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Quantum impurity models with frustrated Kondo interactions can support quantum critical points with
fractionalized excitations. Recent experiments [W. Pouse et al., Nat. Phys. (2023)] on a circuit containing
two coupled metal-semiconductor islands exhibit transport signatures of such a critical point. Here, we
show using bosonization that the double charge-Kondo model describing the device can be mapped in the
Toulouse limit to a sine-Gordon model. Its Bethe-ansatz solution shows that a Z3 parafermion emerges at
the critical point, characterized by a fractional 1

2
lnð3Þ residual entropy, and scattering fractional charges

e=3. We also present full numerical renormalization group calculations for the model and show that the
predicted behavior of conductance is consistent with experimental results.
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Quantum impurity models, which feature a few local-
ized, interacting quantum degrees of freedom coupled to
noninteracting conduction electrons, constitute an impor-
tant paradigm in the theory of strongly correlated electron
systems [1]. They describe magnetic impurities embedded
in metals or other materials [2,3], and nanoelectronic
devices such as semiconductor quantum dots [4–6] or
single-molecule transistors [7,8]. They are also central to
the understanding of bulk correlated materials through
dynamical mean field theory [9]. Generalized quantum
impurity models host a rich range of complex physics,
including various Kondo effects [10–19] and quantum
phase transitions [20–29]. Such models provide a simple
platform to study nontrivial physics which can be difficult
to identify in far more complex bulk materials. Indeed,
exact analytical and numerical methods for quantum
impurity models have given deep insights into strong
correlations at the nanoscale [30–34].
The two-channel Kondo (2CK) [10,23] and two-impu-

rity Kondo (2IK) [21,22] models are classic examples in
which frustrated interactions give rise to non-Fermi liquid
physics at quantum critical points (QCPs) with fractional-
ized excitations. The seminal work of Emery and Kivelson
(EK) [32] solved the 2CK model in the Toulouse limit
using bosonization techniques, and understood the QCP in
terms of a free Majorana fermion localized on the impurity.
In the 2IK model [22,35–39], a free Majorana arises from

the competition between a Ruderman-Kittel-Kasuya-
Yosida (RKKY) exchange interaction coupling the impu-
rities, and individual impurity-lead Kondo effects. In both
cases the QCP is characterized by a finite, fractional
residual impurity entropy of 1

2
lnð2Þ [22,31], which is a

distinctive fingerprint of the free Majorana.
Semiconductor quantum devices [4–6] can constitute

experimental quantum simulators for such impurity models,
with in situ control over parameters allowing correlated
electron phenomena to be probed with precision. The
distinctive conductance signatures predicted [24,36,37] for
the 2CK model at criticality were since observed [25,27]
(although the 2IK model has never been realized [40]). More
recently, Matveev’s charge Kondo paradigm [41,42] has
emerged as a viable alternative to engineer exotic states, with
both 2CK [28] and its three-channel variant [29] being
realized experimentally.
Given the intense experimental efforts to demonstrate the

existence of Majoranas in quantum devices [43,44], and the
broader interest in realizing anyons for the purposes of
quantum computing [45,46], the Kondo route to fraction-
alization has gained traction [47–50]. Experimental circuit
realizations of more complex quantum impurity models
offer the tantalizing opportunity to produce more exotic
anyons in tunable nanoelectronics devices. This can be
viewed as part of a wider effort to study fractionalization in
condensed matter systems [51–57].
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However, despite the suggestive fractional entropies in
certain Kondo-type models [29–31,58–61], the explicit
construction of parafermion operators in these systems
has not previously been possible. This is because—unlike
for the simpler case of Majoranas—parafermions cannot
arise in an effective free fermion system. Applying the EK
method yields an irreducibly strongly interacting model,
which has hitherto hindered finding exact solutions in
which free local parafermions could be identified.
In this Letter, we study the double charge-Kondo (DCK)

model describing a very recent experiment [60] involving
two hybrid metal-semiconductor islands coupled together
in series, and each coupled to its own lead, at quantum point
contacts (QPCs)—see Fig. 1. The DCK model is a variant
of the celebrated 2IK model, but with an interisland Kondo
interaction rather than an RKKYexchange interaction [21].
At the triple point in the charge stability diagram of the
device, a QCP was found to arise due to the competition
between island-lead Kondo and interisland Kondo [60].
Numerical renormalization group [33,34,72,73] (NRG)
calculations for the DCK model showed a fractional
residual entropy of 1

