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The negative internal energetic contribution to the elastic modulus (negative energetic elasticity) has
been recently observed in polymer gels. This finding challenges the conventional notion that the elastic
moduli of rubberlike materials are determined mainly by entropic elasticity. However, the microscopic
origin of negative energetic elasticity has not yet been clarified. Here, we consider the n-step interacting
self-avoiding walk on a cubic lattice as a model of a single polymer chain (a subchain of a network in a
polymer gel) in a solvent. We theoretically demonstrate the emergence of negative energetic elasticity based
on an exact enumeration up to n ¼ 20 and analytic expressions for arbitrary n in special cases.
Furthermore, we demonstrate that the negative energetic elasticity of this model originates from the
attractive polymer–solvent interaction, which locally stiffens the chain and conversely softens the stiffness
of the entire chain. This model qualitatively reproduces the temperature dependence of negative energetic
elasticity observed in the polymer-gel experiments, indicating that the analysis of a single chain can explain
the properties of negative energetic elasticity in polymer gels.
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Since the widespread acceptance of the macromolecular
hypothesis [1], the entropic elasticity originating from flexi-
ble polymer chains in rubberlike materials has been inves-
tigated experimentally and theoretically [2–4]. The simplest
theoretical explanations for entropic elasticity are provided
by statisticalmodels of ideal chains. For example, the random
walk, freely jointed chain, and freely rotating chain models
are described in textbooks on statistical mechanics [5,6],
polymer physics [7,8], and soft matter physics [9].
Rubberlike materials composed of polymer chains

exhibit an interplay between entropic (GS) and energetic
(GU) contributions to the elastic modulus (G ¼ GS þGU).
In the case of conventional natural and synthetic rubbers,
jGUj is significantly smaller than GS [2–4]. A small jGUj is
considered to originate from the conformational change
of polymer chains, which has been theoretically modeled
such as the rotational isometric state model [10]. By
contrast, the significant negative GU was recently observed
in a chemically crosslinked polymer gel, i.e., a polymer
network containing a large amount of solvent [11–13]. In
this observation, jGUj is significantly larger than that of
the energetic elasticity originating from conformational
changes, and jGUj reaches the same order of magnitude as
G, as shown in Fig. 1(a).

Although two previous studies [11,13] measured the
shear modulusG over a narrow temperature (T) rangewhere
G can be approximated as a linear function of T, the

(a) (b)

FIG. 1. Experimental results for a polymer gel [11,13] and
theoretical results of the lattice polymer chain model. (a) Temper-
ature dependence of shear modulus G of poly(ethylene glycol)
(PEG) hydrogel for T ¼ 278–308 K, including themidpoint T� ¼
293 K [seven points, including the orange point (G�) in the center].
These data are obtained from Refs. [11,13]. The black solid curve
is the fitted quadratic function of these points. The dotted line is the
tangent of the solid curve at the reference temperature T�, which
intersects with the horizontal axis at T�

U (> 0) and the vertical axis
atG�

U (< 0). Temperature dependencies ofGU (pink dashed curve)
and GS (blue dot-dashed curve) are calculated from the fitted
quadratic function. (b) Temperature dependence of stiffness (k̂) of
lattice polymer chain model for ðn; rÞ ¼ ð20; 10aÞ and its ener-
getic (k̂U) and entropic (k̂S) contributions. The tangent (dotted
line) of k̂ at T̂� intersects with the horizontal axis at T̂�

U (> 0) and
vertical axis at k̂�U ≡ k̂Uðr; T̂�Þ (< 0).
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combination of both results shows that G is an increasing
convex function of T, as shown in Fig. 1(a). Here, T
dependence of G is fitted by quadratic function (black solid
curve), and the tangent of the fitted curve (dotted line) at the
reference temperature T� ¼ 293 K intersects with the
horizontal axis at T�

U and vertical axis at G�
U. These two

experiments had the same conditions, excluding the temper-
ature ranges; Ref. [11] used T ¼ 278–298 K, whereas
Ref. [13] used T ¼ 288–308 K. By shifting T� from 288
(Ref. [11]) to 298 K (Ref. [13]), the values of T�

U increased.
These results imply that (i) G is an increasing convex
function of T, (ii) T�

