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Explosive percolation in the Achlioptas process, which has attracted much research attention, is known
to exhibit a rich variety of critical phenomena that are anomalous from the perspective of continuous phase
transitions. Hereby, we show that, in an event-based ensemble, the critical behaviors in explosive
percolation are rather clean and obey the standard finite-size scaling theory, except for the large fluctuation
of pseudo-critical points. In the fluctuation window, multiple fractal structures emerge and the values can be
derived from a crossover scaling theory. Further, their mixing effects account well for the previously
observed anomalous phenomena. Making use of the clean scaling in the event-based ensemble, we
determine with a high precision the critical points and exponents for a number of bond-insertion rules and
clarify ambiguities about their universalities. Our findings hold true for any spatial dimensions.
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Percolation is one of the paradigms in statistical physics
and probability theory [1]. The standard percolation model
on a lattice is defined by randomly occupying sites or bonds
with some probability, and undergoes a continuous phase
transition. Simple alterations of the percolation, such as
lattice type, only result in different critical points, and do
not change the universality class [1]. By adopting signifi-
cantly different percolation rules, such as rigidity percola-
tion [2,3], new universalities can arise. Nevertheless, the
continuity of the transition remains robust, and the finite-
size scaling (FSS) theory is always applicable.
In recent years, there has been an ongoing discussion on

the so-called Achlioptas process [4,5], in which some
intrinsic mechanism is introduced to suppress the growth
of large clusters. A basic way is called the product rule (PR)
[6]. At each time step, two empty bonds are randomly
picked up, the size product of the two clusters containing the
ending sites of each bond is calculated, and the one, leading
to a smaller size product, is inserted. As a consequence,
the onset of percolation is significantly delayed, but once it
happens, a large cluster emerges suddenly, hence the
name explosive percolation (EP). EP has been observed
in a wide class of Achlioptas processes, including on
regular lattices [7,8] and scale-free networks [9,10], and
in systems with other bond-insertion rules [11–15]. EP was
perceived as a discontinuous transition when it was intro-
duced [6–11,13,16,17], but later studies suggested that the
sharp transition is continuous, despite displaying rich
anomalous behaviors [12,18–22].
Consider the largest cluster C1, whose relative size, m≡

hC1i=N (N is the system volume), acts as an order

parameter. According to the FSS theory, at the critical point
Tc, m scales as Ndf−1, where df is the fractal dimension
with respect to the system volume N [23]. Further, the
probability distribution of C1 can be renormalized to a
single-variable function as PðC1; NÞdC1 ¼ PðxÞdx, with
x≡ C1=Ndf . However, as in Fig. 1(a) for random graphs,
EP displays a bimodal distribution [19,24], and, further,
multiple fractal dimensions emerge; i.e., different values, dþf
and d−f , are needed to collapse the data for different peaks.
Actually, neither of them is the correct fractal dimension, as
we shall show later.
The FSS theory also tells us that C1 ¼ Ndfm̃ðδTN1=νÞ,

where δT ¼ T − Tc, ν is the correlation-length exponent
with respect to the system volume N, and m̃ð·Þ is a univer-
sal function. However, a wide range of ν values, incon-
sistent within the quoted errors, has been reported for
EP [18,19,26–28]. It was further observed [19,25] that
there simultaneously exists a pair of exponents, ν1 < ν2,
but neither of them is sufficient to describe the scaling ofC1

data near Tc; see Figs. 1(b) and 1(c). Other anomalous
phenomena include the powder-keg mechanism [11], non-
self-averaging property [15], and hysteresis [29]. It seems
that, despite being continuous, EP does not obey the
standard FSS theory, and extracting correct exponents
becomes difficult. This leads to controversies about how
the universality of EP depends on bond-insertion rules.
By dynamically recording C1ðtÞ, where time step t is also

the number of inserted bonds, the event, T N ≡ tmax=N, can
be located by the maximum point tmax of the incremental
size, C1ðtÞ − C1ðt − 1Þ [14,18,30,31]. Major progress was
recently achieved [25], in which the pseudo-critical point
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TN≡hT Ni and the variance σ2T≡hT 2
Ni−hT Ni2 are calcu-

lated. The correct fractal dimension for random graphs,
df ¼ 0.935, was obtained at T N . It was further observed that
the deviation decays as TN − Tc ∼ N−1=ν1 ¼ N−0.75, but the
fluctuation vanishes more slowly as σT ∼ N−1=ν2 ¼ N−0.50.
The authors concluded that ν2 serves as the correlation-
length exponent of EP.
In this Letter, we study EP in a similar way as in