2
lnð3Þ at the QCP—suggesting an

unusual anyonic state (and not simply a Majorana). The
same critical point and fractional entropy were identified
analytically near perfect QPC transmission [74], although
no Kondo effects occur in this limit.
Here, we examine the “Kondo” case of weak-to-

intermediate transmission, and apply the EK mapping
[32] in the Toulouse limit. Even though the EK method
yields a highly nontrivial interacting model, we show that it
can nevertheless be solved using Bethe ansatz. Instead of
the free Majorana found by EK for the 2CK model, we
explicitly establish the existence of a Z3 parafermion in the
DCK model, and identify it as the source of the 1

2
lnð3Þ

residual entropy. Analytic expressions for conductance near
the QCP are also extracted, and we show that experimental
transport data are consistent with these predictions. To
complete the theoretical description, we obtain the full
temperature dependence of entropy and conductance via
NRG, which does not rely on the Toulouse approximation.

System and model.—The two-island circuit illustrated in
Fig. 1 is described by the DCK model at low temperatures
T ≪ EC (with EC the island charging energies) for weak-
to-intermediate QPC transmissions, see Ref. [60]:

HDCK ¼ ðJLSþL s−L þ JRS
þ
Rs

−
R þ JCS

þ
RS

−
Ls

−
C þ H:c:Þ

− hLS
z
L − hRS

z
R þ ISzLS

z
R þHelec; ð1Þ

where Helec ¼
P

α;σ;k ϵkψ
†
ασkψασk describes the electronic

reservoirs either side of QPC α ¼ L, C, R. Although the
physical electrons are spin polarized [60], we label
electrons on the lead or island either side of QPC L, R
as σ ¼ ↑ or ↓, and island electrons to the left or right of the
central QPC C as σ ¼ ↑ or ↓—see Fig. 1. We assume linear
dispersion ϵk ¼ vFk, with momentum k. We then define
pseudospin operators s−α ¼ ψ†

α↓ð0Þψα↑ð0Þ and sþα ¼ ðs−α Þ†,
where ψασð0Þ is defined at the QPC position. Confining our
attention to the lowest two macroscopic charge states of
each island jn;mi≡ jniL ⊗ jmiR, with n ¼ N, N þ 1 the
number of electrons on the left island and m ¼ M, M þ 1
electrons on the right island, we introduce “impurity”
charge pseudospin operators SþL ¼ P

m jN þ 1; mihN;mj,
SzL ¼ P

m
1
2
½jN þ 1; mihN þ 1; mj − jN;mihN;mj�, SþR ¼P

n jn;M þ 1ihn;Mj, SzR ¼ P
n
1
2
½jn;M þ 1ihn;M þ 1j−

jn;Mihn;Mj�, and S−α ¼ ðSþα Þ†. The first line in Eq. (1)
therefore corresponds to tunneling processes at the three
QPCs (with the tunneling amplitude Jα being related to the
transmission τα of QPC α). Gate voltages on the islands
control hL;R and allow the charge stability diagram to be
navigated. I is a capacitive interaction between the two
islands. For JL;C;R ¼ I ¼ 0, the four retained charge
configurations jn;mi are degenerate when hL ¼ hR ¼ 0.
However, a finite JC and/or I partially lifts this degeneracy
to yield a pair of separated triple points (TPs) in gate
voltage space. As with the experiment [60], here we focus
on the vicinity of the TP at which the charge configurations
jN;Mi=jN þ 1;Mi=jN;M þ 1i are degenerate. We here-
after neglect the term I, since it just renormalizes the TP
splitting already induced by JC > 0 and is otherwise
irrelevant [74]. The rest of this Letter is devoted to the
nontrivial Kondo competition arising when the couplings to
the leads are switched on, JL;R > 0.
QCP.—At the TP, the three “impurity” states (the

degenerate charge configurations of the two-island struc-
ture) are interconverted by tunneling at the three QPCs:

jN;Mi↔JL jN þ 1;Mi↔JC jN;M þ 1i↔JR jN;Mi:

The accompanying conduction electron pseudospin-flip
scattering at each QPC described by the operators s�L;C;R
in Eq. (1) give rise to competing Kondo effects. Since
island-lead and interisland Kondo effects cannot be

