. 2. The emergence of order for (a) two beams and (b),(c)
many beams. (a),(i) Ilustrated examples of 7; (41, blue; —1,
orange) (a),(ii) Experiments (green) overlaid with simulations
(blue and orange) of two beams that buckle toward each other.
There are two metastable “clumped” 7' = 0 states (vertically and
rotationally symmetric), however, when I > I, T=1. (a),
(iii) I'. increases with the normalized distance between two
beams d/¢, (experiments, blue diamond; simulations, red
square; model, black line; Supplemental Material, Sec. II [30])
(b) T for experiments and simulations of many beams
(N =26, W =140 mm, 7, =54 mm, h = 1.54 mm, average
d = 5.4 mm, number of ensemble measurements: experiment,
25; simulation, 100) (c) T increases with I" with a rate highly
dependent on N, d, W, h, and 7.

Note that 7 ~ 0 when the beams are randomly directed,
and T ~ 1 when the beams are all aligned [Fig. 1(b), right].
We plot the ensemble average of T at increasing I" for a
fixed beam spacing, number, thickness, and initial length in
Fig. 2(b) (blue diamond) and indeed find a gradual increase
in the average order of the system. We find that order arises
at different I" for different random initializations of the
beam buckling directions, so we use error bars to indicate
the 95% confidence interval for the ensemble-average T
(found using a bootstrap method [31]) We can compare this
with the behavior of two beams buckling toward each other
[Figs. 2(a)(ii) and 2(a)(iii)] and find that for the many-beam
case, the clumps remain stable (and therefore 7 < 1) at
much higher I'" for the same normalized beam spacing d/?
[Fig. 1(c)].

To eliminate any imperfections in the experimental
setup and other forces such as gravity, we replicated the
geometry of our physical experiments using numerical
experiments [ensemble T shown in Fig. 2(b), blue triangle]
in the Large-Scale Atomic/Molecular Massively Parallel
Simulator ([32], visualizations in oviTO [33]) adopting a
similar protocol as [34] to simulate the mechanics of the
elastic beams (Supplemental Material, Sec. II [30]).
We also include simulations with varying coefficient of
sliding friction (u, = 0, frictionless, red square; u, = 1,
rubberlike, purple diamond; ¢, = 2, highly frictional, dark
red diamond) and different beam end (pin-pin, blue circle)
and vertical box edge (periodic, red square) boundary
conditions. Additionally, we performed simulations where
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the distances between the beams were uniformly randomly
distributed with a lower bound of 1.2/ and an upper bound
such that the average distance between the beams is the
same as the model experiment (Supplemental Material,
Video 3, pink circle [30]). We find good agreement
between experiments and simulations, and furthermore
the tropism T is statistically independent of the degree
of friction, boundary conditions, and beam spacing vari-
ability. The lack of dependence on friction is somewhat
unique when compared to other work on the packing of
slender structures [5,6,15-19]. However, our setup is
designed specifically to study the emergence of order,
not the packing of the elastic structures in space. In our
system, order arises at relatively low confinement com-
pared to other studies, and since understanding this order-
ing is our aim, we do not consider a highly packed regime,
where the beams would begin to slide against each other
and the walls, and friction would play a larger role. We
discuss this further in Sec. IV of the Supplemental Material
[30]. Hence, without loss of generality, we performed
simulations of clamped-clamped, evenly spaced beams
without friction in a periodic box, with the expectation
that the results apply broadly. We varied the beam density
as well as the number of beams, plot T as a function of T"in
Fig. 2(c), and find that T strongly depends on the geometric
parameters of the box.