Refs. [14,18,25,30]. A simple but important difference is
that, after locating T N , the process was repeated according
to the recorded sequence of inserted bonds. This allows us
to sample any quantity at any time step. Here, we focus on
two basic quantities—the order parameter m and the
susceptibility χ ≡ hPi≠1 C

2
i i=N. From the total number

of clusters with size in ½s; sþ Δs�, we also calculate the
cluster-number density nðs; NÞ. By definition, one has
χ ¼ P

s s
2nðs; NÞ. We explore the scaling behaviors of

these quantities and their dependence on the dynamic
deviation δT ≡ T − T N . To distinguish from the conven-
tional ensemble of fixed bond density, we call such
dynamic sampling to be in the event-based ensemble.
We perform extensive simulations on random graphs and

on hypercubic lattices in dimensions from two to six and
observe the following. First, we find that, at T N and in
terms of δT , the standard FSS theory applies well to any
quantity as QðT;NÞ ¼ NYQ̃ðδT N1=ν1Þ, with Y the asso-
ciated exponent. Note that the correlation-length exponent
is unique, which is ν1 instead of ν2. Second, we reveal that

the previously observed exponents d�f correspond to the

fractal dimensions in the fluctuation window OðN−1=ν2Þ at
the supercritical and subcritical sides of T N , respectively.
Moreover, we propose a crossover scaling theory and
derive the values of d�f . All these findings hold true for
any dimension and a number of bond-insertion rules.
Finally, we determine with a high precision the percolation
threshold and the critical exponents for a number of bond-
insertion rules and identify their universalities. For clarity,
herein we only present the numerical results for the basic
EP (with the product rule) on random graphs and will
publish other results elsewhere [32].
Standard finite-size scaling in the event-based

ensemble.—The probability distribution of C1 at T N is
displayed in Fig. 2(a). In contrast to Fig. 1(a), the
distribution is smooth and has a single peak, and, more
importantly, it can be expressed as a single-variable
function as Pðx ¼ C1=NdfÞ. Note that the correct fractal
dimension, df ¼ 0.935, equals neither to dþf nor to d−f . In
standard percolation, the cluster-number density at criti-
cality follows a power-law behavior up to a cutoff size
sN ∼ Ndf , i.e., nðs; NÞ ¼ s−τñðs=sNÞ, and the Fisher expo-
nent τ satisfies the hyperscaling relation τ ¼ 1þ 1=df. For
EP, this gives τ ¼ 2.07 from df ¼ 0.935, and the nice data
collapse in the inset of Fig. 2(a) clearly demonstrates that
nðs; NÞ for EP obeys the standard FSS form.
Following the standard FSS ansatz, we plot, respectively,

in Figs. 2(b) and 2(c), the largest cluster C1 and the
susceptibility χ versus the renormalized dynamic deviation

(a)

(b) (c)

FIG. 2. Standard FSS behaviors in the event-based ensemble.
(a) At T N , C1 has a uniform distribution Pðx ¼ C1=Ndf Þ, where
the correct fractal dimension is df ¼ 0.935 instead of dþf or d−f .
The inset shows that the cluster-number density obeys
nðs; NÞ ¼ s−τñðs=Ndf Þ, with τ ¼ 1þ 1=df ≃ 2.07. (b),(c) Over
a wide range at both sides of T N , the standard FSS form holds
well for C1 and susceptibility χ, where the jump arises from the
event-based definition of T N . The correct correlation-length
exponent is 1=ν1 ¼ 0.740, instead of 1=ν2 ¼ 0.500 [19,25].