FIG. 1. Schematic of the two-site charge Kondo circuit de-
scribed by the DCK model. Two hybrid metal-semiconductor
islands are coupled to each other and to their own lead at QPCs.
Macroscopic island charge states mapped to pseudospin degrees
of freedom are flipped by tunneling at QPCs.
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simultaneously satisfied, a frustration-driven QCP arises
when JL ¼ JR ¼ JC, as reported in Refs. [60,74].
NRG solution.—In Fig. 2 we present numerically exact

results for the DCK model tuned to the TP, obtained
by NRG [33,34,72,73] (see [61] for details). We set
JL ¼ JR ≡ J and vary JC in the vicinity of the QCP arising
when JC ¼ J. In panel (a) we show the impurity contri-
bution to the entropy Simp as a function of temperature T.
The critical point JC ¼ J, shown as the red line, exhibits
Kondo “overscreening” to a non-Fermi liquid state on the
scale of TK . The three degenerate charge states give a high-
T entropy of ln(3), but the entropy is partially quenched to
1
2
lnð3Þ for T ≪ TK. Introducing channel anisotropy JC ≠ J

induces a Fermi liquid (FL) crossover on the lower scale
of T�, below which the entropy is completely quenched.
The inset shows the extracted power-law behavior,

T�=TK ∼ ðjJC − Jj=TKÞ3=2: ð2Þ

The same form was reported for detuning away from the
TP in Ref. [60]. For jJC − Jj ≪ TK we have good scale
separation T� ≪ TK , such that the crossover to the critical
point is a universal function of the single scaling parameter
T=TK , whereas the crossover away from it is a universal
function of only T=T�. This is reflected in the behavior of
series conductance, shown in panels (b),(c). At the highest
temperatures T ≫ TK , Kondo-renormalized spin-flip scat-
tering gives standard ln−2ðT=TKÞ corrections to conduct-
ance; whereas on the lowest temperature scales T ≪ T�,
we observe conventional FL scaling of conductance
∝ ðT=T�Þ2. Much more interesting is the behavior in the
vicinity of the critical fixed point [60],

G0 −GðTÞ ∼ ðT=TKÞ2=3; T ≪ TK ; ð3aÞ

G0 −GðTÞ ∼ ðT=T�Þ−4=3; T ≫ T� ; ð3bÞ

with G0 ¼ e2=3h. Equations (2) and (3) are also obtained
analytically and discussed in the following.
Bosonization and Toulouse point.—We now turn to

the details of our exact solution. Following EK [32], we
bosonize the conduction electron Hamiltonian Helec and
obtain a simplified model in the Toulouse limit after
applying a unitary transformation.
As a first step, we write ψασ ¼ eiϕασ=

ffiffiffi
a

p
with

a ¼ 4πvF ≡ 1 and introduce three chiral bosonic fields
δϕα ≡ ðϕα↑ − ϕα↓Þ=

ffiffiffi
2

p
for α ¼ L, R, C. The conduction

electron pseudospin operators follow as s−α ¼ ei
ffiffi
2

p
δϕα , and

Helec ¼
vF
4π

X
α

Z
dx

�
∂δϕα

∂x

�
2

: ð4Þ

For hL ¼ hR ¼ I ¼ 0, we can cast the DCK model as

HDCK ¼ Helec þ
h
JLS

þ
Le

i
ffiffi
2

p
δϕL þ JRS

þ
Re

i
ffiffi
2

p
δϕR

þ JCS
þ
RS

−
Le

i
ffiffi
2

p
δϕC þ H:c:

i
; ð5Þ

where all fields are implicitly taken at x ¼ 0. To make
progress, we deform the original DCK model, which
features only transverse couplings Jα, by adding an Ising
term H̄DCK ¼ HDCK þHI . Since pseudospin anisotropy is
RG irrelevant, HI affects only the flow, not the stable fixed
point itself. Therefore, the critical fixed point (and indeed
the entire FL crossover in the limit T� ≪ TK [36,37]) is the
same for any choice ofHI . We shall exploit this property to
identify an exactly solvable Toulouse limit. To do this we
effect a change of basis,

(a) (b) (c)

FIG. 2. NRG results at the triple point of the DCK model. (a) Entropy SimpðTÞ in the vicinity of the critical point, showing the flow
lnð3Þ → 1

2
lnð3Þ on the Kondo scale TK , and subsequently 1

2
lnð3Þ → 0 on the Fermi liquid scale T�. Plotted for J=D ¼ 0.2 and

jJC − Jj=D ¼ 10−3; 10−4;…; 10−8 (black lines) approaching the critical point JC ¼ J (red line). D is the conduction electron
bandwidth. The inset shows the power-law behavior Eq. (2). (b) Universal conductance curve as a function of T=TK at the critical point.
(c) Universal Fermi liquid crossover as a function of T=T�. Conductance asymptotes are discussed in the text.
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δϕA ¼ ðδϕR − δϕC − δϕLÞ=
ffiffiffi
3

p
;

δϕB ¼ ðδϕL þ δϕRÞ=
ffiffiffi
2

p
;