U depends on the reference temperature
T�, and (iii)GU is a monotonically decreasing function of T.
In this Letter, focusing on a subchain (i.e., a chain

between adjacent crosslinks) in the polymer network of
polymer gels, we theoretically demonstrate the emergence
of negative energetic elasticity in a single polymer chain
model on a lattice. Notably, the previous experimental
studies [11,13] show that G is described as G ¼ aðT − T�

UÞ
in a narrow temperature range, where a depends on the
polymer network topology, but T�

U does not [see Eqs. (7)
and (9) in Ref. [12] ]. Thus, network topology does not
contribute to the proportion of energetic elasticity to
entropic elasticity (G�

U=G
�
S ¼ −T�

U=T
�), suggesting that a

subchain is sufficient to investigate G�
U=G

�
S. As shown in

Figs. 1(a) and 1(b), this polymer chain model explains GU
as a monotonically decreasing function of temperature in
polymer gel experiments. Furthermore, we provide a
microscopic mechanism for the emergence of negative
energetic elasticity by examining the polymer–solvent
interaction strength in this model.
Lattice polymer chain model.—We consider a single

polymer chain model surrounded by solvent molecules on a
simple cubic lattice (three dimensions). This model was
first introduced by Orr for highly dilute polymer solutions
[14] and is one of the simplest ways to express the
interaction between a polymer chain and solvent molecules.
In Figs. 2(a) and 2(b), we use a square lattice (two
dimensions) for illustration. As indicated in Fig. 2(a), this
model consists of solvent molecules and a polymer chain
represented by an n-step self-avoiding walk (SAW) [15],
which has n bonds connecting nþ 1 consecutive and
distinct lattice sites (i.e., the polymer segments). The
energy function of the model is given by

EðωÞ ¼ εppmppðωÞ þ εpsmpsðωÞ þ εssmssðωÞ; ð1Þ

where ω denotes the configuration of SAWs, and mppðωÞ,
mpsðωÞ, and mssðωÞ are the numbers of the polymer–
polymer, polymer–solvent, and solvent–solvent contact
pairs, respectively. Here, the interaction energies acting
between each pair are εpp, εps, and εss, respectively. In
Eq. (1), we do not consider the bending energetic terms,
which are essential for semiflexible polymers [16], to focus
on the solvent-induced energetic elasticity.

Once the entire lattice size is given, the total number of
contact pairs, mppðωÞ þmpsðωÞ þmssðωÞ, is constant. In
addition, we can derive 2mppðωÞ þmpsðωÞ ¼ ðz − 2Þnþ z
by counting solvent molecules surroundingω. Here, z is the
coordination number of a lattice, e.g., z ¼ 4 and 6 for the
square and cubic lattices, respectively. Thus, when n is
constant, Eq. (1) is rewritten [9,14] as

EðωÞ ¼ εmðωÞ; ð2Þ
where a constant term has been omitted, and ε≡ εpp −
2εps þ εss and mðωÞ≡mppðωÞ. Here, the original model
illustrated in Fig. 2(a) was reduced to the so-called
interacting SAW [17] shown in Fig. 2(b), which is a
single-chain system with the intrachain interaction. The
interacting SAW reduces to the (noninteracting) SAW at
ε ¼ 0. Notably, many studies on the interacting SAW have
focused on the self-attractive condition (ε < 0) to inves-
tigate the collapse transition [18–22]. By contrast, this
study focuses mainly on the self-repulsive condition
(ε > 0) to investigate the effect of attractive polymer–
solvent interactions.
Energetic and entropic elasticities in lattice polymer

chain.—To calculate the stiffness (a single-chain counter-
part of the elastic modulus) of the lattice polymer chain
model, we impose an on-axis constraint on the end-to-end
vector of ω. Here, the length of the vector is r, and the
direction of the vector is the same as the x axis, as shown in
Fig. 2(c). The partition function with the on-axis constraint
using Eq. (2) is given by

Zðr; TÞ ¼
Xmub

m¼0

Wn;mðrÞe−εm=ðkBTÞ; ð3Þ

(a) (b)

(c)