In Fig. 3(a), we show a series of simulations with
increasing I. We find that beams align when clumps
and holes “meet” and annihilate; that is, the space between
the center of a clump and a hole is completely taken up by
the horizontal deflection of the hole (d),) and the clump
(d.), as well as the sum of the thicknesses of the beams
between them [Fig. 3(b), more detail in the Supplemental
Material, Sec. V [30]]. We can use this mechanism to
predict T as a function of I'. We would expect that 7 = 1
when the final clump meets and annihilates with the final
hole. For simplicity, we will consider the case where the
edges of the box are periodic, and as such, the maximum
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FIG. 3. Understanding beam alignment. (a) A step-by-step
illustration of clump-hole annihilation, with simulations at in-
creasing [" from top to bottom. Clumped beams are colored purple,
and all others are colored by their tropism (7; =1 — blue,
T; = —1 — orange). (b) Illustration of the parameters in our
mathematical model. (¢) The ensemble value of T as a function
of a [prediction from Eq. (2), red]. Error bars are the same as in
Fig. 2(c), left off for clarity.

possible distance between the final clump-hole pairis W/2.
If we approximate the shape of a beam as a triangle, using

the Pythagorean theorem, d,, z%f“.vl“z — 1. We can fur-
ther approximate the center beam of a clump as a mode-2
buckled elastica, and so d. =~ d;,/2.

In experiments and simulations, we observe that clumps
and holes do not move laterally as the beams are confined,
and therefore, before annihilation, the number of beams
between a clump and a hole N, stays the same. However,
the effective horizontal thickness % of the beams changes,
as shown in Fig. 3(b). If we keep our triangular approxi-
mation for the shape of the beams, we get that 4 ~ hI" and
therefore the additional space that each beam takes up is
h—h=hT-1).

When the maximum amount of initially empty space
between a clump and a hole (W /2 — Nh/2) is taken up by
these three previously mentioned lengths [d), + d. +
Nyh(I'=1)], all clumps and holes will have met and
annihilated, and 7 — 1. In the case where the last clump
and hole are as far apart as they can be, N, = N/2, so the
fraction of the horizontal space between the clump and
hole taken up by the beams, which we will call the
“porosity” @, is a=[d,+d.+N(h—h)/2]/(W/2—Nh/2).
In Fig. 3(c), we plot T against « and find that, as we expect,
for all geometries, T~1 when « = 1. More than that,
however, it seems that the tropism is approximately
equal to a, or in other words, rearranging and inserting
our previously derived values for the clump and hole
deflections,

- 3 2 _
ng 2T DAN 432V -1 2
W/2 - Nh/2

This comes from the fact that, as the beams are confined,
the number of clumps and holes that make contact and
annihilate is proportional to the space that the beams take up.
We note that, as can be seen from Fig. 3(c), even whena = 1,
there are some cases where T is slightly less than 1. We
expect that these small discrepancies come from the fact that,
rather than explicitly deriving dj, d., and h, we have
approximated their values. A more thorough theoretical
treatment of the beams might improve the quality of our
prediction; however, we believe that these approximations
are sufficiently elucidating for the purposes of this Letter.

Now that we understand when the beams will become
ordered, we turn to our second question: how do the beams
respond to the imposed compression when they are not
ordered? This is analogous to why it requires less force to
confine paper to a target volume through folding than
through crumpling [2]: A larger degree of geometrical
frustration in thin structures often leads to more stored
energy [35]. We can observe this directly in our system.
In Fig. 4, we plot the normalized compressive force
F; = F;/F, of each beam in a clamped-clamped, periodic,
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FIG. 4. Ordering affects compressive stiffness. (a) Snapshots of a
simulationatI” = 1.18 (i) and I" = 1.38 (ii), superimposed with the
vertical compressive force (F;, blue circle) and bending energy
(U}, red square) of each beam, normalized by the force and bending
energy of a beam that is not part of a clump (F;, Uj;). (b) The total
compressive force (blue circle) and bending energy (red square) of
the same system of beams as a function of I', normalized by the
compressive force and bending energy of the system if all the beams
were buckled in the same direction. Predictions from our approxi-
mated model [Eq. (3)] are blue filled circle (F) and red filled square
(Up). Vertical lines show places where a clump and hole annihilate
(Supplemental Material, Video 4 [30]). (c) Normalized force and
bending energy against 1 + N,/N together with our predictions
from Eq. (3) (simulation U,, squares; predicted U,, red line;
simulation F, circles; experiment F', diamonds; predicted F, blue
line). Gray in the legend indicates coloration by I