δϕD ¼ ðδϕL − 2δϕC − δϕRÞ=
ffiffiffi
6

p
; ð6Þ

and introduce δϕ1=2 ¼ ðδϕB=
ffiffiffi
2

p Þ � ðδϕD=
ffiffiffi
6

p Þ. We now
choose

HI ¼ λ½SzL∂xδϕ1ð0Þ þ SzR∂xδϕ2ð0Þ� ð7Þ

and rotate the Hamiltonian into UH̄DCKU† ¼ Helec þHEK
using the EK unitary transformation [32]

U ¼ exp

�
−i

1ffiffiffi
2

p fSzLδϕ1ð0Þ þ SzRδϕ2ð0Þg
�
: ð8Þ

We then obtain

HEK ¼
h
JLS−L þ JRS

þ
R þ JCS

þ
LS

−
R

i
ei

ffiffiffiffiffiffi
2=3

p
δϕA þ H:c:

þ λ̄
h
SzL∂xδϕ1ð0Þ þ SzR∂xδϕ2ð0Þ

i
; ð9Þ

where λ̄ ¼ λ − 1=ð4πÞ2. The Toulouse limit is obtained
by setting λ̄ ¼ 0, for which the bosonic modes δϕB;D

fully decouple and remain free. The symmetric charge
mode δϕA thus controls the low-energy behavior following
Kondo screening. At the QCP with isotropic couplings
JL ¼ JR ¼ JC ≡ J, the model further simplifies,

HEK ¼ Jσei
ffiffiffiffiffiffi
2=3

p
δϕA þ H:c:; σ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; ð10Þ

where the operator σ circularly permutes the three impurity
states jN;Mi=jN þ 1;Mi=jN;M þ 1i.
Parafermion modes.—In analogy with the description

of chiral Potts (clock) models by parafermionic chains [75],
we define a second operator τ ¼ diagð1;ω;ω2Þ, with ω ¼
e2iπ=3 in the impurity subspace. The operators [75,76] σ and
σ0 ¼ στ then obey the parafermionic properties,

σ3 ¼ σ03 ¼ 1; σσ0 ¼ ωσ0σ; ð11Þ

and thereby generalize the Majorana operators to a three-
dimensional space with circular Z3 symmetry.
Importantly, HEK in Eq. (10) includes only the terms σ

and σ†, and not σ0. Since σσ† ¼ σ†σ, the parafermion σ
commutes with HEK and remains free. Conversely, σ0 does
not commute and it acquires a finite scaling dimension.
Sine-Gordon model and Bethe-ansatz solution.—We

rotate to the simultaneous eigenbasis of σ and σ† and write
HEK ¼ H0 ⊕ Hþ ⊕ H−, with

Hr ¼ 2J cos

� ffiffiffiffiffiffiffiffi
2=3

p
δϕA þ r

2π

3

�
; r ¼ 0;�1: ð12Þ

The DCKmodel reduces to three decoupled boundary sine-
Gordon models [77–80], related to each other by a Z3

circular shift of the field δϕA → δϕA þ 2π=
ffiffiffi
6

p
. They all

have the same Bethe-ansatz solution describing the cross-
over from high to low energies (the same crossover as an
impurity in a one-dimensional electron gas with Luttinger
parameterK ¼ 1=3 [77]). In particular, the residual entropy
is predicted [81,82] to decrease by ΔS ¼ 1

2
lnð3Þ along the

crossover. For the DCK model we therefore expect a
crossover in the impurity entropy from ln(3) to 1

2
lnð3Þ,

as confirmed by the NRG results in Fig. 2(a). The
parafermions σ and σ0 generate the threefold charge sub-
space. Since σ0 is screened but σ remains free, it simply
halves the residual entropy. The same residual entropy was
found in the quasiballistic limit [74].
Conductance at the critical point.—The linear conduct-

ance between left and right leads is obtained from the
Kubo formula G ¼ −limω→0½ImKðωÞ=ω�, with KðωÞ the
Fourier transform of the retarded current-current correlator
KðtÞ ¼ −iθðtÞh½IðtÞ; Ið0Þ�i. Following the above mapping,

I ¼ −ðe=2πÞ
ffiffi
2
3

q
∂tΘA, where ΘA is the field conjugate to

δϕA. Since δϕA is pinned at the critical fixed point, ΘA
is free, and so hΘAðtÞΘAð0Þi ∼ − ln t at T ¼ 0. This yields
G ¼ G0 ¼ e2=3h: out of the three fields, only ϕA appears
in Eq. (9), thus only ΘA transports electrons, yielding 1=3
of a perfect conductance.
Conductance scaling in the Kondo regime, T ≪ TK .—