FIG. 2. (a) Two-component model of single polymer chain
(open and filled black circles connected with lines) and solvent
molecules (light-blue filled circles) on square lattice. There are
three types of nearest-neighbor interactions. (b) Reduced model
mathematically equivalent to (a). (c) Example of interacting self-
avoiding walk on cubic lattice with on-axis constraint on end-to-
end vector.
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where kB is the Boltzmann constant, T is the absolute
temperature, andWn;mðrÞ is the number of possible ω for a
given set of n, r, andm. In Eq. (3),mub is an upper bound of
m summation [i.e., Wn;mðrÞ ¼ 0 for m ≥ mub þ 1], which
is discussed in Supplemental Material, Sec. S1 [23]. The
corresponding free energy is Aðr; TÞ ¼ −kBT lnZðr; TÞ.
We define the stiffness of the lattice polymer chain

model with the on-axis constraint. In the continuum limit
(n → ∞ and lattice spacing a → 0), the stiffness is defined
as the second derivative of the free energy:

kðr; TÞ≡ ∂
2Aðr; TÞ
∂r2

¼ kBT

"� ∂Zðr;TÞ
∂r

Zðr; TÞ
�2

−
∂
2Zðr;TÞ
∂r2

Zðr; TÞ

#
: ð4Þ

Thus, we define the finite difference form of stiffness as

kðr; TÞ≡ kBT
��

1

Zðr; TÞ
Xmub

m¼0

ΔWn;mðrÞ
Δr

e−εm=ðkBTÞ
�2

−
1

Zðr; TÞ
Xmub

m¼0

Δ2Wn;mðrÞ
Δr2

e−εm=ðkBTÞ
�
; ð5Þ

where the first- and second-order differences ofWn;mðrÞ are
given byΔWn;mðrÞ≡ ½Wn;mðrþΔrÞ−Wn;mðr−ΔrÞ�=2, and
Δ2Wn;mðrÞ≡Wn;mðrþ ΔrÞ − 2Wn;mðrÞ þWn;mðr − ΔrÞ,
respectively. Here, Δr≡ 2a because ω exists only for odd
r̂≡ r=a for odd n and only for even r̂ for even n (see
Supplemental Material, Sec. S11 [23]).
We decompose the elasticity into its energetic and

entropic contributions as k ¼ kU þ kS in the same way
as in Refs. [11,12]. According to thermodynamics,
A ¼ U − TS, where U is the internal energy and S is
the entropy. Thus, in the continuum limit, the energetic and
entropic contributions are kUðr; TÞ≡ ∂

2Uðr; TÞ=∂r2 and
kSðr; TÞ≡ −T∂2SðrÞ=∂r2, respectively. From Maxwell’s
relation, we have kSðr; TÞ ¼ T∂kðr; TÞ=∂T. Thus, we
calculate kSðr; TÞ ¼ T∂kðr; TÞ=∂T and kU ¼ k − kS in
the lattice polymer chain model using Eq. (5).
Exact enumeration and derivation of polynomial func-

tions.—We exactly enumerate Wn;mðrÞ for 1 ≤ n ≤ 20
using the simplest recursive algorithm [27] with two
pruning algorithms, considering the octahedral symmetry
of the simple cubic lattice and the reachability of ω to a
specific endpoint (see Supplemental Material, Sec. S2
[23]). The complete lists of Wn;mðrÞ are provided in
Sec. S11 of Supplemental Material [23]. Those lists are
consistent with the results reported in Refs. [14,28–37] (see
Supplemental Material, Sec. S3 [23]). Using the lists of
Wn;mðrÞ with additional results up to n ¼ 26 for
r ¼ ðn − 8Þa, we exactly derive the polynomial functions
Wn;mððn − 2ÞaÞ, Wn;mððn − 4ÞaÞ, Wn;mððn − 6ÞaÞ, and
Wn;mððn − 8ÞaÞ for arbitrary integers n and m, which
are provided in Sec. S12 of Supplemental Material [23].

Emergence of negative energetic elasticity.—From the
lists ofWn;mðrÞ, we can analytically calculate k, kU, and kS.
Figure 1(b) shows a representative result for ε > 0 and
ðn; rÞ ¼ ð20; 10aÞ. Here, we introduce the dimensionless
quantities k̂≡ a2k=ε, k̂U ≡ a2kU=ε, k̂S ≡ a2kS=ε, and
T̂ ≡ kBT=ε. Figure 1(b) demonstrates the emergence of
the solvent-induced negative energetic elasticity (kU < 0)
in the model. Figure 2(c) displays an example of ω for
r ¼ 10a. In this Letter, we use r ¼ 10a for the illustration
[e.g., Fig. 1(b)] because the maximum value of jkUj=k is
larger than r ≠ 10a. Although the extent of kU=k depends
on r, the negative kU can be observed for different n ≥ 6
and r. Notably, we find that kU < 0 for arbitrary n ≥ 13,
ε > 0, and positive finite T using the polynomial functions
Wn;mððn − 2ÞaÞ, Wn;mððn − 4ÞaÞ, Wn;mððn − 6ÞaÞ, and
Wn;mððn−8ÞaÞ (see Supplemental Material, Sec. S13 [23]).
Figures 1(a) and 1(b) demonstrate the qualitative con-