(a)

(b) (c)

FIG. 1. Anomalous scaling behaviors in the conventional
ensemble. (a) The bimodal distribution PðxÞ of the largest cluster
size C1 at Tc. Data collapse around the right peak is achieved by

defining x ¼ C1=N
dþf with dþf ¼ 0.956, while for the left peak,

one has to use a smaller value d−f ¼ 0.657 and a rescaled
exponent η ¼ 0.08. (b),(c) The scaling of C1 near Tc, with the
exponents 1=ν1 ¼ 0.740 and 1=ν2 ¼ 0.500 (the correct fractal
dimension df ¼ 0.935 is used here), The data collapse is some-
what better for ν2, which was incorrectly regarded as the
correlation-length exponent [19,25].
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z≡ δT N1=ν1 , where df¼0.935 and 1=ν1¼0.740. Excellent
data collapse is achieved over a wide range of z, which
strongly supports that, despite of being sharp, EP is a
continuous transition and obeys the standard FSS theory.
To determine the percolation threshold Tc and the

critical exponents, df and 1=ν1, we fit data to the standard
FSS ansatz,

TN ¼ Tc þ N−1=ν1ðb0 þ b1N−ω1 þ b2N−ω2Þ; ð1Þ

C1¼Ndfða0þa1N−ω1 þa2N−ω2Þ; ðT¼T NÞ; ð2Þ

where the terms with ωi (i ¼ 1, 2) are for finite-size
corrections. We obtain Tc¼0.8884491ð2Þ, df¼0.935ð1Þ,
and 1=ν1 ¼ 0.740ð2Þ, where systematic errors have been
taken into account.
Fluctuation window and multiple fractal dimensions.—

For standard percolation, the deviation and the fluctuation
of T N are in the same order, TN − Tc ∼ σT ∼ N−1=ν1 , where
exponent ν1 is unique. For EP, however, σT vanishes with a
much slower speed and is governed by another exponent
as σT ∼ N−1=ν2 [25]. The fit of the σT data gives
1=ν2 ¼ 0.503 ≈ 1=2, and the inequality, ν1 < ν2, is clearly
shown in Fig. 3(a). Thus, beyond the standard scaling
windowOðN−1=ν1Þ, a fluctuation windowOðN−1=ν2Þ is well
defined.

We sample observables at T �
N ≡ T N � aN−1=ν2 and set

a ¼ 1 for simplicity. The largest cluster sizes C�
1 are also

well described by a power-law scaling [Fig. 3(b)]. The fits
by Eq. (2) give dþf ¼ 0.956ð3Þ for T þ

N and d−f ¼ 0.657ð3Þ
for T −

N, which agree well with those in Fig. 1(a). This
means that the two peaks in Fig. 1(a) actually correspond to
the scaling behaviors in the fluctuation window, respec-
tively at the supercritical and subcritical sides. It is thus
revealed that the critical behaviors in the conventional
ensemble are effectively a mixture of those in the fluc-
tuation window.
The pseudo-critical points T N typically deviate away from

the thermodynamic point Tc by an amount of OðN−1=ν2Þ,
while the correct critical behaviors are around T N within a
narrow window OðN−1=ν1Þ. In terms of z¼δT N1=ν1 , the
fluctuationwindow is infinitely large as jzj∼N1=ν1−1=ν2 →∞.
This suggests that the mixing effect is over an infinite
range and cannot be averaged out by taking more samples.
It is thus not surprising that anomalous critical phenomena
arise at Tc.
Relation between multiple fractal dimensions.—From

the scaling behaviors in Fig. 2, we expect that df ¼ 0.935 is
the only correct fractal dimension and d�f can be derived.
According to the FSS theory, the correlated size behaves as
ξs ∼ jδT j−ν1 , so that jzj ¼ jδT jN1=ν1 ∼ ðN=ξsÞ1=ν1 . In the
fluctuation window, which has N ≫ ξs from z → ∞, the
thermodynamic scaling should be recovered.
Let us consider the crossover scaling from finite N to