We now turn to the leading finite-temperature corrections
to the T ¼ 0 conductance at the critical point. To do this,
we must perturb away from the exactly solvable EK
point by reintroducing finite λ̄. This is because the RG
flow to the critical fixed point is affected by λ̄. The leading
irrelevant operator (LIO) at the QCP is given by OLIO ¼
λ̄½SzL∂xδϕ1ð0Þ þ SzR∂xδϕ2ð0Þ�. As we show in [61], the
operators ∂xδϕ1;2ð0Þ both have scaling dimension 1 and
SzL;R have scaling dimension 1

3
. This yields ΔLIO ¼ 4=3,

and therefore allows us to identify the leading correction to
conductance (arising at order λ̄2) as δG ∼ ðT=TKÞ2ðΔLIO−1Þ
[61], which reproduces Eq. (3a).
FL crossover.—The QCP is destabilized by gate voltage

detuning away from the TP (appearing as pseudo-Zeeman
fields hL;R in the DCKmodel), or by channel anisotropy δJ.
The resulting FL crossover is controlled by the FL scale T�.
Assuming T� ≪ TK, we may again utilize the Toulouse
limit and set λ̄ ¼ 0 to analyze the FL crossover, since any
finite λ̄ scales to zero anyway under RG for T ≪ TK. Both
perturbations hL;R and δJ have the effect of coupling the
otherwise independent sectors of HEK given by Eq. (12).
We focus here on finite hR for simplicity. From Eq. (1),
hR couples to SzR, which in the rotated basis is given by
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SzR ¼ 1
3
ðωτ þ ω�τ†Þ. Analyzing its action at the QCP [61],

we identify τ ¼ e−i
ffiffiffiffiffiffi
2=3

p
ΘA, where this operator circularly

permutes the sectors r in Eq. (12). SzR thus inherits the
RG-relevant scaling dimension ΔR ¼ 1=3 of τ, such that

finite hR generates a FL scale T� ∼ h1=ð1−ΔRÞ
R . Since SzL and

δJ have the same scaling dimensionΔR, in general we have
T� ∼ ðh3=2L ; h3=2R ; δJ3=2Þ [61], which reduces to Eq. (2) in
the case of pure channel anisotropy. The leading correction
in T=T� to the QCP conductance G0 then follows as
δG ∼ ðT=T�Þ2ðΔR−1Þ, yielding Eq. (3b). Additionally,
the free parafermion at the QCP is shown by noise
calculation [61] to scatter fractional charges e� ¼ e=3.
Comparison with experiment.—Finally, we turn to the

implications of our results for the experiments of Ref. [60].
Although the experimental results were obtained at large
transmission τ, τC, we expect the universal low-temperature
behavior near the QCP to be the same as that discussed
above for the Kondo limit [61,74]. Since the maximum
conductance measured is slightly lower than the predicted
value G0 ¼ e2=3h, we infer that the quantum critical state
is not fully developed at experimental base temperatures.
Detuning away from the TP by varying the island gate
voltagesU generates a pseudo-Zeeman field hL ¼ hR in the
DCKmodel, whereas detuning QPC transmission τC (while
keeping τ constant) maps to channel anisotropy δJ. Either
destabilizes the QCP and generates a finite FL scale T�.
Without perfect scale separation, we expect

G0 −GðTÞ ∼ cKðT=TKÞ2=3 þ c�ðT=T�Þ−4=3: ð13Þ
In Fig. 3 we plot the experimental data vs T�=T, with T�
estimated [60,61] for each combination of τC and U, while

T ¼ 20 mK is kept fixed. The rescaled data compare
well with Eq. (13), when cK=T

2=3
K and c� are used as free

fit parameters. This provides strong evidence that the
vicinity of the QCP in the DCK model is probed exper-
imentally in the device of Ref. [60].
Conclusion and outlook.—The two-site charge-Kondo

setup described by the DCK model can in the Toulouse
limit be mapped to a solvable boundary sine-Gordon model
by bosonization methods. At the QCP we show that the
residual entropy 1

2
lnð3Þ is due to a free Z3 parafermion,

while a second parafermion mode is Kondo screened.
Exploiting the mapping, we also obtain exact results for
the conductance near the critical point that agree not only
with NRG results but also with experimental data. This
suggests that a Z3 parafermion is already present in the
experimentally measured device of Ref. [60]. This could be
demonstrated more explicitly by measuring experimentally
the fractional entropy of the parafermion using the methods
proposed and implemented in Refs. [83–85]. Our approach
also opens the door to studying other phases of quantum
matter with irreducible strong interactions using the Emery-
Kivelson mapping.
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