sistency between the previous experimental results for the
shear modulus G of the poly(ethylene glycol) (PEG)
hydrogel [11,13] and our results. These results suggest
that negative energetic elasticity (GU < 0) in the polymer
gel originates from a single chain (kU < 0).
To examine the effect of the sign of ε on the energetic

elasticity, we show the dependence of the stiffness k̂=T̂ ¼
a2k=ðkBTÞ on 1=T̂ ≡ ε=ðkBTÞ in Fig. 3. [Note that k̂ → ∞
and k̂S → ∞ at ε ¼ 0 (noninteracting SAW), whereas 0 <
k̂=T̂ < ∞ and 0 < k̂S=T̂ < ∞.] Figure 3 depicts that the
energetic contributions are negative, zero, and positive for
ε > 0, ε ¼ 0, and ε > 0, respectively, for ðn; rÞ ¼ ð20; 10aÞ.
As depicted in Fig. 1(b), T̂�

U ≡ T̂UðT̂�Þ denotes the T̂
intercept of the tangent of k̂ ¼ k̂ðT̂Þ at the reference
temperature T̂ ¼ T̂�. For polymer gels, T�

U [Fig. 1(a)] is
a key factor in the analysis of negative energetic elasticity
because T�

U does not depend on the polymer network
topology [11,12]. In addition, in the lattice polymer chain

FIG. 3. Analytic curves of k̂=T̂, k̂U=T̂, and k̂S=T̂ as functions of
1=T̂ for ðn; rÞ ¼ ð20; 10aÞ. The tangent (dotted line) of k̂=T̂ at
1=T̂� ¼ 0 intersects with the horizontal axis at 1=T̂∞

U . The
condition for negative energetic elasticity (k̂U=T̂ < 0) is ε > 0.
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model, T�
U is a better measure of the negative energetic

elasticity than kU, because T�
U ¼ εT̂�

U=kB is independent of
the lattice spacing a, unlike kU ¼ εk̂U=a2, which depends
on a.
We define T̂∞

U ≡ limT̂�→∞ T̂UðT̂�Þ, which is a good
indicator of the negative energetic elasticity in the sense
that T̂∞

U > 0 is identical to k̂U < 0 in the case of ε > 0. As
shown in Fig. 3, the 1=T̂ intercept of the tangent of k̂=T̂ at
1=T̂ ¼ 0 corresponds to 1=T̂∞

U . Notably, T̂
∞
U is a functional

of Wn;mðrÞ and is a rational number for a given set of n, r,
and m (see Supplemental Material, Secs. S5, S6, and S7
[23]). In Fig. 4(a), we plot T̂∞

U that is calculated from
Wn;mðrÞ (the exact rational numbers of T̂∞

U are listed in
Sec. S14 of Supplemental Material [23]).
We successfully determine the analytic expressions of

T̂∞
U as the rational functions of n for r ¼ ðn − 2Þa,

ðn − 4Þa, and ðn − 6Þa, using the polynomial functions
of Wn;mðrÞ. For example,

T̂∞
U ðn; ðn− 2ÞaÞ ¼ 4ð15n8 − 356n7 þ 3766n6 − 23016n5 þ 88019n4 − 213804n3 þ 317784n2 − 256008nþ 81484Þ

ðn− 1Þð9n8 − 204n7 þ 2026n6 − 11648n5 þ 42733n4 − 102444n3 þ 156272n2 − 137656nþ 53028Þ :

ð6Þ

The other rational functions, T̂∞
U ðn; ðn − 4ÞaÞÞ and

T̂∞
U ðn; ðn − 6ÞaÞ, are provided in Sec. S15 of Supplemental

Material [23]. In Fig. 4(a), we overlay the three curves of
these functions, which pass through all the corresponding
points of T̂∞