infiniteN. For susceptibility, as jzj increases, χ¼N2df−1χ̃ðzÞ
should gradually evolve to χ ∼ jδT j−γ . To eliminate finite-N
dependence, it is requested that χ̃ðjzj → ∞Þ ∼ jzj−γ , with
γ=ν ¼ 2df − 1. The thermodynamic correspondence ofC1 is
the order parameterm ¼ Ndf−1m̃ðzÞ. For a continuous phase
transition and for infiniteN,m remains zero for δT < 0 and
the long-range order is continuously developed as ðδT Þβ for
δT > 0. In the supercritical phase, the crossover scaling of
m̃ðzÞ can be extracted as m̃ðz→∞Þ∼zβ, with β=ν¼1−df.
These are well supported by Fig. 4.
FromC1¼Ndfm̃ðzÞ, m̃ðzÞ∼zβ, and z∼N1=ν1−1=ν2 , the dþf

value is readily calculated as dþf ¼ 1 − ð1 − dfÞðν1=ν2Þ≈
0.956, in excellent agreement with those in Figs. 1(a)
and 3(b). At the subcritical side, from the correlated size,

ξs ∼ jδT j−ν1 ∼ Nν1=ν2 , we expect C−
1 ∼ ξ

df
s ∼ Ndfðν1=ν2Þ, giv-

ing d−f ¼ dfðν1=ν2Þ ≈ 0.632. This is somewhat smaller than
d−f ¼ 0.657 in Figs. 1(a) and 3(b), and it can be explained by
an alternative way based on χ and nðs; NÞ.
Consider a subcritical window OðN−1=λÞ centered

around T N , with λ> ν1, we have χ∼Nð2df−1Þðν1=λÞ from
the crossover scaling of χ, and expect nðs;NÞ¼ s−τñðs=sλÞ,
with the cutoff size sλ ∼ Ndλ < Ndf . The number of clusters
of size sλ is diverging, which is Nλ ∼ N s1−τλ ∼ N1−ðdλ=dfÞ,
with s1−τ for the cumulative cluster-number density.
With this, the leading term of χ can be expressed as

(a)

(b)

FIG. 3. Multiple critical exponents as determined by the
standard FSS ansatz. (a) The deviation is TN − Tc ∼ N−1=ν1 with
1=ν1 ¼ 0.740ð2Þ, but the fluctuation is σT ∼ N−1=ν2 with
1=ν2 ¼ 0.503ð3Þ. The fluctuation window OðN−1=ν2Þ is larger
than the standard scaling window OðN−1=ν1Þ, implying a non-
self-averaging effect in the conventional ensemble. (b) The
largest clusters, C1 at T N , C�

1 in the fluctuation window
OðN−1=ν2Þ for T > T N and T < T N , respectively. It is shown
that, while C1 has the fractal dimension df ¼ 0.935ð1Þ, C�

1 have
dþf ¼ 0.956ð2Þ and d−f ¼ 0.657ð3Þ, respectively.
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s2λNλ=N ∼ N2dλ−dλ=df . Thus, by setting ð2df − 1Þðν1=λÞ ¼
2dλ − dλ=df, the relation between dλ and df is established,
dλ¼dfðν1=λÞ, and d−f ¼ dfðν1=ν2Þ is recovered for λ ¼ ν2.
Note that dλ is to characterize the typical size of a diverging
number of clusters, while C1 is the largest one. From the
extreme-value theory, one expects C1 ∼ Ndλðln NÞκ, where
exponent κ depends on the distribution of cutoff clusters.
This explains why the fitting result (d−f ¼ 0.657) is slightly
larger than the predicted value (d−f ¼ 0.632).
Universalities.—Unlike in standard percolation, it is

suggested that, for EP, small alteration of bond-insertion
rule can lead to different critical exponents [4]. For instance,
the basic product rule can be modified into the sum rule
(SUM) [6], which calculates the total size of the two clusters
associated with each candidate bond. Further, an additional
rule (AD) can be adopted by preferentially inserting the
intracluster bond [17]. One can also apply the best ofm rule
[11], i.e., choose three candidate bonds (m3) or even more.
On random graphs, the rule of [12], we call it CDGM by
combining the initials of the authors' surnames, is applied:
choose a pair of random sites and reserve the site in the
smaller cluster, repeat the procedure for the second pair,
and finally, insert a bond between the two reserved sites.
Controversies remain about how the EP universality
depends on bond-insertion rules. As an exemplified case,
debate still exists whether the AD rule would change the
universality of EP [17]; the fractal dimension was even
estimated to be larger than the system dimension, which is
clearly unphysical [33].