frictionless simulation, where F; is the compressive force
applied to beam i, and F; is the compressive force applied
to a single beam with the same boundary conditions,
compressed to the same I' and no neighboring beams.
We simultaneously define and plot the normalized bending
energy Up,; = U,; /U, in the same way, where U, is the
bending energy of beam i, and U, is the corresponding
bending energy of the beam from which we derive F;. We
superimpose these plots onto the simulated configurations.
For beams that are not in clumps, and therefore have no
contacts, F; = U,; = 1. In contrast, beams that are in
contact with other beams in a clump and are geometrically
frustrated [35] have a higher F; and U,,;, as they cannot find
their lowest-energy state. These results indicate that our
system is behaving like a mechanical metamaterial, an
object that gets its properties not only from the material that
it is made of, but also its internal geometry [23].
Previously, we noted that the beam at the center of a clump
has the approximate shape of a mode-2 elastica. We would
expect that U, « n, where n is the mode number of the beam
(since doubling n doubles the average curvature in the beam),
so for the central beam in the clump, we expect that U,,; ~ 2.
This is confirmed in Fig. 4(a), even for very large I". To
estimate F; for the central beam of a clump, we performed
additional simulations of a single beam, where the slope at

the vertical center of the beam was forced to match the slope
derived from our triangular approximation of the beam
shape. In these simulations, we found that F;~3. In
Fig. 4(a), we find that the maximum value of F; is indeed
approximately 3 for most of the simulation, but increases for
very large I", which we expect comes from a deviation of the
true beam shape from our approximation.

In Fig. 4(a), we see that F; and U, for the beams in the
clump seem to increase linearly from ~1 at the edge of the
clump to the maximum value at the clump center. If we use
our earlier approximations for these maximum values
(U,; ~2 and F; ~3), we might expect that, on average,
a beam in a clump has U,; ~ 1.5 and F; ~ 2. Hence, we
would expect that the total force and bending energy in our
arrangement of beams is

F=F;(N+N,),
Up=Up(N+N./2), (3)

where N, is the number of beams that are in a clump. In
Fig. 4(b), we plot the total normalized force F/(NF,) (blue
circle) and bending energy U, /(NU,,) (red square) of the
specific simulation run pictured in Fig. 4(a), along with
their estimated values from the number of clumped beams
as given by Eq. (3) and find good agreement, except at high
I', when the normalized force estimate starts to fail, as we
expected. In Fig. 4(c), we plot F/(NF;) (circles) and
U,/(NUy,) (squares) against 1 + N./N and find that, for a
wide variety of box geometries, U,/(NU,;) collapses to
(1 + N_./N)/2 forall data, and F/(NF) collapses approx-
imately to 1 + N, /N for all data except for that at very high
I, both of which reinforce the appropriateness of Eq. (3).
We expect that this error in the prediction of F/(NF)
could be reduced with an analytical treatment of F; for the
beam at the center of a clump (which may itself depend on
I'), which could replace the value of 3 that we approximated
from the model simulation mentioned above.

In this Letter, we have studied how many parallel beams
clamped at their ends and confined in a box order themselves
and found that, at high enough ", T — 1. We also found that
the compressive stiffness of the metamaterial made up of
these buckling beams is proportional to the number of beams
in a clump, potentially allowing the stiffness to be manually
or automatically tuned. We expect that changes in the
geometry that we have studied could lead to a large
dependence on friction, as is the case in many other systems
of slender contacting structures [5,36—40], creating an addi-
tional route for novel functionalities. Furthermore, any
intrinsic thermal motion [29], adhesion [41,42], curvature,
or any transverse loading or long-range potentials may affect
the ordering and mechanical properties of the system,
potentially providing deeper analogies to other work in
statistical mechanics [25,26] and more tunability. So far,
we have only considered beams with two motion-restricted
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ends and fixed or periodic box edges; further studies could
consider cases where one end of the beams is free (like hair,
microtubules [43], or a carbon nanotube forest [44,45]) or
restricted only by friction with a wall, or where a lateral edge
is clamped, such as in the case of the mushroom gills. We also
note that, as the beams are compressed, a transverse force (the
compression) turns into a longitudinal transfer, namely, the
redirection of the beams. This could provide a method to
redirect and control mechanical waves [46,47].
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