U .
Figure 4(b) shows T̂∞

U as a function of ðn − r̂Þα=n for
α ¼ 3=4. Here, the three curves of the analytic expressions
and the points collapse onto a single master curve, except
for the small values of n. A possible origin of the exponent
α ¼ 3=4 is the reduction of the dimensionality from three to
two by the on-axis constraint on the end-to-end vector,
resulting in the universal critical exponent ν ¼ 3=4 of the
two-dimensional SAW [38,39] (see Supplemental Material,
Sec. S8 [23]).
Microscopic mechanism of negative energetic elastic-

ity.—To characterize the microscopic properties of the
lattice polymer chain model with a negative kU, we evaluate

the thermal average of the mean free path of the interacting
SAW as

lðr; TÞ ¼ 1

Zðr; TÞ
Xmub

m¼0

Xn−1
b¼0

na
bþ 1

Wn;m;bðrÞe−εm=ðkBTÞ; ð7Þ

where b is the number of bending points of ω, and
Wn;m;bðrÞ is the number of ω for a given set of n, r, m,
and b. In Eq. (7), na=ðbþ 1Þ is the mean free path for each
ω (see Supplemental Material, Sec. S9 [23]). For example,
b ¼ 4 and 13 for ω in Figs. 2(b) and 2(c), respectively.

(a) (b)

FIG. 4. (a) Exact values of T̂∞
U ðn; rÞ for n ¼ 5; 6;…; 20 and

three analytic curves for r ¼ ðn − 2Þa, ðn − 4Þa, and ðn − 6Þa,
shown as gray dashed, light-green dot-dashed, and green solid
curves, respectively. (b) Same points and curves plotted as
functions of ðn − r̂Þα=n, where α ¼ 3=4. These collapse onto a
single master curve.

FIG. 5. Polymer–solvent interaction [ε=ðkBTÞ] dependences of
k̂=T̂, k̂U=T̂, k̂S=T̂ (top panel), kU=k (middle panel), and l=a
(bottom panel) for ðn; rÞ ¼ ð20; 10aÞ and ε > 0. As ε increases,
the lattice polymer chain model (i.e., interacting SAW) becomes
globally softer and locally stiffer.
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Figure 5 indicates that k̂=T̂ ¼ a2k=ðkBTÞ increases with
ε=ðkBTÞ, whereas l decreases with ε=ðkBTÞ. Here, k̂=T̂
characterizes the “global” stiffness of the whole polymer
chain, whereas l characterizes the “local” stiffness of the
chain. Thus, the global and local stiffnesses are negatively
correlated, which is also observed in various sets of ðn; rÞ
(see Supplemental Material, Sec. S4 [23] ). These results
confirm that polymer chains become locally stiffer because
of the attractive interaction with solvent molecules, and
globally softer because of the smaller curvature of free
energy in the case of ε > 0 and k̂U < 0. This is the
microscopic mechanism of negative energetic elasticity
in the lattice polymer chain model.
Figure 5 also shows values corresponding to the SAW

(ε → 0) and neighbor-avoiding walk (NAW; ε → ∞)
[32,40,41] (see Supplemental Material, Sec. S10 [23]).
The emergence of negative energetic elasticity is charac-
terized by the crossover between the SAWand NAW, which
only possess entropic elasticity. The minimum of kU=k is
−0.554 at ε=ðkBTÞ ≃ 0.712, where the interaction strength
ε is the same order of magnitude as the thermal energy kBT.
Concluding remarks.—We used the simplest lattice

polymer chain model to explain both the energetic and
entropic elasticities (Fig. 2). By exactly enumerating the
configurations of this model, we obtained the stiffness of
the chain and its energetic and entropic contributions
(Fig. 3). This result demonstrates that the negative energetic
elasticity originates from the polymer–solvent interaction.
The three rational functions of T∞

U with respect to n are
derived from the enumeration results (Fig. 4), revealing that
negative energetic elasticity exists for all finite n ≥ 6. We
revealed a negative correlation between the stiffness of the
whole polymer chain and the mean free path of the chain
(Fig. 5). In short, locally stiffer chains are globally softer.
Although this simple model does not include chemical

details, it qualitatively reproduces the temperature depend-
ence of negative energetic elasticity observed in the experi-
ments conducted on the PEG hydrogel [11,13] (Fig. 1).
This fact indicates that negative energetic elasticity would
emerge in various single polymer chains [42–44] and
various polymer gels other than the PEG hydrogel.
Therefore, this model provides a starting point for the
further understanding of negative energetic elasticity in
polymer chains and networks in solvents.
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