In the event-based ensemble, we study EP for a list of
bond-insertion rules, and the results for random graphs are
given in Table I. We obtain the following. (1) The AD rule
does not change the universality, or even the percolation
threshold. (2) Universalities are different for the PR, the
SUM, and the m3 rule; the phase transition seems to be
sharpest for them3 rule. (3) The CDGM rule seems to be in
the same universality as the SUM rule, within the estimated
errors. But its finite-size corrections are significantly
smaller and the estimated exponents have much higher
precision, which are in excellent agreement with the result
of the numerical method [21].
Discussions.—By an event-based method, we find that

EP obeys the standard FSS theory. As standard percolation,
EP has two basic exponents, the fractal dimension df and
the correlation-length exponent ν1, which can describe well
the critical behaviors of any quantities near the pseudo-
critical points T N . Nevertheless, EP has a large fluctuation
of T N , which is governed by another exponent ν2 > ν1.
This scenario holds true for different bond-insertion rules,
and for any dimension [32]. The high-precision estimate of
critical exponents enables us to establish the EP univer-
salities for various bond-insertion rules.
The obtained ν2 values agree well with 2, except for two

dimensions where 1=ν2 ¼ 0.484ð4Þ is slightly smaller than
0.5 [32]. In units of the renormalized dynamic deviation z,
the fluctuation of T N is infinitely large N1=ν1−1=ν2 , implying
that the central-limit theorem is satisfied. Thus, the fluc-
tuation may asymptotically be of Gaussian type and ν2 ¼ 2

holds exactly. On this basis, we argue that ν2 is merely a
fluctuation exponent and cannot act as a correlation-length
exponent.
The anomalous phenomena in the conventional ensemble

are revealed to be a mixture of critical behaviors over the
fluctuation window. Since it is infinitely wide in units of the
renormalized deviation, the self-averaging effect is lacking,
and this leads to the inequivalence of different ensembles.

TABLE I. Percolation thresholds Tc and critical exponents for
various bond-insertion rules, including the product rule (PR), the
sum rule (SUM), the CDGM rule, the best of m rule for m ¼ 3
(m3), and the additional rule (AD). EP has two basic exponents,
the correlation-length exponent ν1 and the fractal dimension df,
and, in addition, it has the fluctuation exponent ν2. It is argued
that the fluctuation obeys the central-limit theorem and, thus,
ν2 ¼ 2 holds exactly.

Rules Tc 1=ν1 df 1=ν2

PR 0.888 449 1(2) 0.740(2) 0.935(1) 0.503(3)
PRþ AD 0.888 449 0(4) 0.740(3) 0.935(1) 0.504(3)
SUM 0.860 207(1) 0.80(3) 0.957(5) 0.503(2)
SUMþ AD 0.860 206(1) 0.80(3) 0.953(5) 0.500(3)
CDGM 0.923 207 4(3) 0.8181(1) 0.9545(1) 0.500(2)
m3 0.964 789 9(1) 0.875(1) 0.979(1) 0.501(1)

(a)

(b) (c)

FIG. 4. Crossover scaling behaviors in terms of the renormal-
ized dynamic distance z≡ δT N1=ν1 . (a) The universal function
m̃ðzÞ in the FSS of the order parameter,m ¼ Ndf−1m̃ðzÞ, scales as
m̃ðz → ∞Þ ∼ zβ in the supercritical side, with β ¼ ð1 − dfÞν1≈
0.088. (b),(c) The universal function χ̃ðzÞ in the FSS of the
susceptibility, χ ¼ N2df−1χ̃ðzÞ, scales as χ̃ðjzj → ∞Þ ∼ jzj−γ , with
γ ¼ ð2df − 1Þν1 ≈ 1.18, which holds true at both the subcritical
(z < 0) and the supercritical (z > 0) sides of T N .
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Moreover, the multiple fractal dimensions are derived based
on the crossover scaling from finite N to infinite N.
The effective event-based method can find broad appli-

cations, since large sample-to-sample fluctuations can
widely exist in systems like disordered ones [34]. More-
over, the proposed crossover scaling theory may provide
important insights for connecting critical behaviors in
different ensembles.
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